小升初奥数第16节:年龄问题~任园园
- 格式:doc
- 大小:549.07 KB
- 文档页数:4
小学生奥数年龄问题的解题技巧笔者小学生奥数频道为网友整理的小学生奥数年龄问题的解题技巧,供大家参考学习。
小学奥数年龄问题的解题技巧在一些数学问题中要讨论年龄的变化和几个人的年龄的关系,我们知道随着时间的往后或往前推移,人的年龄就会增加或减少,如果有几个人,时间往后推移,几个人年龄的和随着年数增加而增加年数的几(按人数)倍,但这几个人年龄间的差却是不变的。
在解答有关年龄变化的问题时这是必须牢记的。
例1:小华今年12岁,他妈妈今年48岁,多少年以前妈妈的年龄是小华的5倍?多少年以后妈妈的年龄是小华的3倍?解:首先,不管是今年或今年前、今年后的若干年,小华和他妈妈年龄的差都是相同的,妈妈的年龄比小华大48-12=36(岁)。
当妈妈的年龄是小华的5倍时,把那时小华的年龄作为1份,妈妈的年龄是这样的5份,比小华多5-1=4(份),所以那时小华是:36÷4=9(岁),是在今年前12-9=3(年)。
当妈妈的年龄是小华的3倍时,把那时小华的年龄作为1份,妈妈的年龄是这样的3份,比小华3-1=2(份),所以那时小华是:36÷2=18(岁),是在今年后18-12=6(年)。
答:3年以前,妈妈的年龄是小华的5倍,6年以后,妈妈的年龄是小华的3倍。
例2:小芬家由小芬和她的父母组成,小芬的父亲比母亲大4岁,今年全家年龄的和是72岁,10年前这一家全家年龄的和是44岁。
今年三人各是多少岁?解:一家人年龄的和今年与10年前比较增加了72-44=28(岁),而如果按照三人计算10年后应增加3×10=30(岁),只能是小芬少了2岁,即小芬8年前出生,今年是8岁,今年父亲是(72-8+4)÷2=34(岁),今年母亲是34-4=30(岁)。
答:今年父亲34岁,母亲30岁,小芬8岁。
例3:父亲今年38岁,母亲今年36岁,儿子今年11岁,多少年后,父母亲的年龄之和是儿子的年龄的4倍?解:今年父母年龄之和为38+36=74(岁),儿子年龄的4倍是44岁,今年父母年龄之和比儿子年龄的4倍多74-44=30(岁),而每过一年父母年龄增加2岁,过一年儿子年龄增加数的4倍为4岁,就是说每过一年父母年龄的增加比儿子年龄增加数的4倍少4-2=2(岁),当父母年龄之和为儿子年龄的4倍时,要过30÷2=15(年)。
小学奥数关于年龄问题的题解1. 掌握用线段图法来分析题中的年龄关系.2. 利用已经学习的和差、和倍、差倍的方法求解年龄问题.知识点说明: 一、年龄问题变化关系的三个基本规律:1. 两人年龄的倍数关系是变化的量.2. 每个人的年龄随着时间的增加都增加相等的量;3. 两个人之间的年龄差不变二、年龄问题的解题要点是:1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系.2.关键:抓住“年龄差”不变.3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式.4.陷阱:求过去、现在、将来。
年龄问题变化关系的三个基本规律:1.两人年龄的差是不变的量;2.两个人的年龄增加量是不变的;3.两人年龄的倍数关系是变化的量;年龄问题的解题正确率保证:验算!年龄差不变 【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁?【考点】年龄问题 【难度】1星 【题型】解答【解析】 这道题有两种解答方法:方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612+=(岁);妈妈今年36岁,再过6年是(366+)岁,也就是42岁,那时,妈妈比小卉大421230-=(岁).方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366-)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.列式:36630-=(岁),再过6年,小卉读初中时,妈妈比小卉大30岁.【答案】30岁【例 2】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?