最新人教版高中数学选修2-1第一章《全称量词、存在量词》预习导航
- 格式:doc
- 大小:146.00 KB
- 文档页数:2
教学设计本章复习教学目标知识与技能了解命题的逆命题、否命题与逆否命题,理解充分条件、必要条件与充要条件的意义,会分析四种命题间的相互关系,通过数学实例,了解逻辑联接词“或”“且”“非”的含义;理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定.过程与方法通过本章的学习,体会逻辑用语在数学表述和论证及实际生活中的运用,引导学生在使用常用逻辑用语的过程中,掌握逻辑用语的用法,纠正出现的错误,体会运用常用逻辑用语表述数学内容的准确性和简洁性,避免对逻辑用语的机械记忆和抽象表示.培养学生由具体到抽象的思维方法,发展理性思维能力.情感、态度与价值观通过本章的学习,提高学生理性分析,逻辑推理的能力;体会数学的严谨性,提高思维的深刻性和批判性,感受对立统一的思想,培养良好的思维品质.重点难点教学重点:(1)理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;(2)理解充分条件,必要条件及充要条件的意义;(3)学会用定义解题,理解数形结合、分类讨论、等价转换等思想方法.教学难点:(1)理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;(2)理解充分条件,必要条件及充要条件的意义;(3)学会用定义解题,理解数形结合、分类讨论及等价变换等思想方法.教学过程形成网络1.本章的知识结构图2.本章基本知识点(1)命题:用语言、符号或式子表达的,可以______叫做命题,其中判断为真的语句叫做______,判断为假的语句叫做______.(2)四种命题的形式及其关系:①四种命题:若原命题为“若p,则q”,则其逆命题为______;否命题是______;逆否命题是______.②四种命题之间的关系:(3)充分条件、必要条件与充要条件:①充分条件与必要条件:一般地,“若p,则q”为______,是指由p通过推理可以得出q.这时,我们就说,______,记作______,并且说______的充分条件,______的必要条件.②充要条件:一般地,如果既有______,又有______,就记作p q.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的______条件.概括地说,如果p q,那么______互为充要条件.(4)逻辑联接词①命题中的______、______、______叫做逻辑联接词.②命题“p∧q、p∨q、p(或q)”真假判断.(5)全称量词与存在量词①全称量词:短语“所有的”“任意一个”在逻辑中通常叫做______,并用符号“ ”表示.含有全称量词的命题,叫做______.②存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做______,并用符号“ ”表示.含有存在量词的命题,叫做______.(6)含有一个量词的命题的否定①全称命题p:x∈M,p(x),它的否定p:______.②存在命题p:x0∈M,p(x0),它的否定p:______.提出问题:1.请同学们独立完成知识填空.2.在完成知识填空的同时,回想一下本章有哪些基本题型,解决这些基本题型的方法和步骤是什么?活动设计:学生独立完成基本知识填空,然后让几位同学口答填空答案,教师借助多媒体投影出知识填空的答案,适当地规范学生的表述;通过回忆旧知识,并思考、讨论回答问题.学情预测:学生在前面几节学习的基础上,能够顺利地完成基本知识填空,但在准确性、规范表达上会存在着一定的差距.题型和方法的总结更是五花八门.活动结果:知识填空答案:(1)判断真假的陈述句真命题假命题(2)①若q,则p若p,则q若q,则p(3)①真命题由p可以推出q p q p是q q是p②p q q p充要p与q(4)①或且非(5)①全称量词全称命题②存在量词特称命题(6)①x0∈M,p(x0)②x∈M,p(x)设计意图:全面系统地梳理基础知识,帮助学生巩固基础,加深对概念、公式、定理的理解,虽然题型和方法总结得不到位,教师利用下一环节“典型示例”和同学们一块儿总结一下本章的重点题型和方法.典型示例类型一:命题的关系及真假的判断1写出命题“当c>0时,若a>b,则ac>bc”的逆命题、否命题与逆否命题,并分别判断它们的真假.思路分析:写成“若p,则q”的形式,再分别写出原命题的逆命题、否命题、逆否命题,然后逐一判断真假.解:逆命题:当c>0时,若ac>bc,则a>b,是真命题;否命题:当c>0时,若a≤b,则ac≤bc,是真命题;逆否命题:当c>0时,若ac≤bc,则a≤b,是真命题.点评:对于命题真假的判定,关键是分清命题的条件和结论,只有将条件和结论分清,再结合所涉及的知识才能正确地判断命题的真假.巩固练习1.对于命题“正方形的四个内角相等”,下面判断正确的是()A.所给命题为假B.它的逆否命题为真C.它的逆命题为真D.它的否命题为真2.“若x≠a,则x2-(a+b)x+ab≠0”的否命题()A.若x≠a,则x2-(a+b)x+ab=0B.若x=a,则x2-(a+b)x+ab≠0C.若x=a,则x2-(a+b)x+ab=0D .以上都不对 答案:1.B 2.C类型二:充分条件与必要条件的判定 2指出下列各组命题中,p 是q 的什么条件?(1)p :a +b =2; q :直线x +y =0与圆(x -a)2+(y -b)2=2相切; (2)p :|x|=x ;q: x 2+x ≥0;(3)设l ,m 均为直线,α为平面,其中l α,m α ,p :l ∥α;q :l ∥m ; (4) 设α∈(-π2,π2),β∈(-π2,π2);p: α<β;q :tanα<tanβ.思路分析:利用定义,逐一判断即可. 解:(1)p 是q 的充要条件; (2)p 是q 的充分不必要条件; (3)p 是q 的必要不充分条件; (4)p 是q 的充要条件.点评:注意p 与q 之间关系的方向性,充分条件与必要条件正好相反,不要混淆.巩固练习设a ,b ∈R ,已知命题p :a =b ;命题q :(a +b 2)2≤a 2+b 22,则p 是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 答案:B类型三:充要条件的证明3求证:直线l :ax -y +b =0经过两直线l 1:2x -2y -3=0和l 2:3x -5y +1=0交点的充要条件是17a +4b =11.思路分析:从必要性着手,分充分性和必要性两方面证明.解:(必要性)由⎩⎪⎨⎪⎧2x -2y -3=0,3x -5y +1=0, 得交点P(174,114).∵直线l 过点P , ∴ a ×174-114+b =0.∴ 17a +4b =11.