7.2勾股定理
- 格式:ppt
- 大小:1.41 MB
- 文档页数:34
勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。
具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。
这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。
二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。
几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。
常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。
2. 代数证明另外,勾股定理也可以通过代数方法进行证明。
代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。
通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。
三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。
例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。
勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。
2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。
而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。
这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。
3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。
物理勾股定理知识点总结一、勾股定理的概念勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。
勾股定理广泛应用于物理学中的各个领域,如力学、光学、电磁学等。
它不仅是物理学的基础知识,也是解决实际问题的重要工具。
在直角三角形ABC中,若角C为90度,则有a²+b²=c²,其中a、b分别为直角边,c为斜边。
这是勾股定理的基本表达形式。
二、勾股定理的证明1. 几何证明:勾股定理最早由古希腊数学家毕达哥拉斯提出,并给出了一种几何证明。
这种证明方法是通过构造一个正方形,利用三角形的相似性和面积相等来证明。
在直角三角形ABC中,作a和b为直角边的正方形,其边长分别为a和b。
然后再构造一个以c为边长的正方形。
根据相似三角形的性质和面积相等,可以得出a²+b²=c²。
2. 代数证明:勾股定理也可以通过代数方法进行证明。
假设直角三角形的两直角边分别为a和b,斜边为c。
则可以利用勾股定理进行代数运算。
首先,将直角三角形的两直角边分别表示为a 和b,根据毕达哥拉斯定理,得:a²+b²=c²然后,对两边取平方根,得:c=√(a²+b²)因此,可以通过代数方法证明勾股定理的成立。
三、物理学中勾股定理的应用1. 力学:在力学中,勾股定理常常用于解决叠加物体受力的问题。
例如,一个物体受到两个力的作用,可以利用勾股定理计算合成力的大小和方向。
另外,勾股定理也可用于解决斜面上物体滑动的问题。
2. 光学:在光学中,勾股定理常常用于计算光的反射和折射。
例如,当光线入射到一个介质边界上时,可以通过勾股定理计算入射角和折射角之间的关系。
另外,勾股定理也可以用于计算物体在镜子中的像的位置和大小。
3. 电磁学:在电磁学中,勾股定理常常用于计算电场和磁场的合成和分解。
例如,两个电荷之间的相互作用力可以通过勾股定理计算合成力的大小和方向。
初二数学知识点梳理:勾股定理知识点总结一、勾股定理:勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:确定最大边;算出最大边的平方与另两边的平方和;比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法直接考查勾股定理及其逆定理;应用勾股定理建立方程;实际问题中应用勾股定理及其逆定理。
青岛版数学八年级下册《7.2 勾股定理》说课稿3一. 教材分析青岛版数学八年级下册《7.2 勾股定理》这一节的内容,是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行讲解的。
本节内容主要让学生了解勾股定理的内容,理解勾股定理的证明过程,并能够运用勾股定理解决实际问题。
教材通过引入古希腊数学家毕达哥拉斯的故事,激发学生的学习兴趣,让学生在生动有趣的故事中感受到数学的趣味性和实用性。
二. 学情分析学生在学习这一节内容之前,已经掌握了直角三角形的性质,对锐角三角函数有一定的了解。
但学生在学习过程中,可能对勾股定理的证明过程感到困惑,对如何运用勾股定理解决实际问题还不够熟练。
因此,在教学过程中,教师需要针对学生的实际情况,耐心讲解,引导学生理解和掌握勾股定理。
三. 说教学目标1.知识与技能目标:让学生了解勾股定理的内容,理解勾股定理的证明过程,能够运用勾股定理解决实际问题。
2.过程与方法目标:通过观察、思考、讨论,培养学生的逻辑思维能力和合作交流能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,感受数学的趣味性和实用性,培养学生的数学素养。