【考点】年龄问题 【难度】1星 【题型】解答【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的6-1-8.年龄问题(一)教学目标知识精讲例题精讲年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题.爸爸的年龄:726239()(岁)+÷=妈妈的年龄:39633-=(岁)【答案】爸爸39岁,妈妈33岁【例 3】姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?【考点】年龄问题【难度】2星【题型】解答【解析】用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394-=(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.弟弟的年龄:(404)218+=(岁).-÷=(岁),姐姐的年龄:18422【答案】弟弟年龄18岁,姐姐22岁【例 4】欢欢对乐乐说:“我比你大8岁,2年后,我的年龄是你的年龄的3倍。
年龄问题年龄问题是小学数学中常见的一类问题,例如:已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系等等。
年龄问题又往往是和倍、差倍、和差等问题的综合.它有一定难度,因此解题时需抓住其特点.年龄问题的主要特点是:大小年龄差是个不变的量,而年龄的倍数却年年不同,我们可以抓住差不变这个特点,再根据大小年龄之间的倍数关系与年龄之和等条件,解答这类应用题.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍差数-小年龄,几年前年龄=小年龄-大小年龄÷倍差数.例1、爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大六岁.今年爸爸妈妈二人各多少岁?分析:五年后,爸比妈大6岁,即爸妈的年龄差是6岁,它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题.解:①爸爸年龄:(72+6)÷2=39(岁)②妈妈的年龄:39-6=33(岁)答:爸爸的年龄是39岁,妈妈的年龄是33岁.例2、在一个家庭里,现在所有成员的年龄加在一起是73岁,家庭成员中有父亲、母亲、一个女儿和一个儿子,父亲比母亲大3岁,女儿比儿子大2岁,四年前家庭里所有的人的年龄总和是58岁。
现在家里的每个成员各是多少岁?分析:根据四年前家庭里所有的人的年龄总和是58岁,可以求出到现在每个人长4岁以后的实际年龄和是58+4× 4=74(岁).但现在实际的年龄总和只有73岁,可见家庭成员中最小的一个儿子今年只有3岁.女儿比儿子大2岁,女儿是3+2=5(岁).现在父母的年龄和是73-3-5=65(岁).又知父母年龄差是3岁,可以求出父母现在的年龄.解:①从四年前到现在全家人的年龄和应为:58+4×4=74(岁)②儿子现在几岁?4-(74-73)=3(岁)③女儿现在几岁?3+2=5(岁)④父亲现在年龄:(73-3-5+3)÷2=34(岁)⑤母亲现在年龄:34-3=31(岁)答:父亲现在34岁,母亲31岁,女儿5岁,儿子3岁.例3、父亲现年50岁,女儿现年14岁.问:几年前父亲年龄是女儿的5倍?分析:父女年龄差是50-14=36(岁).不论是几年前还是几年后,这个差是不变的.当父亲的年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁.这36岁是父亲比女儿多的5-1=4(倍)所对应的年龄.解:(50-14)÷(5-1)=9(岁)当时女儿9岁,14-9=5(年),也就是5年前.答:5年前,父亲年龄是女儿的5倍.例4、6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁。
小升初奥数第16节:年龄问题年龄问题教学目的1、形成在解题中能认真观察的好习惯。
2、掌握转化问题法,使题目更加简便。
教学内容知识点年龄问题是一类与计算有关的问题,它通常以和倍、差倍或和差等问题的形式出现。
有些年龄问题往往是和、差、倍数等问题的综合,需要灵活地加以解决。