(充分性):设a ,b 满足17a +4b =11,∴ b =11-17a 4.代入直线l 的方程:ax -y +11-17a4=0, 整理得:a(x -174)-(y -114)=0.此方程表明,直线恒过两直线y -114=0,x -174=0的交点(174,114),而此点为l 1与l 2的交点. ∴充分性得证. ∴综上所述,命题为真.点评:关于充要条件的证明,一般有两种方式,一种是利用“ ”,双向传输,同时证明充分性及必要性;另一种是分别证明必要性及充分性,从必要性着手,再检验充分性.类型四:用“或、且、非”连接简单命题,并判断真假4已知命题p : x ∈R ,使tanx =1,命题q :x 2-3x +2<0的解集是{x|1<x<2},下列结论:①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④思路分析:首先判断每个简单命题的真假,然后依照真值表逐个判断每个复合命题的真假.解:命题p :x ∈R ,使tanx =1是真命题,命题q :x 2-3x +2<0的解集是{x|1<x<2}是真命题,由真值表可知,命题“p ∧q ”是真命题,命题“p ∧q ”是假命题,命题“p ∨q ”是真命题, 命题“p ∨q ”是假命题,即四个结论均正确,应选D.点评:本题的关键是判断每个简单命题的真假.巩固练习如果命题“(p 或q)”为假命题,则( ) A .p 、q 均为真命题 B .p 、q 均为假命题C .p 、q 中至少有一个为真命题D .p 、q 中至多有一个为真命题 答案:C类型五:全称、特称命题的真假及全称、特称命题的否定5写出下列命题的否定,判断它们否定的真假.(1)无论x为何实数,sin2x+cos2x=1;(2)不等式x2+x+1≤0有实数解.思路分析:否定量词,否定判断词,写出命题的否定,然后判断命题的真假.解:(1)存在x0 为实数,sin2x0+cos2x0≠1.是假命题.(2) x∈R,都有不等式x2+x+1>0成立.是真命题.点评:只否定全称量词和存在量词,或只否定判断词,会因为否定不全面或否定词不准确而致错.巩固练习命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R, 2x>0答案:D拓展实例1用反证法证明:已知x、y∈R,x+y≥2,则x、y中至少有一个大于1.思路分析:因原命题与逆否命题是等价命题,可以考虑证明它的逆否命题为真命题,从而达到证明原命题为真命题的目的.当然也可选用反证法.证明:(法一)若设x<1且y<1,则由不等式同向相加的性质得到:x+y<2,这表明,原命题的逆否命题为真命题,从而原命题也为真命题,∴若x、y∈R,x+y≥2, 则x、y中至少有一个大于1成立.(法二)假设x<1且y<1,由不等式同向相加的性质得到x+y<2;与已知x+y≥2矛盾,∴假设不成立.∴x、y中至少有一个大于1.点评:反证法的理论依据是:欲证“若p,则q”为真,先证“若p,则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p,则非q”为假时,“若p,则q”一定为真.2若A是B的必要而不充分条件,C是B的充要条件,D是C的充分而不必要条件,判断D是A的什么条件.思路分析:利用“”“”符号分析各命题之间的关系.解:由D C B A ,∴DA ,D 是A 的充分条件.点评:符号“”“”具有传递性,不过前者是单方向的,后者是双方向的.变练演编设集合M ={x|0<x ≤3},N ={x|x 2-(2a +1)x +a(a +1)≤0},若“x ∈M ”是“x ∈N ”成立的必要不充分条件,求a 的取值范围.思路分析:将“x ∈M ”是“x ∈N ”成立的必要不充分条件,转化为集合之间的关系即N M.解:由x 2-(2a +1)x +a(a +1)≤0,解得a ≤x ≤a +1, ∴N ={x|a ≤x ≤a +1},由于N M ,∴⎩⎪⎨⎪⎧a>0,a +1≤3.解得0<a ≤2. 所以a 的取值范围为{a|0<a ≤2}.点评:在涉及求字母参数的取值范围的充要条件问题中,常常要利用集合的包含、相等关系来考虑.提出问题:设集合M ={x|0<x ≤3},N ={x|x 2-(2a +1)x +a(a +1)≤0},若“x ∈M ”是“x ∈N ”成立的______条件,求a 的取值范围.活动设计:引导学生适当改变题目的条件和结论,进行一题多变,学生自己设计题目进行研究,将所有发现的结果一一列举,熟练充要条件的判断方法.活动结果:(1)充分不必要;a ∈ ; (2)必要;{a|0<a ≤2}; (3)充要;a ∈.设计意图:通过本题产生对充要条件一个认识上的升华,完成对充分条件、必要条件、充要条件的再认识.达标检测1.命题“方程|x|=1的解是x =±1”中,使用逻辑联结词的情况是( ) A .使用了逻辑联结词“或” B .使用了逻辑联结词“且” C .使用了逻辑联结词“非”D.没有使用逻辑联结词2.已知条件p:k=3,条件q:直线y=kx+2与圆x2+y2=1相切,则p是q的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.命题“若a>b, 则2a>2b”的否命题为______.4.命题p:x∈R,f(x)≥m.则命题p的否定p是______.答案:1.A 2.A 3.若a≤b,则2a≤2b 4. x0∈R,f(x0)<m课堂小结1.知识收获:(1)命题的概念;(2)四种命题的形式及其关系;(3)充分条件、必要条件与充要条件;(4)逻辑联结词;(5)全称量词与存在量词;(6)含有一个量词的命题的否定.2.方法收获:(1)命题的关系及真假的判断;(2)充分条件与必要条件的判定;(3)充要条件的证明;(4)用“或、且、非”连接简单命题,并判断真假;(5)全称特、称命题的真假及全称、特称命题的否定.3.思维收获:体会数学的严谨性,提高思维的深刻性和批判性,养成严谨缜密的思维习惯.布置作业课本复习参考题:A组第5题、第6题.补充练习1.在下列关于直线l、m与平面α、β的命题中,为真命题的是()A.若l β且α⊥β,则l⊥αB.若l⊥β且α∥β,则l⊥αC.若l⊥β且α⊥β,则l∥αD.若α∩β=m且l∥m,则l∥α2.下列命题中不正确的是()A.a,b∈R,a n=an+b,有{a n}是等差数列B.a,b∈R,a n=an2+bn,使{a n}是等差数列C.a,b,c∈R,S n=an2+bn+c,有{a n}是等差数列D.a,b,c∈R,S n=an2+bn+c,使{a n}是等差数列3.以下判断正确的是()A.若p是真命题,则“p且q”一定是真命题B.命题“p且q”是真命题,则命题p一定是真命题C.命题“p且q”是假命题时,命题p一定是假命题D.命题p是假命题时,命题“p且q”不一定是假命题4.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件5.