四. 说教学重难点1.教学重点:让学生了解勾股定理的内容,理解勾股定理的证明过程,能够运用勾股定理解决实际问题。
2.教学难点:勾股定理的证明过程,以及如何运用勾股定理解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、讨论法、探究法等教学方法,结合多媒体课件、几何画板等教学手段,引导学生观察、思考、讨论,激发学生的学习兴趣,提高学生的学习效果。
六. 说教学过程1.导入新课:通过讲述毕达哥拉斯的故事,引导学生了解勾股定理的由来,激发学生的学习兴趣。
2.讲解勾股定理:引导学生观察直角三角形,发现勾股定理的规律,讲解勾股定理的内容。
3.证明勾股定理:引导学生通过几何画板,进行动态演示,理解勾股定理的证明过程。
4.应用勾股定理:通过实例,引导学生运用勾股定理解决实际问题。
勾股定理知识点总结全面首先,我们来介绍一下勾股定理的历史。
勾股定理最早出现在中国古代数学著作《周髀算经》中,书中记载了一些勾股数的性质,这些数满足a²+b²=c²的关系,其中a、b、c为自然数。
后来在希腊的毕达哥拉斯学派中,勾股定理被系统地阐述和证明,毕达哥拉斯学派还以勾股定理为核心建立了一整套几何学体系。
因此,勾股定理也被称为毕达哥拉斯定理。
勾股定理的发现和应用对于几何学和数学的发展起到了非常重要的推动作用。
接下来,我们来介绍一下勾股定理的内容。
勾股定理表述了在一个直角三角形中,直角边的平方和等于斜边的平方。
具体来说,如果一个三角形中有一个内角是直角,那么这个三角形就是直角三角形,假设直角边的长度分别为a、b,斜边的长度为c,那么勾股定理的数学表达式就是:a²+b²=c².这个表达式就是勾股定理的核心内容。
勾股定理也可以表述为:直角三角形中,两直角边的平方和等于斜边的平方。
这个定理对解决直角三角形中各种问题都有重要的作用,如计算三角形的边长、求三角形的面积等。
接下来,我们来介绍一下勾股定理的证明。
勾股定理有多种不同的证明方法,其中比较常见的有几何证明、代数证明、数学归纳法证明等。
下面我们将分别介绍这些证明方法的基本思路。
首先是几何证明。
几何证明是通过构造几何图形,利用几何性质来证明定理的方法。
勾股定理的几何证明是比较直观和易于理解的,它通常利用平行四边形、相似三角形等性质来证明。
一种常见的几何证明方法是构造一个正方形,然后利用正方形的对角线、内角和边长的关系来证明勾股定理。
这种证明方法思路清晰,易于理解,是学习者比较喜欢的一种证明方法。
其次是代数证明。
代数证明是通过运用代数运算和变换来证明定理的方法。
勾股定理的代数证明是利用平方差公式和因式分解等代数方法来证明的。
通过将直角三角形的三条边长分别用代数表达式表示,然后利用平方差公式将等式展开,通过代数运算和合并同类项,最终可以得到a²+b²=c²的结果。
完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。
勾股定理的证明常用拼图的方法。
通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。
2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。
3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。
勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。
勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。
在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。
同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。
勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。
a^2+b^2=c^2$是勾股定理的基本公式。
如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。
勾股定理的实际应用有很多。
例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。
现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。
同时梯子的顶端B下降至B′。
那么BB′的长度是小于1m的(选项A)。
又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。
设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。
勾股定理知识点总结勾股定理是数学中一个著名的定理,也是初中数学学习的重点内容之一。
它描述了直角三角形中三条边的关系,并且可以应用于解决许多与三角形和几何有关的问题。
本文将对勾股定理的相关知识点进行总结和探讨。
一、勾股定理的表述和公式勾股定理的表述是:“直角三角形斜边上的正方形面积等于其他两边上的正方形面积之和。
”这就是我们通常所说的勾股定理。
勾股定理的公式可以表示为:a² + b² = c²其中,a、b代表直角三角形的两条直角边,c代表直角三角形的斜边。
二、勾股定理的证明勾股定理的证明有多种方法,在此我们以几何证明和代数证明为例进行说明。
几何证明:通过图形的构造和推理来证明勾股定理。
一种常见的几何证明方法是构造以a、b、c为边长的正方形,然后计算正方形的面积,从而证明等式成立。
