假设检验考试试题及答案解析
- 格式:doc
- 大小:104.50 KB
- 文档页数:11
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。
取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50)=1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。
第八章假设检验1. A2. A3. B4. D5. C6. A1. 某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为1.40。
某天测得25根纤维的纤度的均值x=1.39,检验与原来设计的标准均值相比是否有所变化,要求的显着性水平为:=0.05,则下列正确的假设形式是()。
A . H0: [1 = 1.40, H1:卩工1.40B . H0: < 1.40, H1:卩 > 1.40C . H。
: i V 1.40, H1:i > 1.40D . H 0: i >1.40, H1: i V 1.402. 某一贫困地区估计营养不良人数高达20% ,然而有人认为这个比例实际上还要高,要检验该说法是否正确,则假设形式为()。
A . H 0: nW 0.2, H1: n > 0.2B . H 0: n = 0.2, H1:兀工0.2C . H0: n >0.3, H1: n V 0.3D . H0: n >0.3, H1: n V 0.33. 一项新的减肥计划声称:在计划实施的第一周内,参加者的体重平均至少可以减轻8磅。
随机抽取40位参加该项计划的样本,结果显示:样本的体重平均减少7磅,标准差为3.2磅,则其原假设和备择假设是()。
A.H 0: g,W8 , H1: 1 >8 B . H 0: i》8 , H1: 1<8C .H 0: 1=7 , H1: 1>7D . H 0: i》7 , H1: 1<74.在假设检验中,不拒绝原假设意味着()。
A.原假设肯定是正确的 B .原假设肯定是错误的C .没有证据证明原假设是正确的D .没有证据证明原假设是错误的A.都有可能成立C .只有一个成立而且必有一个成立一定成立6. 在假设检验中,第一类错误是指(A .当原假设正确时拒绝原假设C .当备择假设正确时拒绝备择假设备择假设7. B 8. C 9.12. C7. 在假设检验中,第二类错误是指(A .当原假设正确时拒绝原假设设C .当备择假设正确时未拒绝备择假设择假设8. 指出下列假设检验哪一个属于右侧检验(A . H 0 : 口=丄。
一、单选题1、在假设检验中,我们认为()。
A.原假设是不容置疑的B.拒绝域总是位于检验统计量分布的两边C.小概率事件在一次抽样中实际上不会发生D.检验统计量落入拒绝域是不可能的正确答案:C2、在假设检验中,显著性水平确定后()。
A.双边检验的拒绝域小于单边检验的拒绝域B.双边检验的拒绝域大于单边检验的拒绝域C.双边检验的拒绝域与单边检验的拒绝域不可简单直接对比D.双边检验的拒绝域等于单边检验的拒绝域正确答案:C3、单个正态总体均值的检验时若总体方差已知,()。
A.设计的检验统计量服从卡方分布B.设计的检验统计量服从F分布C.设计的检验统计量服从标准正态分布D.设计的检验统计量服从t分布正确答案:C4、总体成数的假设检验()。
A.设计的检验统计量服从标准正态分布B.设计的检验统计量服从卡方分布C.设计的检验统计量近似服从卡方分布D.设计的检验统计量近似服从标准正态分布正确答案:D5、两个正态总体均值之差的检验中,如果两个总体方差未知但相等,检验统计量t的自由度是()。
A.两样本容量之和B.两样本容量之和减2C.两样本容量之积D.两样本容量之和减1正确答案:B6、假设检验是检验()的假设值是否成立。
A.总体均值B.总体指标C.样本方差D.样本指标正确答案:B7、在大样本条件下,样本成数的抽样分布近似为()。
A.均匀分布B.卡方分布C.二项分布D.正态分布正确答案:D8、下列关于假设检验的说法,不正确的是()。
A.作出“拒绝原假设”决策时可能会犯第一类错误B.作出“不能拒绝原假设”决策时意味着原假设正确C.作出“不能拒绝原假设”决策时可能会犯第二类错误D.作出“接受原假设”决策时意味着没有充分的理由认为原假设是错误的正确答案:B9、将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两,每边占显著性水平的二分之一,这是()。
A.右侧检验B.单侧检验C.左侧检验D.双侧检验正确答案:D10、如果使用者偏重于担心出现纳伪错误而造成的损失,则应把显著性水平定得()。