设p:大于90°的角叫钝角,q:三角形三边的垂直平分线交于一点,则p、q的复合命题“p或q”“p且q”“非q”中,是真命题的有______.答案:1.B 2.C 3.B 4.B 5.p或q设计说明设计思想通过基础知识填空,帮助学生回顾基本概念、定理和相关结论,通过典型示例总结本章的基本题型和方法;通过练习和作业加深对概念的理解和应用概念的熟练性.设计意图由于本章概念多、理论性较强,通过基础知识填空,帮助学生准确记忆相关概念,并形成本章的知识网络;通过典型示例教学既要总结题型和方法,又要熟练相关题型的解题步骤和准确规范的表述;教学中不要急于求成,而应在后续的教学中经常借助这些概念表达、阐述和分析.设计特点从学生的认知基础出发结合具体的题型和方法,在加深概念理解的同时,熟练相关概念的应用,同时在应用新知的过程中,将所学的知识条理化,使自己的认知结构更趋合理.备课资料1已知集合A ={x|x 2-3x +2=0},B ={x|x 2-mx +2=0},若A 是B 的必要不充分条件,求实数m 的范围.思路分析:化简条件得A ={1,2},由于A 是B 的必要不充分条件,即B A ,只需根据集合B 中含有的元素个数进行分类讨论即可.解:当B = 时,Δ=m 2-8<0,∴ -22<m<2 2.当B ={1}或{2}时,⎩⎪⎨⎪⎧Δ=0,1-m +2=0或4-2m +2=0,m 无解; 综上所述,m 的取值范围是{m|-22<m<22}.点评:全面地挖掘题中隐藏条件是解题过程中需考虑的一个重要方面,如本题当B ={1}或{2}时,不能遗漏Δ=0;即对于分类讨论要做到不重不漏.2已知a>0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对 x ∈R 恒成立,若p 且q 为假,p 或q 为真,求a 的取值范围.思路分析:要判断含有逻辑联结词的复合命题的真假,首先要先确定构成复合命题的简单命题的真假,即求出此时简单命题成立的条件;其次求出含逻辑联结词的复合命题成立的条件;注意p ∧q 为假且p ∨q 为真,等价于p ,q 中一真一假.解:∵y =a x 在R 上单调递增,∴a>1.又不等式ax 2-ax +1>0对 x ∈R 恒成立, ∴Δ<0,a>0.即a 2-4a<0.解得0<a<4.而命题p 且q 为假,p 或q 为真,那么p ,q 中有且只有一个为真,一个为假.(1)若p 真q 假,则a ≥4,(2)若q 真p 假,则0<a ≤1.所以a 的取值范围是(0,1]∪[4,+∞).点评:本题也可先求出每个命题为真时,相应的a 的取值范围,再根据p ,q 之间的关系确定a 的取值范围.(设计者:赵海彬)。
1.4全称量词与存在量词
温故知新
新知预习
1.短语“”“”在逻辑中通常叫做全称量词,用符号“∀”表示,含有全称量词的命题叫做.
2.短语“”“”在逻辑中通常叫做存在量词,用符号“”表示,含有存在量词的命题,叫做_________.
3.全称命题“对p中任意一个x,有p(x)成立”可用符号 表示,读作“”.
4.特称命题“存在p中的一个x,使p(x)成立”,可用符号,读作“”.
5.关于含有一个量词的全称命题的否定,有下面的结论:
全称命题p:∀x∈p,p(x),它的否定.全称命题的否定是.
6.关于含有一个量词的特称命题的否定,有下面的结论:
特称命题p:∃x0∈p,p(x),它的否定⌝p:x∈p,⌝p(x).特称命题的否定是.
基础示例
1.下列全称命题中真命题的个数为()
①末位是0的整数,可以被2整除②角平分线上的点到这个角的两边的距离相等③正四面体中两侧面的夹角相等
A.1
B.2
C.3
D.0
答案:C
2.在下列特称命题中假命题的个数是()
①有的实数是无限不循环小数②有些三角形不是等腰三角形③有的菱形是正方形
A.0
B.1
C.2
D.3
答案:A
3.下列命题为特称命题的是()
A.偶函数的图象关于y轴对称
B.正四棱柱都是平行六面体
C.不相交的两条直线是平行直线
D.存在实数大于等于3
答案:D。
第一章第四节全称量词与存在量词设计者:汪代波 审核者: 执教: 使用时间:学习目标1.通过生活和数学中的实例,理解全称量词和存在量词;2.会判断含全称量词与存在量词的命题;3.会用有“∀”“∃”表示命题;4.了解全称量词和存在量词分别有哪些。
________________________________________________________________________________ 自学探究问题1. 判断下列命题哪些是全称命题哪些是特称命题。
(1)若a>0,且a≠1,则对任意实数x ,ax>0;(2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2; (3) x T x R T sin )sin(,00=+∈∃使;(4) 01,00<+∈∃x R x 使。
【试试】(1) 短语“ ”“ ”在逻辑中通常叫做全称量词,并用符号“ ”表示,含有 的命题,叫做全称命题.其基本形式为: ,()x M p x ∀∈,读作:(2) 短语“ ”“ ”在逻辑中通常叫做存在量词,并用“ ”表示,含有 的命题,叫做特称称命题.其基本形式 00,()x M p x ∃∈,读作:问题2. 分别举出全称命题和特称命题,并指出他们的全称量词和存在量词。
【技能提炼】1.判断下列命题是不是全称命题或者特称命题(1)对数函数都是单调函数; (2)有一个实数0x ,使200230x x ++=;(3)任何一个实数除以1,仍等于这个实数;(4)存在两个相交垂直于同一条直线.。
2.用符号“∀”与“∃”表示含有量词的命题。
(1)实数的平方大于等于0;(2)存在一对实数,使2x +3y +3>0成立。
3.(1)已知:对1,x R a x x +∀∈<+恒成立,求实数a 的取值范围。
(2)已知 :1,+∃∈≥+x R a x x 成立,求实数a 的取值范围。