解答年龄问题,要灵活运用以下三条规律:1,无论是哪一年,两人的年龄差总是不变的;2,随着时间的向前或向后推移,几个人的年龄总是在减少或增加相等的数量;3,随着时间的变化,两人的年龄之间的倍数关系也会发生变化。
例题与巩固例1:爸爸今年43岁,儿子今年11岁。
几年后爸爸的年龄是儿子的3倍?分析与解答:儿子出生后,无论在哪一年,爸爸和儿子的年龄差总是不变的,这个年龄差是43-11=32岁。
所以,当爸爸的年龄是儿子3倍时,儿子是32÷(3-1)=16岁,因此16-11=5年后,爸爸的年龄是儿子的3倍。
练习一1,小强今年15岁,小亮今年9岁。
几年前小强的年龄是小亮的3倍?例2:妈妈今年的年龄是女儿的4倍,3年前,妈妈和女儿的年龄和是39岁。
妈妈和女儿今年各多少岁?分析与解答:从3年前到今年,妈妈和女儿都长了3岁,她们今年的年龄和是:39+3×2=45岁。
于是,这个问题可转化为和倍问题来解决。
所以,今年女儿的年龄是45÷(1+4)=9岁,妈妈今年是9×4=36岁。
练习二1,今年爸爸的年龄是儿子的4倍,3年前,爸爸和儿子的年龄和是44岁。
爸爸和儿子今年各是多少岁?例3:今年小红的年龄是小梅的5倍,3年后小红的年龄是小梅的2倍。
小红和小梅今年各多少岁?分析与解答:小红和小梅的年龄差是不变的,因此两人的年龄差是小梅今年的5-1=4倍,也是3年后小梅年龄的2-1=1倍,即:小梅今年的年龄+3=小梅今年的年龄×4。
所以,小梅今年的年龄为:3÷(4-1)=1岁,小红今年的年龄为:1×5=5岁。
下面将介绍一些较常见的小学奥数年龄问题的解题方法和思路。
1.年龄的基本运算
小学奥数年龄问题中,常常会给出几个人的年龄之和或者年龄之差,通过计算可以得到其他人的年龄。
例如,小明比小红大3岁,小红比小亮大5岁,那么小明比小亮大几岁?解决这类问题时,可以先列出各个人的年龄关系,然后通过运算找到答案。
2.年龄的倍数关系
有些小学奥数年龄问题中,会给出一些人的年龄是另一个人年龄的几倍或者几分之一、例如,小明的年龄是小红年龄的3倍,那么当小红年龄增加5岁时,小明的年龄是多少?解决这类问题时,可以通过设定等式或者利用倍数关系求解。
3.年龄的奇偶性
在小学奥数年龄问题中,还会涉及到年龄的奇偶性。
例如,小明比小红大4岁,小明的年龄是奇数,那么小红的年龄是奇数还是偶数?解决这类问题时,可以通过奇偶数的性质进行推理,从而得到答案。
4.年龄的倒推
有些小学奥数年龄问题中,会给出一些人在一些年龄时的情况,然后要求倒推出其他人的年龄。
例如,4年前小明的年龄是小红的2倍,今天小明的年龄是10岁,求小红的年龄。
解决这类问题时,可以通过倒推的方法,逐步确定答案。
5.年龄的逻辑推理
在小学奥数年龄问题中,还会出现一些涉及到逻辑推理的情况。
例如,现在有三个人,他们的年龄之和是25岁,且其中有两个人的年龄之和是
16岁,求他们的年龄。
解决这类问题时,可以利用逻辑关系进行推理,
通过列方程求解。
以上是一些常见的小学奥数年龄问题的解题方法和思路,具体的解题
过程还要根据问题的具体情况而定。
在解题过程中,学生应该注意清晰地
列出各个人的年龄关系,然后运用相应的数学知识和逻辑思维方法解答问题。
30÷(÷(4-14-14-1))=10=10(岁)(岁)(岁)②今年儿子的年龄:②今年儿子的年龄:②今年儿子的年龄:10-1=9 10-1=9(岁)(岁)(岁)答:今年儿子9岁。
岁。
例3、妈妈今年35岁,恰好是女儿年龄的7倍。
多少年后,妈妈的年龄恰好是女儿的3倍?倍?分析:根据“妈妈今年35岁,恰好是女儿的7倍”,可以求出今年女儿的年龄35÷7=5(岁)。
两人的年龄差是35-5=30岁。
若干年后,两人的年龄差30岁,妈妈的年龄是女儿的3倍,也就是30岁与(岁与(3-13-13-1)倍相对应,这样就可以求出若)倍相对应,这样就可以求出若干年后女儿的年龄。
进而求出多少年后妈妈的年龄是女儿的3倍。
倍。
解:①今年女儿的年龄:解:①今年女儿的年龄:35÷7=57=5(岁)(岁)(岁)②两人的年龄差:②两人的年龄差:35-5=30岁③若干年后女儿的年龄:③若干年后女儿的年龄:3030÷(÷(÷(3-13-13-1))=15=15(岁)(岁)(岁)④多少年后妈妈的年龄是女儿的3倍:倍:15-5=1015-5=10(岁)(岁)(岁)综合算式:(35-3535-35÷÷7)÷()÷(3-13-13-1))-35-35÷÷7=107=10(岁)(岁)(岁)答:答:1010年后妈妈的年龄是女儿的3倍。