第五章 假设检验一、单项选择题1、假设检验的基本思想是( )A 、带有概率性质的反证法B 、小概率事件的出现是合理的C 、对总体均值的检验D 、对总体方差的检验2、假设检验的显著性水平α的一般取值为( )A 、大于0.10B 、大于0.01C 、小于0.80D 、不超过0.103、样本容量不变,犯第一类错误的概率减小,则犯第二类错误的概率( )A 、增大B 、减小C 、不变D 、变化不定4、正态总体方差未知,且样本容量小于30,检验总体均值的统计量应取( )A 、n S x Z 0μ-=~N(0,1) B 、n x Z σμ0-=~N(0,1)C 、)1(~)1(22022--=n Sn χσχ D 、)1(~0--=n t n S x t μ5、假设检验中的P 值的意义为( )A 、拒绝原假设的最小显著性水平B 、拒绝原假设的最大显著性水平C 、接受原假设的最小显著性水平D 、接受原假设的最大显著性水平二、多项选择题1、实际推断原理的要件是( )A 、实验的次数B 、实验的次数以一次为限C 、事件发生的概率很小D 、事件不发生是主观的认定E 、事件不发生是客观事实2、关于假设检验的显著性水平α,以下说法正确的是( )A 、原假设H 0为真却被拒绝的概率B 、原假设H 0不真被拒绝的概率C 、α改变检验的结论必随之改变D 、α减小,拒绝原假设的概率减小E 、α减小,犯采伪的错误必随之增大3、关于假设检验中第一、第二类错误的概率βα,,以下的说法正确的是( )A 、同时减小βα,的方法是增大样本容量B 、1=+βαC 、拒真的代价大,取较小的α而容忍较大的βD 、(β-1)成为检验功效E 、采伪的代价大,取较大的α以求较小的β4、以下属于参数假设的有( )A 、100:0=μHB 、)25,10(~:0N X HC 、1:20>σHD 、总体X ,Y 有相同的分布E 、总体X ,Y 相互独立5、对于假设5:,5:00≥=μμH H 的检验,以下说法正确的有( )A 、这是一个单侧检验B 、这是右侧检验C 、这是左侧检验D 、这是双侧检验E 、检验统计量的数值大于上侧位临界值时拒绝原假设6、关于假设检验中的P 值,以下说法正确的是( )A 、P 为拒绝原假设的最小显著性水平B 、接受原假设的最大显著性水平C 、如果P >α,在显著性水平α下拒绝原假设D 、P 值越小拒绝原假设的理由越充分E 、如果α≤P ,则在显著性水平α下接收原假设三、填空题1、某一假设检验为左侧检验,其原假设是,10:0=μH 则备择假设为_________________________________。
第8章假设检验含答案第8章假设检验一、单项选择题1.设样本是来自正态总体,其中未知,那么大样本时检验假设时,用的是()。
A 、 Z 检验法B 、检验法C 、检验法D 、检验法答案:A2.在假设检验中,由于抽样的偶然性,拒绝了实际上成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:A3.在假设检验中,由于抽样偶然性,接受了实际上不成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:B4.在假设检验中,接受了实际上成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C5.在假设检验中,拒绝实际上不成立的H 0假设是()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C6.α=0.05, t>t 0.05,ν,统计上可认为( )。
A 、两总体均数差别无显著意义B 、两样本均数差别无显著意义C 、两总体均数差别有显著意义D 、两样本均数差别有显著意义答案:C7.假设检验时,是否拒绝H 。
,取决于( )。
A 、被研究总体有无本质差别B 、选用α的大小C 、抽样误差的大小D 、以上都是答案:D8.设总体服从N(μ,σ2)分布,σ2已知,若样本容量n 和置信度1-α均保持不变,则对于不同的样本观测值,总体均值μ的置信区间长度()。
A 、变长B 、变短C 、不变D 、不能确定答案:C9.假设检验中,显著性水平α表示()。
A 、P{接受0H |0H 为假}B 、P{拒绝0H |0H 为真}C 、置信度为αD 、无具体含义答案:B11.在对总体参数的假设检验中,若给定显著性水平α(0<α<1),则犯第一类错误的概率为()。
A .1-αB 、αC 、α/2D 、不能确定答案:B12.对某批产品的合格率进行假设检验,如果在显著性水平α=0.05下接受了零假设,则在显著性水平α=0.01下()。
1。
假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量n x t /0σμ-=。
查出α=0。
05和0。
01两个水平下的临界值(d f=n-1=15)为2.131和2。
947。
667.116/60800820=-=t .因为t 〈2。