1.4 全称量词与存在量词基础练习1.命题“所有能被2整除的整数都是偶数”的否定是( ) A .所有不能被2整除的整数都是偶数 B .所有能被2整除的整数都不是偶数 C .存在一个不能被2整除的整数是偶数 D .存在一个能被2整除的整数不是偶数 【答案】D【解析】原命题是全称命题,其否定是:存在一个能被2整除的数不是偶数. 2.给出下列几个命题:①至少有一个x 0,使x 20+2x 0+1=0成立; ②对任意的x ,都有x 2+2x +1=0成立; ③对任意的x ,都有x 2+2x +1=0不成立; ④存在x 0,使x 20+2x 0+1=0成立. 其中是全称命题的个数为( ) A .1 B .2 C .3 D .0【答案】B【解析】命题②③都含有全称量词“任意的”,故②③是全称命题. 3.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2【答案】B【解析】选项A 中锐角三角形的内角是锐角或钝角是全称命题;选项B 中x =0时,x 2=0,所以选项B 既是特称命题又是真命题;选项C 中因为3+(-3)=0,所以选项C 是假命题;D 中对于任一个负数x ,都有1x<0,所以选项D 是假命题.4.已知命题p :∀x ∈R ,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20,则下列命题中为真命题的是( )A .p ∧qB .(¬p )∧qC .p ∧(¬q )D .(¬p )∧(¬q )【答案】B【解析】因为x =-1时,2-1>3-1,所以命题p :“∀x ∈R,2x <3x”为假命题,则¬p 为真命题.令f (x )=x 3+x 2-1,因为f (0)=-1<0,f (1)=1>0,所以函数f (x )=x 3+x 2-1在(0,1)上存在零点,即命题q :“∃x 0∈R ,x 30=1-x 20”为真命题.则(¬p )∧q 为真命题.故选B .5.命题“∃x 0∈R ,x 20-x 0+3=0”的否定是__________. 【答案】∀x ∈R ,x 2-x +3≠0【解析】∵命题“∃x ∈R ,x 2-x +3=0”是特称命题,∴其否定命题为“∀x ∈R ,x 2-x +3≠0”.6.给出下列命题: ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.其中是全称命题的是________;是特称命题的是________.(填序号) 【答案】①②③④【解析】①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.7.判断下列命题的真假,并写出这些命题的否定. (1)∀x ∈N ,x 3>x 2;(2)所有可以被5整除的整数,末位数字都是0; (3)∃x ∈R ,x 2-x +1≤0;(4)存在一个四边形,它的对角线互相垂直且平分.解:(1)当x =1时,13=12,∴x =1时,x 3>x 2不成立,即此命题是假命题. 命题的否定:∃x 0∈N ,x 30≤x 20.(2)15可以被5整除,但15的末位数字不是0, ∴此命题是假命题.命题的否定:有些可以被5整除的整数,末位数字不是0.(3)∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0恒成立,∴此命题是假命题.命题的否定:∀x ∈R ,x 2-x +1>0.(4)菱形的对角线互相垂直且平分,∴此命题是真命题.命题的否定:任何一个四边形,它的对角线不互相垂直或不互相平分.8.已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,某某数a的取值X围.解:若命题p:“∀x∈[1,2],x2-a≥0”为真命题,则a≤x2在区间[1,2]恒成立,所以a≤(x2)min=1.若命题q:“∃x∈R,x2+2ax+2-a=0”为真命题,则Δ=4a2-4(2-a)≥0,所以a≥1或a≤-2.命题“p且q”为真命题,即命题p,q都为真命题,所以取两个X围的交集,实数a的取值X围为a≤-2或a=1.能力提升9.(2019年某某某某模拟)已知函数f(x)的定义域为(a,b),若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则f(a+b)的值为( )A.-1 B.0C.1 D.2【答案】B【解析】若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则“∀x∈(a,b),f(x)+f(-x)=0”是真命题,即f(-x)=-f(x),则函数f(x)是奇函数,则a+b=0,即f(a+b)=f(0)=0.10.(2019年某某某某期中)下列关于函数f(x)=x2与函数g(x)=2x的描述,正确的是( )A.∃a0∈R,当x>a0时,总有f(x)<g(x)B.∀x∈R,f(x)<g(x)C.∀x<0,f(x)≠g(x)D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解【答案】A【解析】在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),选项A正确,选项B,C,D均错误.11.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(-∞,-4),f(x)g(x)<0.则m的取值X围是________.【答案】(-4,-2)【解析】由题意知m ≠0,∴f (x )=m (x -2m )(x +m +3)为二次函数.若∀x ∈R ,f (x )<0或g (x )<0,则f (x )必须开口向下,即m <0.f (x )=0的两根x 1=2m ,x 2=-m -3,则x 1-x 2=3m +3.(1)当x 1>x 2,即m >-1时,必须大根x 1=2m <1,即m <12;(2)当x 1<x 2,即m <-1时,大根x 2=-m -3<1,即m >-4;(3)当x 1=x 2,即m =-1时,x 1=x 2=-2<1也满足条件.∴满足条件①的m 的取值X 围为-4<m <0.若∃x ∈(-∞,-4),f (x )g (x )<0,则满足方程f (x )=0的小根小于-4.(1)当m >-1时,小根x 2=-m -3<-4且m <0,无解;(2)当m <-1时,小根x 1=2m <-4且m <0,解得m <-2;(3)当m =-1时,f (x )=-(x +2)2≤0恒成立,∴不满足②.∴满足①②的m 的取值X 围是-4<m <-2.12.已知命题p :∃x ∈R ,使得x 2-2ax +2a 2-5a +4=0;命题q :∀x ∈[0,1],都有(a 2-4a +3)x -3<0.若“p 或q ”为真命题,“p 且q ”为假命题,某某数a 的取值X 围.解:若p 为真命题,则Δ=4a 2-4(2a 2-5a +4)≥0, 解得1≤a ≤4.对于q ,令f (x )=(a 2-4a +3)x -3,若q 为真命题,则f (0)<0且f (1)<0,即⎩⎪⎨⎪⎧-3<0,a 2-4a <0,解得0<a <4.由“p 或q ”为真命题,“p 且q ”为假命题,知p ,q 一真一假,所以⎩⎪⎨⎪⎧1≤a ≤4,a ≤0或a ≥4或⎩⎪⎨⎪⎧a <1或a >4,0<a <4.解得0<a <1 或a =4.故a 的取值X 围是{a |0<a <1 或a =4}.。