倍。
例4、父亲今年36岁,小红8岁,再过多少年父亲的年龄正好是小红的2倍?倍?分析:因为父亲与小红的年龄差是不变的,所以当父亲年龄是小红的2倍时,他们相差(倍时,他们相差(2-12-12-1))=1倍,相差(倍,相差(36-836-836-8))=28=28(岁)(岁)。
解:①若干年后小红的年龄:解:①若干年后小红的年龄:(36-836-8)÷()÷()÷(2-12-12-1))=28=28(岁)(岁)(岁)②多少年父亲是小红的2倍:倍:28-8=2028-8=20(年)(年)(年)答:再过答:再过20年父亲的年龄正好是小红的2倍。
小学奥数重难点专题讲解:年龄问题在一些数学问题中要讨论年龄的变化和几个人的年龄的关系,我们知道随着时间的往后或往前推移,人的年龄就会增加或减少,如果有几个人,时间往后推移,几个人年龄的和随着年数增加而增加年数的几(按人数)倍,但这几个人年龄间的差却是不变的。
在解答有关年龄变化的问题时这是必须牢记的。
例1:小华今年12岁,他妈妈今年48岁,多少年以前妈妈的年龄是小华的5倍?多少年以后妈妈的年龄是小华的3倍?解:首先,不管是今年或今年前、今年后的若干年,小华和他妈妈年龄的差都是相同的,妈妈的年龄比小华大48-12=36(岁)。
当妈妈的年龄是小华的5倍时,把那时小华的年龄作为1份,妈妈的年龄是这样的5份,比小华多5-1=4(份),所以那时小华是:36÷4=9(岁),是在今年前12-9=3(年)。
当妈妈的年龄是小华的3倍时,把那时小华的年龄作为1份,妈妈的年龄是这样的3份,比小华3-1=2(份),所以那时小华是:36÷2=18(岁),是在今年后18-12=6(年)。
答:3年以前,妈妈的年龄是小华的5倍,6年以后,妈妈的年龄是小华的3倍。
例2:小芬家由小芬和她的父母组成,小芬的父亲比母亲大4岁,今年全家年龄的和是72岁,10年前这一家全家年龄的和是44岁。
今年三人各是多少岁?解:一家人年龄的和今年与10年前比较增加了72-44=28(岁),而如果按照三人计算10年后应增加3×10=30(岁),只能是小芬少了2岁,即小芬8年前出生,今年是8岁,今年父亲是(72-8+4)÷2=34(岁),今年母亲是34-4=30(岁)。
答:今年父亲34岁,母亲30岁,小芬8岁。
例3:父亲今年38岁,母亲今年36岁,儿子今年11岁,多少年后,父母亲的年龄之和是儿子的年龄的4倍?解:今年父母年龄之和为38+36=74(岁),儿子年龄的4倍是44岁,今年父母年龄之和比儿子年龄的4倍多74-44=30(岁),而每过一年父母年龄增加2岁,过一年儿子年龄增加数的4倍为4岁,就是说每过一年父母年龄的增加比儿子年龄增加数的4倍少4-2=2(岁),当父母年龄之和为儿子年龄的4倍时,要过30÷2=15(年)。
年龄问题(知识梳理+典例分析+高频考题+答案解析)一、年龄问题的基本特征1、年龄差不变:这是年龄问题中最核心、最基本的特征。
无论过了多少年,两个人之间的年龄差都是恒定的,不会发生变化。
2、年龄同时增加或减少:两个人的年龄是同时增加的,也是同时减少的。
例如,如果过了一年,两个人的年龄都会各自增加一岁。
3、倍数关系变化:虽然年龄差不变,但是两个人年龄之间的倍数关系可能会随着年龄的增长而发生变化。
二、年龄问题的常见题型1、和差年龄:给出两个人的年龄和与年龄差,求两个人的年龄。
这类问题可以通过简单的算术运算来解决,例如加减法和除法。
2、和差倍年龄:在给出年龄和与年龄差的基础上,还涉及到倍数关系。
这类问题通常需要通过列方程来求解,利用年龄差和倍数关系建立等式,然后解方程得出答案。
3、间接年龄差:题目中并没有直接给出年龄差,但是通过其他条件可以间接求出年龄差。
这类问题需要灵活运用题目中的条件,通过推理和计算来求出答案。
三、年龄问题的解题技巧1、理解题意:认真阅读题目,理解题目中描述的年龄关系和变化。
这是解题的第一步,也是非常重要的一步。
2、设定变量:对于含有多个未知数的年龄问题,可以设定变量来表示每个人的年龄。
例如,用x表示某人的年龄,y表示另一个人的年龄。
3、列方程:根据题目中给出的信息,列出方程来表示年龄关系。
然后,通过解方程来求出答案。
4、使用表格:对于涉及到多个人的年龄问题,可以使用表格来表示每个人的年龄和年龄关系。