131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=.查出α=0.01水平下的反查正态概率表得到临界值2。
32到2。
34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z =3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3。
设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600。
概率论与数理统计作业班级 姓名 学号 任课教师第八章 假设检验教学要求:一、理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;二、了解一个正态总体均值与方差的假设检验,了解两个正态总体均值差与方差比的假设检验;三、了解总体分布假设的2χ检验法,会应用该方法进行分布拟合优度检验(选学).重点:假设检验的基本思想、假设检验的基本步骤、单个正态总体均值和方差的假设检验. 难点:正态总体均值和方差的假设检验.一、基本计算题1.某灯泡厂生产一种节能灯泡,其使用寿命(单位:小时)长期以来服从正态分布)(2150,1600N .现从一批灯泡中随意抽取25只,测得它们的平均寿命为1636小时.假定灯泡寿命的标准差稳定不变,问这批灯泡的平均寿命是否等于1600小时(取显著性水平05.0=α)?解:(1) 依题意,检验假设1600:00==μμH ,(1600:01=≠μμH ); (2) 由于标准差σ已知,在0H 成立时,采用U 检验法.选择统计量:nX U σμ0-=~()1,0N(3) 对于给定的显著性水平05.0=α,当25=n 时,查正态分布表得临界点96.1025.02==z z α(4)由25=n ,,1636=x ,150=σ,计算统计值:2.125150160016360=-=-=nx u σμ(5) 由于96.12.1025.02==<=z z u α落在拒绝域⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥-==20ασμz n x u W之外,所以在显著性水平05.0=α下,接受1600:0=μH .即认为这批灯泡的平均寿命等于1600.2.正常人的脉搏平均为72(次/min ),检查10例四乙基铅中毒患者,测的他们的脉搏(次/min )为: 54 67 68 78 70 66 67 70 65 69已知脉搏服从正态分布,在显著性水平05.0=α下,问四乙基铅中毒患者与正常人的脉搏有无显著差异?解:(1) 依题意,检验假设72:00==μμH ,(72:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,采用T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,4.67=x ,9292.5=s 计算统计值:4534.2109292.5724.670=-=-=n s x t μ (5) 由于>=4534.2t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之内,故拒绝72:00==μμH ,即四乙基铅中毒患者与正常人的脉搏有显著差异.3.某食品厂生产一种食品罐头,每罐食品的标准重量为500克.今从刚生产的一批罐头中随机抽取10罐,称得其重量为(单位:克)495 510 505 498 503 492 502 512 497 506假定罐头重量服从正态分布,问这批罐头的平均重量是否合乎标准(取05.0=α)?解:(1) 依题意,检验假设500:00==μμH ,(500:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,502101101==∑=i ix x ,∑==--=1012225.6)(1101i i x x s ,计算统计值: 9730.0105.65005020=-=-=n s x t μ (5) 由于<=9730.0t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之外,故接受500:00==μμH ,即认为这批罐头的平均重量合乎标准.4.在10块田地上同时试种,A B 两种谷物,根据亩产量(单位:kg )算得30.97A x =,79.21=B y ,26.7As =,21.1B s =.问这两种谷物的平均亩产量有无显著差异(05.0=α)? 假定两种谷物的亩产量都服从正态分布,且方差相等.