1.4 全称量词与存在量词一、教学目标(一)学习目标1.掌握全称量词和存在量词的含义;2.掌握含有量词的全称命题和存在命题的含义;3.掌握用数学符号表示含有量词的命题并判断真假.(二)学习重点理解掌握全称量词和存在量词的含义.(三)学习难点全称命题和存在命题真假的判定.二、教学设计(一)课前设计1.预习任务(1)短语“_________” “_________”在逻辑中通常叫做全称量词,并用符号“_________”表示,常见的全称量词还有“一切”“每一个”“任给”“所有的”等.(2)含有____________的命题,叫做全称命题.(3)全称命题:“对M中任意一个x,有p(x)成立”,可用符号简记为____________.(4)短语“_________” “_________”在逻辑中通常叫做存在量词,并用符号“_________”表示,常见的存在量词还有“有些”“有一个”“对某个”“有的”等.(5)含有____________的命题,叫做特称命题.(6)特称命题:“存在M中的元素x0,有p(x0)成立”,可用符号简记为________________________.【答案】(1)所有的、任意一个、∀(2)全称量词(3) ∀x∈M,p(x)(4)存在一个、至少有一个、∃(5)存在量词(6)∃x0∈M,p(x0)预习自测1.下列语句不是全称命题的是( )A.任何一个实数乘以零都等于零B.自然数都是正整数C.高二(一)班绝大多数同学是团员D.每一个向量都有大小答案:C解析:【知识点】全称命题的判断.2.下列命题是特称命题的是( )A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线D.存在实数大于等于3答案:D解析:【知识点】特称命题的判断.3.下列是全称命题且是真命题的是( )A.∀x∈R,x2>0B.∀x∈Q,x2∈QC.∃x0∈Z,2x>1D.∀x,y∈R,x2+y2>0答案:B解析:【知识点】全称命题、真命题的判断.【解题过程】A、B、D为全称命题,但A、D中的结果可能等于0,因此为假命题.点拨:全称命题的形式为:对任意x属于M,有()p x成立.4.下列四个命题中,既是特称命题又是真命题的是( )A.斜三角形的内角是锐角或钝角B.至少有一个实数x0,使x20>0C.任一无理数的平方必是无理数D.存在一个负数x0,使1x0>2答案:B解析:【知识点】特称命题、真命题的判断.【解题过程】B、D为特称命题,但D为假命题.点拨:特称命题的形式为:存在x属于M,有()p x成立.(二)课堂设计教学过程设计1.知识回顾(1)逻辑联结词“非”的含义;(2)命题“p ⌝”真假的判定;(3)命题的否定和否命题的区别.2.问题探究探究一 全称量词和全称命题●活动① 设置情景,引入概念请大家思考:下列语句是命题吗?你能发现这些语句之间的一些关系吗?(1)20x ->; (2)32x +是整数; (3)对所有的,20x x ∈->R ;(4)对任意一个32x x ∈+Z ,是整数; (5)所有有中国国籍的人数学很好. 分析:(1)(2)不是命题,(3)(4)(5)是命题.它们之间的关系是:后者比前者多了一些量词,通过这些量词来限定变量的范围使不是命题的语句成为了命题.短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称命题,(3)(4)(5)是全称命题.通常将含有变量x 的语句用()p x ,()q x ,()r x 等表示,变量x 的取值范围用M 表示,那么,全称命题“对M 中任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.【设计意图】从具体问题入手,有利于学生主动参与.●活动② 判断全称命题的真假如何判断一个全称命题的真假呢?引导学生思考,并给出例题,以便学生入手解决.判断下列全称命题的真假(1)所有的素数都是奇数;(2)R ∈∀x 01,2≥+x ; (3)对每一个无理数x ,2x 也是无理数.解析:(1)2是素数,但是2不是奇数,故此命题是假命题.(2)任取实数2,110x x +≥>,故此命题是真命题.(322=是有理数,故此命题是假命题.总结规律:全称命题,()x M p x ∀∈为真,必须对给定的集合中每一个元素x ,都使得()p x 为真,但要判断一个全称命题为假,只要在给定的集合内找出一个0x ,使0()p x 为假.【设计意图】结合实例让学生更易理解.探究二 特称量词和特称命题●活动① 设置情景,引入概念请大家思考:下列语句是命题吗?(1)(3)、(2)(4)之间有什么关系?(1)312=+x ; (2)x 能被2和3整除;(3)存在一个R ∈0x 使3120=+x ;(4)至少有一个Z ∈0x ,0x 能被2和3整除; (5)有的学生不喜欢数学.分析:(1)(2)不是命题,(3)(4)(5)是命题.它之间的关系是:后者比前者多了一些量词,通过这些量词来限定变量的范围使不是命题的语句成为了命题. 短语“至少有一个”“存在一个”在逻辑中通常叫做特称量词,并用符号“∃”表示.含有特称量词的命题叫做特称命题,(3)(4)(5)是特称命题.通常将含有变量x 的语句用()p x ,()q x ,()r x 等表示,变量x 的取值范围用M 表示,那么,全称命题“在M 中存在一个x ,有()p x 成立”可用符号简记为“,()x M p x ∃∈”,读作“存在x 属于M ,有()p x 成立”.【设计意图】从具体问题入手,有利于学生主动参与.●活动② 判断特称命题的真假如何判断一个特称命题的真假呢?引导学生思考,并给出例题,以便学生入手解决.判断下列特称命题的真假(1)有一个实数0x ,使032020=++x x ;(2)存在两个相交平面垂直于同一直线;(3)有些整数只有两个正因数.解析:(1)2200023(1)22x x x ++=++≥,故此命题是假命题.(2)由于垂直于同一直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一直线.(3)由于存在整数3只有两个正因数1和3,故此特称命题为真命题.总结规律:存在性命题,()x M p x ∃∈为真,只要在给定的集合M 中找出一个元素x ,使命题()p x 为真,否则为假.【设计意图】结合实例让学生更易理解.●活动③ 运用反馈例1 判断下列命题是全称命题还是特称命题,并判断真假.(1)所有的实数a 、b ,关于x 的方程ax +b =0恰有唯一解.(2)存在实数x 0,使得20013234x x =-+. 【知识点】全称命题和特称命题.【解题过程】 (1)该命题是全称命题.当a =0,b ≠0时方程无解,故该命题为假命题.(2)该命题是特称命题.∵x 2-2x +3=(x -1)2+2≥2, ∴1x 2-2x +3≤12<34.故该命题是假命题.【思路点拨】 掌握全称命题和特称命题真假的判断.【答案】(1)该命题是全称命题,假命题.(2)该命题是特称命题,假命题. 同类训练 判断下列命题的真假:(1)2,;R x x x ∃∈≥ (2)2,;x x x R ∀∈> (3)2,80.Q x x ∃∈-=答案:真 假 假.解析:【知识点】特称命题和全称命题的真假.【解题过程】解不等式和解方程.