这样,可以更直观地观察年龄变化和关系,有助于理解和解决问题。
5、代入排除法:如果题目给出了多个选项,可以尝试代入每个选项,验证是否符合题目条件。
这种方法在选择题中特别有用。
四、年龄问题的注意事项1、注意年龄差的计算:在计算年龄差时,要确保使用的是同一时间点的年龄。
2、注意倍数关系的变化:在解决和差倍年龄问题时,要注意倍数关系可能会随着年龄的增长而发生变化。
因此,在列方程时要特别注意这一点。
小学奥数《年龄问题》年龄问题是日常生活中一种常见的问题。
例如:已知两个人或若干人的年龄,求他们年龄之间的某种数量关系等等。
要正确解答这类题,首先要明白:两个不同年龄的人,年龄之差始终不变。
所以我们要抓住“年龄差不变”这个特点,运用“和差”、“差倍”等知识来分析解答有关年龄方面的问题。
年龄问题的三大规律:1、两人的年龄差是不变的;2、两人年龄的倍数关系是变化的量;3、随着时间的推移,两人的年龄都是增加相等的量.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差. 典型例题例[1] 爸爸、妈妈今年的年龄和是82岁。
5年后爸爸比妈妈大6岁。
今年爸爸、妈妈两人各多少岁?分析5年后,爸爸比妈妈大6岁,即爸爸、妈妈的年龄差是6岁,它是一个不变量。
因此,爸爸、妈妈现在的年龄差仍然是6岁。
这样原问题就归结为“已知爸爸、妈妈的年龄和是82岁,他们的年龄差是6岁,求两人各是几岁”的和差问题。
解爸爸年龄:(82+6)÷2=44(岁)妈妈年龄:44-6=38(岁)答:爸爸的年龄是44岁,妈妈的年龄是38岁。
例[2]小红今年7岁,妈妈今年35岁。
小红几岁时,妈妈的年龄正好是小红的3倍?分析无论小红多少岁时,妈妈的年龄都比小红大(35-7)岁。
所以当妈妈的年龄是小红的3倍时,也就是妈妈年龄比小红大(3-1)倍时,妈妈仍比小红大(35-7)岁,这个差是不变的。
由这个(35-7)岁的差和对应的这个(3-1)倍,就可以算出小红的年龄,即差倍问题中的差÷(倍数-1)=较小数。
解妈妈现在比小红大的岁数:35-7=28(岁)妈妈年龄是小红的3倍时,比小红大的倍数是:3-1=2(倍)妈妈年龄是小红的3倍时,小红的年龄是:28÷2=14(岁)答:小红14岁时,妈妈年龄正好是小红的3倍。
例[3] 6年前,母亲的年龄是儿子的5倍。
6年后母子年龄和是78岁。
1.基础知识:在解决小学奥数年龄问题之前,首先需要掌握一些基础的数学知识,例如整数的加减乘除,未知数的运算规则,等式的性质等。
2.列方程法:如果题目中有给出一个或多个等式,可以通过列方程的方法解决问题。
根据题目的条件,将年龄问题转化为一个或多个等式,然后解方程得出答案。
3.推理法:有些年龄问题可以通过逻辑推理的方法解决。
根据题目中给出的条件,将不同的年龄情况进行排列组合,根据逻辑关系进行推导和排除,找出符合题目要求的年龄组合。
4.模型法:有些年龄问题可以用数学模型的方法解决。
例如,可以设未知数代表一些人的年龄,然后根据题目的条件建立数学模型,利用模型进行计算和推理。
5.成比例法:有些年龄问题可以用成比例的方法解决。
例如,如果题目中给出两个人的年龄比例,并且告诉了两个人之间的年龄差,可以通过计算比例系数,推导出两个人的具体年龄。
6.数学归纳法:有些年龄问题可以用数学归纳法解决。
例如,如果题目中给出了几个人的年龄之和或年龄之差,并且告诉了其中一个人的年龄,可以通过数学归纳的方法逐步推导出其他人的年龄。
7.正逆运算法:有些年龄问题可以通过正逆运算的方法解决。
例如,如果题目中给出了一个人的年龄与另一个人年龄的和或差,并且告诉了其中一个人的年龄,可以通过正逆运算的方法计算出另一个人的年龄。
8.数据表格法:有些年龄问题可以用数据表格的方法解决。
例如,如果题目中给出了几个人的年龄之和或年龄之差,并且告诉了其中一个人的年龄,可以通过列出数据表格的方式,逐步推导出其他人的年龄。
9.倒推法:有些年龄问题可以通过倒推的方法解决。
例如,如果题目中给出了一个人的年龄与另一个人年龄的和或差,并且告诉了其中一个人的年龄,可以通过倒推的方法计算出另一个人的年龄。
10.逻辑法:有些年龄问题可以通过逻辑的方法解决。
例如,如果题目中给出了多个人的年龄之间的逻辑关系,可以通过分析逻辑关系,找出符合题目要求的年龄组合。