钢结构的破坏形式资料
- 格式:ppt
- 大小:4.95 MB
- 文档页数:21
知识点1、建筑钢材有两种可能的破坏形式塑性破坏和脆性破坏,二者的特征可从塑性变形、名义应力、断口形式三方面来理解。
影响脆性破坏的因素有有害化学元素、冶金缺陷等,但总的来看,钢材的质量、应力集中和低温的影响比较大。
防止脆性破坏必须合理设计、正确制造和正确使用三者的相互配合。
2、钢材的σ-ε曲线在下列标准条件下获得的:Ⅰ)标准试件(无应力集中);Ⅱ)静荷载一次拉伸到破坏;Ⅲ)试验温度为20°C。
按建筑钢材的σ-ε曲线其工作可分为弹性、弹塑性、塑性和强化四个阶段,并将其简化成理想弹塑性体。
从拉伸试验得到抗拉强度fu、屈服强度fy、伸长率δ5三个钢材基本性能指标,fu、fy是静力强度指标,δ5是钢材在静荷载作用下塑性性能指标。
承重结构钢材都应具有这三个指标合格的保证,对重要或需要冷加工的构件,其钢材尚应具有冷弯试验的合格保证。
3、冲击韧性Cv冲击韧性Cv是表示钢材在动力荷载作用下抵抗脆性断裂能力指标,对直接承受较大动力荷载的结构应提出相应冲击韧性要求。
4、应力钢材在静荷载作用下,单向应力时,要求截面最大应力不超过屈服点;复杂应力状态时,要求折算应力δeq不超过fy。
5、理解各种因素对钢材性能的不利影响对化学成分要分清有利元素和有害元素,应特别注意碳、硫、磷的影响。
重视应力集中产生的影响,其后果是导致局部产生双向或三向受拉的应力状态,使钢材变脆。
应通过合理的构造措施(如平缓过度)尽量避免应力集中。
6、正确选择钢材和提出合理指标要求规范推荐Q235、16Mn、16Mnq、15MnV、15MnVq钢为承重结构钢,理解它们牌号的表示方法,冶金工厂对材质应保证的项目和能附加保证的项目,掌握根据设计结构的具体条件正确选择钢材和提出合理指标要求的方法。
附:钢结构牌号钢结构牌号GB/T5613-1995标准中对铸钢规定了两种牌号表示方法1)以屈服强度和抗拉强度力学性能为主的牌号表示方法,如ZG200-400等。
钢结构疲劳破坏的特点
钢结构的疲劳破坏具有以下特点:
1. 循环载荷引起的破坏:疲劳破坏是由于结构在循环载荷作用下,经历了多次的应力循环,最终导致材料失效。
循环载荷是指结构在一段时间内多次受到的应力反复加载和卸载。
2. 局部疲劳破坏:疲劳破坏通常发生在结构中的一些局部区域,如焊接处、孔洞、切口等。
这些局部区域在应力集中的情况下更容易产生裂纹,从而引起疲劳破坏。
3. 逐渐扩展的裂纹:疲劳破坏是一个逐渐发展的过程,通常从结构表面的微小缺陷处开始形成裂纹,随着循环载荷的作用,裂纹会逐渐扩展,最终导致结构的失效。
4. 裂纹形态为疲劳条纹:疲劳破坏的裂纹形态通常呈现出一种类似条纹的形式,称为疲劳条纹。
这些条纹是由于裂纹在扩展时材料的撕裂和破碎引起的。
5. 疲劳寿命:对于给定的应力幅值和循环次数,材料具有一定的疲劳寿命。
疲劳寿命是指材料能够承受多少次应力循环后出现失效。
不同材料和结构的疲劳寿命各不相同。
6. 极限疲劳强度:根据疲劳试验结果,可以确定材料的极限疲劳强度。
极限疲劳强度是指在特定的应力循环次数下,材料能够承受的最大应力幅值,超过该应力幅值会导致材料失效。
钢结构的破坏模式分析钢结构是一种常见的建筑结构形式,具有高强度和优异的力学性能。
然而,在一些特定的情况下,钢结构也会遭受各种不同形式的破坏。
本文将对钢结构的破坏模式进行详细分析,以帮助读者更好地了解该结构在不同情况下的表现和应对方法。
1. 弹性失稳破坏弹性失稳破坏是钢结构最常见的破坏形式之一。
当结构受到外部载荷作用时,其表现为结构中的某一部分或整体开始产生弯曲变形,并且不能恢复到原始状态。
这种破坏模式通常发生在杆件或梁柱连接处。
2. 屈曲破坏屈曲破坏是在钢结构中发生的另一种常见形式。