点拨:运用全称和特称命题的定义以及不等式和方程的解法.例2 已知函数2()25f x x x =-+是否存在实数m ,使不等式()0m f x +>对任意R x ∈恒成立?答案:存在 (4,)m ∈-+∞.解析:【知识点】全称命题和函数最值.【解题过程】原题等价于2(1)4m x >--- 对任意的R x ∈恒成立,只需4m >-. 思路:()0m f x +>恒成立只需要max [()]m f x >-.同类训练 已知函数2()2 5.f x x x =-+若存在实数x ,使不等式()0m f x ->成立,求实数m 的取值范围.答案:(4,)m ∈+∞.解析:【知识点】特称命题和函数最值.【解题过程】原题等价于存在R x ∈,使得2(1)+4m x >-,只需4m >. 点拨“”()0m f x ->恒成立只需要min ()m f x >.例3 存在π[0,]2x ∈,使得22sin 20x a ->,则实数a 的取值范围是________.答案:(a ∈.解析:【知识点】特称命题. 【解题过程】2π2sin 2,[0,]2a x x <∈有解,只需要2max π(2sin 2),[0,]2a x x <∈,所以22,(a a <∈.点拨:存在性问题就是有解性问题.同类训练 若存在0R x ∈,使20020ax x a ++<,则实数a 的取值范围是________.答案:(-∞,1) .解析:【知识点】特称命题.【解题过程】当a ≤0时,取x 0=-1,得ax 20+2x 0+a =2a -2≤-2<0. 当a >0时,Δ=4-4a 2>0,即0<a <1.综上得,a <1.点拨:存在性问题就是有解性问题.3.课堂总结知识梳理1.全称量词和特称量词的含义;2.全称命题和特称命题真假的判断.重难点归纳1. 熟练掌握用数学符号表示含有全称量词和特称量词的命题;2. 对全称命题和特称命题真假判断时要注意任意性和存在性的区分.三、课后作业基础型、自主突破1.下列命题中的假命题是( )A .(0,)lg 0x x ∃∈+∞=,B .x ∃∈R , 1tan =xC .20x x ∀∈>R ,D .30x x ∀∈>R ,答案:C解析:【知识点】全称命题、特称命题.【解题过程】对于A ,由于lg 1=0,因此A 正确;对于B ,由于tan 14π=,因此B 正确; 对于C ,由于02=0,因此C 不正确;对于D ,由于30x >恒成立,因此D 正确.综上所述,选C .点拨:基本初等函数的简单性质.2.已知命题:20p x x ∃∈->R ,,命题:q x x ∀∈<R ,则下列说法中正确的是( )A .p q ∨是命题B .命题p q ∧是真命题C .()p q ∧⌝是真命题D .()p q ∨⌝是真命题答案:C解析:【知识点】含有逻辑联结词的命题的真假判断.【解题过程】显然命题p 为真命题;对命题q ,当14x =1124x =>=,故为假命题,q ⌝为真命题.所以C 正确. 点拨:含有逻辑联结词的命题的真假判断.3.已知命题p :“存在x ∈R ,使1420x x m +++=”,若“非p ”是假命题,则实数m的取值范围是_________.答案:(0)-∞,解析:【知识点】根据命题求参数的范围.【解题过程】“非p ”是假命题,则p 为真命题;所以原命题等价于方程1420x x m +++=有解,则m 的取值范围即为函数1(42)x x y +=-+的值域,利用换元法可求得其值域为(0)-∞,. 故实数m 的取值范围是(0)-∞,. 点拨:分离参数求最值.4.已知p :∃x ∈R ,mx 2+1≤0;q :∀x ∈R ,x 2+mx+1>0.若“p 或q ”为假命题,则实数m 的取值范围为________.答案:m ≥2解析:【知识点】根据命题求参数的范围.【解题过程】依题意,知p 、q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,方程x 2+mx+1=0的判别式Δ=m 2-4≥0,即m ≤-2或m ≥2.由p 、q 均为假命题,得022m m m ≥⎧⎨≤-≥⎩或,即m ≥2. 点拨:“p 或q ”为假命题,则p 、q 中至少一个为假命题.5.命题2:10p x R ax ax ∀∈++≥,,若p ⌝是真命题,则实数a 的取值范围是 _______.答案:04a a <>或解析:【知识点】全称命题及特称命题, 不等式恒成立问题.【解题过程】当0a =时,不等式等价于错误!未找到引用源。
1.4全称量词与存在量词1.4.1全称量词 1.4.2存在量词整体设计教材分析全称量词与存在量词是《课程标准》新增加的内容,旨在使学生认识这两类在现实生活中广泛使用的量词,会判断含有一个量词的全称命题或特称命题的真假,从而为我们从量的形式和范围上认识和解决问题提供了新的思路和方法.课时分配1课时教学目标知识与技能通过生活和数学中的实例,理解全称量词与存在量词的意义,能准确地利用全称量词与存在量词叙述数学内容.过程与方法通过生活和数学中的丰富实例,让学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.情感、态度与价值观在学习新知的过程中,培养学生的辨析能力以及培养他们的良好的思维品质.重点难点教学重点:理解全称量词与存在量词的意义.教学难点:全称命题和特称命题真假的判定.教学过程引入新课在日常生活和学习中,我们经常遇到这样的语句:(1)2x+1是整数;(2) x>3;(3) 如果两个三角形全等,那么它们的对应边相等;(4)平行于同一条直线的两条直线互相平行;(5)所有有中国国籍的人都是黄种人;(6)对所有的x∈R, x>3;(7)对任意一个x∈Z,2x+1是整数.提出问题:上述语句是命题吗?假如是命题,你能判断它的真假吗?活动设计:学生先独立思考,形成自己的初步结论,再通过学生之间的讨论形成最后答案.教师可以参与学生的讨论.对于(5)(6),最好是引导学生将反例用命题的形式写出来,因为这些命题的反例涉及“全称命题”的否定形式.活动成果:(1)(2)不能判断真假,不是命题,(3)~(7)是命题.其中(3)(4)(7)是真命题,(5)(6)是假命题.设计意图:通过学生对上述问题的思考,复习回顾命题的定义,并运用已学知识对命题的真假做出判断.探究新知提出问题1:请同学们思考一下,命题(3)~(7)有哪些共同特征?活动设计:留给学生两分钟的思考讨论时间,学生自由发言.活动成果:(5)~(7)命题中都含有“所有的”“任意”等表示全体的量词,命题(3)中隐含有量词,即任意两个全等的三角形,其对应边相等.命题(4)也含有隐含的量词,即平行于同一条直线的任意两条直线互相平行.设计意图:通过学生对5个命题的对比思考,寻找其共同点,使学生对全称量词有一个初步认识.提出问题2:问题1中的量词的含义是什么?含有这些量词的命题如何用符号语言表述?