代数证明:通过数学计算和变换来证明勾股定理。
一种常见的代数证明方法是将直角三角形的三条边的平方进行计算,然后将其相加和化简,最终得到等式成立的结果。
三、勾股定理的应用勾股定理不仅仅是一个数学定理,还有着广泛的应用。
1. 解决三角形的边长和角度问题:通过勾股定理,我们可以已知两条边长来求解第三条边长,或者已知两条边长和一个角度来求解其他角度。
2. 判断三角形的形状:我们可以利用勾股定理来判断一个三角形是直角三角形、锐角三角形还是钝角三角形,从而进一步研究和分析三角形的性质。
3. 解决几何问题:勾股定理还可以应用于解决一些几何问题,例如求解两条直线的交点坐标、求解平面图形的面积、判断是否存在重合图形等等。
四、勾股定理的推广除了直角三角形,勾股定理还可以推广到其他形状的图形。
1. 平方和定理:平方和定理是勾股定理的推广,它描述了非直角三角形中三条边平方的关系。
2. 多边形的对角线:在多边形中,通过某个顶点可以连接其他顶点,形成对角线。
对角线之间的关系也可以通过勾股定理进行研究和计算。
3. 空间中的勾股定理:在空间几何中,勾股定理可以推广到三维空间,描述直角棱柱、直角锥等图形的三条棱或边之间的关系。
勾股定理知识点总结人教版一、勾股定理的定义勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。
换句话说,设有一个直角三角形,其三个边长分别为a、b、c,且c为斜边,那么勾股定理可以表示为:a² + b² = c²。
其中a和b为直角两边的边长,c为斜边的边长。
勾股定理可以帮助我们快速判断一个三角形是否是直角三角形,也可以用来求解直角三角形的边长和角度等问题。
因此,勾股定理在数学中具有非常重要的地位。
二、勾股定理的证明1. 几何证明:勾股定理最早是通过几何方法来证明的。
我们可以通过绘制一个正方形,然后在正方形的对角线上分别画出边长为 a 和 b 的正方形,最后发现这两个正方形的面积之和等于边长为 c 的正方形的面积,从而证明了勾股定理。
2. 代数证明:后来,人们通过代数方法也证明了勾股定理。
通过对勾股定理进行平方运算,然后进行因式分解和运算,最终也可以得到a² + b² = c²的结论。
这种方法一般需要借助一些高等数学知识来进行证明。
三、勾股定理的应用1. 在几何学中,勾股定理可以帮助我们判断一个三角形是否是直角三角形,同时可以求解直角三角形的边长和角度等问题。
2. 在物理学中,勾股定理被广泛运用于力学、光学等领域,例如可以用来解决物体受力后的位移和速度问题。
3. 在工程学中,勾股定理也有着重要的应用,例如在建筑设计和工程测量中,可以用来计算建筑物的高度和长度。
总结:勾股定理是数学中的一个重要定理,通过勾股定理我们可以解决许多与直角三角形相关的问题。
勾股定理的证明方法有几何法和代数法,应用领域广泛,包括几何学、物理学、工程学等。
因此,我们在学习和工作中都需要掌握勾股定理的理论知识和应用技巧,这对于我们的学习和工作都是非常有益的。
希望本文的介绍和总结对勾股定理有所帮助,也希望大家能够在日常学习和工作中多加练习,提高自己的数学能力和应用能力。
勾股定理详解勾股定理定义及公式勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组程a²+ b²= c²的正整数组(a,b,c)。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a和b,斜边为c,那a²+b²=c²。
勾股定理逆定理勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。
如果a²+b²>c²,则△ABC是锐角三角形。
如果a²+b²<c²,则△ABC是钝角三角形。
勾股定理的证明据不完全统计,勾股定理的证明方法已经多达400多种了。
下面我便向大家介绍几种十分著名的证明方法。
【证法1】赵爽“勾股圆方图”第一种方法:边长为c的正方形可以看作是由4个直角边分别为a、b,斜边为c的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
第二种方法:边长为c的正方形可以看作是由4个直角边分别为a、b,斜边为c的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为(b-a)的正方形“小洞”。
因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
【证法2】课本的证明做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a²+b²+4×1/2ab=c²+4×1/2ab,整理得a²+b²=c²【证法3】1876年美国总统Garfield证明以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于2/1ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵RtΔEAD ≌RtΔCBE,∴∠ADE = ∠BEC.∵∠AED + ∠ADE = 90º,∴∠AED + ∠BEC = 90º.∴∠DEC = 180º―90º= 90º.∴ΔDEC是一个等腰直角三角形,它的面积等于1/2c².又∵∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于1/2(a+b)².∴1/2(a+b)²=2×1/2ab+1/2c².∴a²+b²=c².【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。