当某个构件承受的应力超过其屈服强度时,它的形状将开始发生塑性变形,最终导致该构件无法继续承受负荷并发生失效。
在屈曲破坏中,构件的断裂通常发生在连接处、焊缝或构件的弱点处。
3. 失稳屈曲破坏失稳屈曲破坏是弹性失稳破坏和屈曲破坏的综合表现。
当结构受到外部载荷作用时,一部分构件发生屈曲,同时其他部分也开始产生弹性失稳变形。
这种破坏模式通常发生在长支撑结构中,例如桁架和柱子。
4. 疲劳破坏疲劳破坏是由于结构长期受到重复或循环载荷的作用而导致的,特别是在应力集中的区域。
这种破坏模式通常在钢桥梁、塔架和机械设备中发生。
疲劳破坏的特点是慢慢扩展,表现为结构的局部裂纹逐渐扩展并最终导致结构失效。
5. 冲击破坏冲击破坏是由突然施加到结构上的高能量载荷造成的,例如爆炸或碰撞。
由于冲击载荷的特殊性,结构无法承受这种突然的巨大荷载,导致结构出现严重破坏。
冲击破坏的特点是瞬时性和不可预测性。
综上所述,钢结构在面对不同的外部载荷和作用下,可能会出现弹性失稳破坏、屈曲破坏、失稳屈曲破坏、疲劳破坏和冲击破坏等不同的破坏模式。
对于这些破坏模式的分析,有助于设计师和工程师更好地理解钢结构的性能和限制,并采取相应的预防和修复措施,以确保结构的安全性和可靠性。
同时,在实际应用中,结构的维护保养和定期检查也至关重要,以及时发现并处理任何潜在的问题,确保结构的长久使用。
工程事故分析钢结构脆性破坏事故分析王元清(清华大学土木工程系 100084) 钢结构的破坏通常可分为塑性和脆性两种形式。
其中脆性破坏是结构极限状态中最危险的破坏形式之一,这主要由于它的发生往往很突然、没有明显的塑性变形,而且构件破坏时的承载能力很低,带来的损失也十分惊人。
1 钢结构脆性事故的原因分析钢结构,特别是焊接钢结构受材料性质、加工工艺等方面因素影响,不可避免地存在各种缺陷,加之使用条件的不利作用(如超载、低温、动载等),易发生各类事故。
而在钢结构的事故中,脆性破坏占相当大的比例。
文献[5]给出了钢结构事故中各种破坏类型所占的比例(见表1)。
可见,有必要深入开展钢结构的脆性破坏方面的研究。
表1 钢结构各破坏类型在工程事故中所占的百分比破坏类型1951~197759起事故1951~195969起事故1950~1975100起事故整体或局部失稳224441母材破坏 塑性破坏脆性破坏62717814钢材的疲劳破坏1653(考虑焊缝)焊接连接的破坏152624螺栓连接的破坏43其它类型破坏1087早在1971年国际焊接协会(International Insti-tute of W elding)就对60个焊接钢结构脆性破坏实例进行了统计分析[1],并根据所占比例总结出14个最主要的影响因素(参见表2)。
其中每个脆性破坏的实例并不是由单一因素引起的,而是多个因素共同作用的结果,所以表中列举的实例总数不是60个,而是126个。
表2 国际焊接协会对焊接钢结构脆性破坏的实例统计分析结果序号影响因素实例数 百分比1钢材对裂纹的敏感性2620.62结构构造缺陷1814.33构件的焊接残余应力1713.54钢材冷作与变形硬化1411.15疲劳裂纹97.26其它焊缝缺陷97.27结构工艺缺陷97.28结构超载8 6.39构件的热应力6 4.810焊接热影响区的裂纹3 2.411钢材的热处理3 2.412焊缝的裂纹2 1.613钢材的冷加工10.714腐蚀裂纹10.7总 计126100.0 作者在留学期间曾对前苏联223个工程中发生的350个钢结构脆性破坏实例进行了统计分析[2]。
钢结构易发生的工程事故有哪些一、钢结构承载力和刚度失效。
二、钢结构失稳。
钢结构的失稳主要发生在轴压、压弯和受弯构件。
三、钢结构疲劳破坏。