活动设计:第一个小问题学生可以通过独立思考或小组交流解决,第二个小问题可以在教师的指导下通过阅读课本的相关章节找到问题的解决方法. 最后教师引导学生形成规范的概念.活动成果:命题(3)~(7)都用到“所有的”“任意一个”这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“ ”表示,含有全称量词的命题,叫做全称命题.命题(3)~(7)都是全称命题.通常将含有变量x的语句用p(x),q(x),r(x)…表示,变量x的取值范围用M表示. 那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为: x∈M, p(x),读作“对任意x属于M,有p(x)成立”.设计意图:通过提出问题,进一步探究答案,最后师生共同形成规范的全称量词及全称命题的定义,让学生感受从感性到理性的认识过程,体会符号语言准确、严密、简明、抽象的特点.提出问题3:为什么说(5)(6)是假命题?说出你的理由.活动设计:学生自由发言.活动成果:命题(5)是假命题,因为存在一个(个别、部分)有中国国籍,但不是黄种人的人.于是可得命题1:存在一个(个别、部分)有中国国籍的人不是黄种人.命题(6)是假命题,因为存在一个(个别、某些)实数(如x=2), x≤3,也可以说至少有一个x∈R, x≤3.于是可得命题2:存在一个(个别、某些)实数x(如x=2),使x≤3(或至少有一个x∈R, x≤3).设计意图:通过问题的回答,形成命题1、2,引出存在量词的概念,同时为下一课时《含有一个量词的命题的否定》做准备.提出问题4:观察上面得出的新命题1、2,它们有什么共同特征?它们与全称命题有什么区别?活动设计:学生自由发言.活动成果:这些命题用到了“存在一个”“至少有一个”这样的词语,在逻辑中,表示整体的一部分的词通常叫做存在量词,用符号“ ”表示.含有存在量词的命题叫做特称命题.命题1、命题2都是特称命题.特称命题“存在M中的元素x0,使p(x0)成立”可以用符号简记为: x0∈M,p(x0).读作“存在M中的元素x0, 使p(x0)成立”.全称量词相当于日常语言中“凡”“所有”“一切”“任意一个”等;存在量词相当于日常语言中“存在一个”“有一个”“有些”“至少有一个”“至多有一个”等.设计意图:类比教学可以使学生对全称量词与存在量词的定义有全面而深刻的认识,提升学生通过联想类比的方法去认识发现新知的能力.理解新知提出问题:判断下列命题是全称命题还是特称命题:(1) 指数函数都是单调函数;(2)至少有一个整数,它既能被2整除,又能被5整除;(3) x ∈{ |x x 是有理数},x 2是有理数;(4) x ∈{ |x x ∈Z },log 2x>0.活动设计:学生独立思考后自由发言.活动结果:全称命题有:(1)(3);特称命题有:(2)(4).设计意图:让学生知道,辨析一个命题是全称命题还是特称命题的关键是看命题中含有的量词,当不含量词时,则注意理解命题含义的实质.运用新知1判断下列命题中哪些为全称命题?哪些为特称命题?并判断其真假.(1)任何一条直线都有斜率;(2)有一个实数α,使得tanα无意义;(3)所有圆的圆心到其切线的距离都等于半径;(4)凡圆内接四边形,其内对角互补.思路分析:通过观察分析命题中所含量词是全称量词还是特称量词来判定命题是全称命题还是特称命题,然后在正确理解题意的基础上,根据已学数学知识判断命题的真假.解:(1)为全称命题,且是假命题,因为倾斜角是π2的直线斜率不存在. (2)为特称命题,且是真命题,当α=π2时,tanα无意义. (3)(4)为全称命题,且都是真命题. 证明略.点评:要判断一个特称命题为真,只要在给定的集合中找到一个元素x ,使命题p(x)为真;要判断一个特称命题为假,必须对在给定集合中的每一个元素x ,使命题p(x)为假.要判断一个全称命题为真,必须对在给定集合中的每一个元素x ,使命题p(x)为真;但要判断一个全称命题为假,只要在给定的集合中找到一个元素x ,使命题p(x)为假. 即全称命题与特称命题之间可以相互转化,它们之间并不是对立的关系.2判断下列命题是全称命题还是特称命题:(1)负数的平方是正数;(2)有的实数是无限不循环小数;(3)有些三角形不是等腰三角形;(4)每个二次函数的图象都与x 轴相交.思路分析:根据全称命题与特称命题的定义,逐个进行判断.解:(2)(3)中分别含有存在量词“有的”和“有些”,因此是特称命题; (1)的含义是“任意负数的平方是正数”,因此是全称命题;(4)中含有全称量词“每个”,因此是全称命题.点评:判断一个命题是全称命题还是特称命题的关键是看命题中含有的量词是全称量词还是存在量词,当不含量词时,则注意理解命题含义的实质.巩固练习1.下列全称命题中是真命题...的为( ) A .所有奇数都是质数B . x ∈R ,x 2+1≥1C .若x 是无理数, 则x 2也是无理数D .x ∈R ,x +1x≥2 2.将“x 2+y 2≥2xy ”改写成全称命题,下列说法正确的是( )A .x ,y ∈R ,都有x 2+y 2≥2xy B .x ,y ∈R ,都有x 2+y 2≥2xyC .x>0,y>0,都有x 2+y 2≥2xyD .x<0,y<0,都有x 2+y 2≤2xy答案:1.解:A 是假命题.比如实数1是奇数,但1既不是质数也不是合数.B 是真命题.证明:对 x ∈R ,x 2≥0,∴x 2+1≥0+1=1.C 是假命题.比如x =2是无理数,但x 2=(2)2=2是有理数.D 是假命题.比如当x =0时,该式无意义.因此,选B.2.解:不等式“x 2+y 2≥2xy ”的含意为 “对于任意的实数x ,y ,恒有x 2+y 2≥2xy ”.因此应该选A.变练演编1.对 x ∈R +,x 2-ax +1>0恒成立,则a 的取值范围是________.2.是否存在a ∈R ,使得x 2-ax +1>0恒成立?答案:1.解:∵x ∈R +,由x 2-ax +1>0可得a<x +1x ,因为 x ∈R +,x +1x≥2,∴只需 a<2即可.2.解:二次函数y =x 2-ax +1的图象开口向上,因此只要函数图象与x 轴没有公共点, 不等式x 2-ax +1>0恒成立.由Δ=a 2-4<0,得-2<a<2,因此只需-2<a<2,不等式x 2-ax +1>0恒成立.设计意图:进一步增强学生对符号语言、自然语言、图形语言的互译能力,加深学生对全称命题和特称命题的理解.达标检测1.下列特称命题中真命题的个数是( )① x ∈R ,x ≤0;②至少有一个整数,它既不是合数,也不是质数;③ x ∈{ |x x 是无理数},x 2是无理数.A .0B .1C .2 D. 32.下列全称命题中假命题...的个数是( ) ①2x +1是整数(x ∈R );②对所有的x ∈R ,x>3;③对任意一个x ∈Z,2x 2+1为奇数.A .0B .1C .2D .33.下列命题为特称命题的是( )A .偶函数的图象关于y 轴对称B .正四棱柱都是平行六面体C .不相交的两条直线是平行线D .存在一个实数不小于34.“若a ⊥α,则直线a 垂直于平面α内的任意一条直线”是( )A .全称命题B .特称命题C .不是命题D .假命题答案:1.D 2.C 3.D 4.A课堂小结知识收获:1.全称量词与存在量词的意义.2.全称命题和特称命题真假的判定方法.方法收获:归纳方法、类比方法.思维收获:类比思想、转化与化归的思想.布置作业课本习题1.4 A组第1、2题.补充练习基础练习1.“xy≠0”是指()A.x≠0且y≠0B.x≠0或y≠0C.x,y至少有一个为0D.不都是02.“a2+b2≠0”的含义是()A.a,b不全为0B.a,b全不为0C. a,b至少有一个为0D.a≠0且b=0或a=0且b≠03.“经过两条相交直线有且只有一个平面”是()A.全称命题B.特称命题C.不是命题D.假命题4.全称命题“x2-x+1>0,x∈R”可记作:________.5.用符号“ ”与“ ”表示下列含有量词的命题:(1)圆x2+y2=r2上任意一点到圆心的距离是r;(2)存在一对实数x,y,使得2x+4y=3.答案:1.A 2.A 3.A4.x∈R,x2-x+1>05.(1)P∈{P|P在圆x2+y2=r2上},||OP=r(O为圆心);(2)(x,y)∈{(x,y)|x,y是实数}, 2x+4y=3.拓展练习6.把下列定理表示的命题写成含有量词的命题:(1)勾股定理:________.(2)正弦定理:________.答案:(1)Rt△ABC,若∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则c2=a2+b2;(2)△ABC,若∠A,∠B,∠C的对边分别为a,b,c,则asinA=bsinB=csinC.设计说明通过教师引导学生观察分析出命题的特点:含有量词“所有的”“每一个”“一切”“有些”“至少”“存在一个”,有了以上引入“量词”的教学“场”,教师自然归纳:“所有的”“每一个”“一切”“任给”“任意一个”等都是在指定范围内,表示整体或全部的含义,这些词都是全称量词;“有些”“至少有一个”“有一个”“存在”等都表示个别或一部分的含义,这些词都是存在量词.含有全称量词的命题称为全称命题,含有存在量词的命题称为特称命题.教师有目的地创设学习情境,整合教材顺序,有效的问题引导,让学生经历观察特征、认识概念、运用概念的过程,对学生完整地、深刻地理解全称量词、存在量词的含义很有帮助.备课资料1.判断下列命题的真假.(1)x 1,x 2∈[a ,b],x 1<x 2,都有f(x 1)-f(x 2)<0,则f(x)为[a ,b]上的增函数;(2) a ,b ∈R ,a 2+b 2>2ab ;(3) x ∈R ,使得a x <-1(a>0,a ≠1);(4)若a 2+b 2≥1,则直线ax +by =1与圆x 2+y 2=1至少有一个公共点.思路分析:正确理解全称量词与存在量词的含义,并与已学数学知识相结合,是解决本题的关键.解:(1)真命题.(2)假命题,当a =b 时,a 2+b 2=2ab.(3)假命题,x ∈R ,a x >0>-1(a>0,a ≠1).(4)真命题,直线ax +by =1与圆x 2+y 2=1相交或相切.点评:本题考查了学生对符号语言的阅读能力,进一步提高学生判断含一个量词命题的真假的能力.2.函数f(x)对一切实数x ,y 均有f(x +y)-f(y)=(x +2y +1)x 成立,且f(1)=0.(1)求f(0)的值;(2)当f(x)+2<log a x ,x ∈(0,12)恒成立时,求a 的取值范围. 思路分析:第一问应用了赋值法,第二问需要学生有很强的化归与转化及分类讨论的能力.解:(1)由已知等式f(x +y)-f(y)=(x +2y +1)x ,令x =1,y =0得f(1)-f(0)=2,又因为f(1)=0,所以f(0)=-2.(2)由(1)知f(0)=-2,所以f(x)+2=f(x)-f(0)=f(x +0)-f(0)=(x +1)x.因为x ∈(0,12),所以f(x)+2∈(0,34).要使x ∈(0,12)时,f(x)+2<log a x 恒成立,显然当a>1时不可能,所以⎩⎪⎨⎪⎧0<a<1,log a 12≥34,解得344≤a<1. 点评:本题考查了学生对符号语言的阅读理解能力,作为抽象函数问题有一定难度.(设计者:赵传俊)。
预习导航
1.全称量词与全称命题
(1)全称量词
短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.
(2)全称命题:含有全称量词的命题叫做全称命题.全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题
(1)存在量词
短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.
(2)特称命题
含有存在量词的命题,叫做特称命题.特称命题“存在M中的元素x0,使p(x0)成立”可用符号简记为∃x0∈M,p(x0),读作“存在M中的元素x0,使p(x0)成立”.3.同一个全称命题或特称命题的表述是否惟一?
提示:同一个全称命题或特称命题,由于自然语言的不同,可以有不同的表述方法,只要形式正确即可.
1.下列语句是特称命题的是().
A.整数n是2和5的倍数
B.存在整数n,使n能被11整除
C.若3x-7=0,则
7
3 x=
D.∀x∈M,p(x) 答案:B
2.下列是全称命题且是真命题的是( ).
A .∀x ∈R ,x 2>0
B .∀x ∈Q ,x 2∈Q
C .∃x 0∈Z ,201x >
D .∀x ,y ∈R ,x 2+y 2>0
解析:A 项x =0时不成立;C 项不是全称命题;D 项中x =0,y =0时不成立. 答案:B
3.下列命题中,是全称命题的是________;是特称命题的是________.
①正方形的四条边相等;
②有两个角是45°的三角形是等腰直角三角形;
③正数的平方根不等于0;
④至少有一个正整数是偶数.
答案:①③ ②④
4.命题“末位数是0的整数,可以被5整除”________全称命题.(填“是”或“不是”) 答案:是
5.试判断以下命题的真假:
(1)∀x ∈R ,x 2+2>0;
(2)∀x ∈N ,x 4≥1; (3)∃x ∈Z ,x 3<1; (4)∃x ∈Q ,x 2=3
解:(1)由于x ∀∈R ,则x 2≥0,因而有x 2+2≥2>0,即x 2+2>0.所以命题“x ∀∈R ,x 2+2>0”是真命题.
(2)由于0∈N ,当x =0时,x 4≥1不成立.所以命题“x ∀∈N ,x 4≥1”是假命题.
(3)由于1∈Z -,当x =-1时,能使x 3<1.所以命题“x ∃∈Z ,x 3<1”是真命题.
(4)由于使x 2=3成立的数只有数的平方能等于3.所以命题“x ∃∈Q ,x 2=3”是假命题.。