热门城市:中山律师宁德律师商丘律师固原律师乐山律师钦州律师荆门律师常州律师海东律师鞍山律师钢结构是一种新型的结构体系,有着各种各样的优点,随着钢结构的不断发展,许多其他的结构体系都在被取代,我国的钢结构也在蓬勃发展。
但是钢结构也有其不足的地方,他的一些缺陷可能造成事故。
下面小编就为您介绍钢结构易发生的工程事故有哪些。
钢结构的事故按破坏形式大致可分为:钢结构承载力和刚度失效;钢结构失稳;钢结构疲劳;钢结构脆性断裂和钢结构的腐蚀等几种。
一、钢结构承载力和刚度失效1、钢结构承载力失效指正常使用状态下结构构件或连接材料强度被超越而导致破坏。
其主要原因为:①钢材的强度指标不合格。
合格钢结构设计中有两个重要强度指标:屈服强度fy;另外,当结构构件承受较大剪力或扭矩时,钢材抗剪强度fv也是重要指标。
②连接强度不满足要求。
焊接连接的强度取决于是否与母材匹配的焊接材料强度、焊接工艺、焊缝质量和缺陷及其检查控制、焊接对母材热影响区强度的影响等;螺栓连接强度的影响因素为:螺栓及其附件材料的质量以及热处理效果(高强螺栓)、螺栓连接的施工技术工艺的控制,特别是高强螺栓预应力控制和摩擦面的处理、螺栓孔引起被连接构件截面的削弱和应力集中等。
③使用荷载和条件的变化。
包括计算荷载的超载、部分构件退出工作引起其他构件增载、意外冲击荷载、温度变化引起的附加应力、基础不均匀沉降引起的附加应力等。
2、钢结构刚度失效指产生影响其继续承载或正常使用的塑性变形或振动。
其主要原因为:①结构或构件的刚度不满足设计要求如轴压构件不满足长细比要求;受弯构件不满足允许挠度要求;压弯构件不满足上述两方面要求等。
②结构支撑体系不够。
支撑体系是保证结构整体和局部刚度的重要组成部分,它不仅对抵制水平荷载、抗振动有利,而且直接影响结构正常使用(如工业厂房当整体刚度不足时,在吊车运行过程中会产生振动和摇晃)。
钢材的破坏形式与主要性能1. 引言钢材作为一种常用的结构材料,在各个行业中有着广泛的应用。
但在使用过程中,钢材也会遭受各种形式的破坏。
了解钢材的破坏形式及其主要性能对于设计和使用钢材结构具有重要意义。
本文将分析钢材的破坏形式以及相关的主要性能,为钢材的合理选择和使用提供依据。
2. 破坏形式2.1 塑性变形钢材的塑性变形是钢材常见的一种破坏形式。
在受到外力作用下,钢材会发生塑性变形,产生局部或整体的形状改变。
这种变形是可逆的,即钢材在去除外力后可以恢复原状。
塑性变形主要包括拉伸、压缩和弯曲。
2.2 断裂断裂是钢材破坏的另一种常见形式。
当承受的载荷超过钢材所能承受的极限时,会导致钢材发生断裂。
断裂可以分为韧性断裂、脆性断裂和疲劳断裂。
•韧性断裂是指钢材在受到高强度载荷作用下发生的断裂。
这种断裂具有较大的断口伸长率和韧性,通常发生在冷弯和冲压等加工过程中。
•脆性断裂是指钢材在低温或应力集中区域受到高应力作用下发生的断裂。
这种断裂速度非常快,断口较光滑,通常发生在低温环境下或存在明显缺陷的钢材中。
•疲劳断裂是指钢材在受到循环载荷作用下发生的断裂。
这种断裂常发生在频繁变化的载荷下,会导致钢材出现微裂纹,并最终扩展为断裂。
2.3 腐蚀腐蚀是钢材破坏的另一重要形式。
在潮湿、酸性或碱性环境中,钢材会与周围介质发生化学反应,引起钢材表面的氧化或溶解,导致钢材的厚度减小、强度降低以及出现孔洞等腐蚀痕迹。
腐蚀不仅会影响钢材的机械性能,还会降低其寿命。
3. 主要性能3.1 强度钢材的强度是指其抵抗外力作用的能力。
强度是钢材选择和设计的重要性能指标之一。
常见的钢材强度指标包括屈服强度、抗拉强度和抗压强度等。
3.2 韧性钢材的韧性是指其在受力下发生塑性变形时所能吸收的能量。
韧性与钢材的断裂性能有关,对于某些承受冲击或动态载荷的结构来说,韧性是一个非常重要的性能指标。
3.3 硬度钢材的硬度是指其抵抗局部刮擦和压痕形成的能力。