解:(1)设A X ~()211,σμN ,BY~()222,σμN,依题意,检验假设210:μμ=H,(211:μμ≠H );(2)由于2221,σσ未知但2221σσ=,在0H 成立时,选择统计量:2111n n S Y X T w+-=~()221-+n n t其中 ()()2112122212-+-+-=n n S n S n S BA w;(3) 对于给定的显著性水平05.0=α,当1021==n n 时,查t 分布表得临界点()1009.2)18(2025.0212==-+t n n t α,(4)由1021==n n , 97.30=x ,7.26=A s ,79.21=B y ,1.21=B s 计算统计值:8465.01011010635.2479.2197.301121=+-=+-=n n s y x t wB A其中 ()()05.5792112122212=-+-+-=n n s n s n s BA w,0635.24=w s ;(5)由于<=8465.0t ()1009.2)18(2025.0212==-+t n n t α,t 没有落在接受域中,故应接受210:μμ=H ,即这两种谷物的平均亩产没有明显差异.5.按两种不同配方生产橡胶,测的伸长率(%)如下:配方Ⅰ: 540 533 525 520 544 531 536 529 534配方Ⅱ: 565 577 580 575 556 542 560 532 570 561 设橡胶伸长率服从正态分布,检验按两种配方生产的橡胶伸长率的方差是否相同(取05.0=α)?解:(1) 设Y X ,分别表示配方Ⅰ、配方Ⅱ的总体,则X ~()211,σμN,Y ~()222,σμN . 依题意,检验假设22210:σσ=H ,22211:σσ≠H ;(2)在0H 成立时,选择统计量:222122212221S S S S F ==σσ~()1,121--n n F (3)对于给定的显著性水平05.0=α,当10,921==n n 时,查F 分布的双侧临界值: ()()10.49,82,1025.0212==--F n n F α,()()()2294.036.418,919,81,1025.0975.02121≈===---F F n n Fα (4) 由于4444.5329191==∑=i i x x ,()778.5319129121=--=∑=i i x x s ,8.561101101∑-==i i y y ,()8444.2381101101222∑==--=i i y y s ;得统计值:2271.08444.2367778.532221≈==s s F(5) 由于()2294.09,82271.0975.0=<≈F F .则F 落在拒绝域中,故应拒绝22210:σσ=H (或接受22211:σσ≠H )。
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
334.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n =100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,当0.05,α=26,n =96.1579.02/1==-z z α,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在 2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.06, 当0.05,α=96.1579.02/1==-z z α100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
假设检验考试试题及答案解析
一、单选题(本大题9小题.每题1.0分,共9.0分。
请从以下每一道考题下面备选答案中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。
)
第1题
假设检验中的显著性水平α是( )。
A 推断时犯第Ⅱ类错误的概率
B 推断时犯第Ⅰ和第Ⅱ类错误的概率
C 推断时犯第Ⅰ类错误的概率
D 推断时犯第Ⅲ类错误的概率
【正确答案】:C
【本题分数】:1.0分
【答案解析】
[解析] 显著性水平α是犯第Ⅰ类错误的概率,也就是原假设H
0为真,却拒绝H
的概率。
第2题
当总体服从正态分布,但总体方差未知的情况下,H
0:μ=μ
,H
1
:μ<μ
则H
的
拒绝域为( )。
A t≤t
α
(n-1)
B t≤-t
α
(n-1)
C t>-t
α
(n-1)
D t≤(n-1)
【正确答案】:B
【本题分数】:1.0分
第3题
从一批零件中抽出100个测量其直径,测得平均直径为5.2cm,标准差为1.6cm,想知道这批零件的直径是否服从标准直径5cm,因此采用t检验法,那么在显著性水平α下,接受域为( )。
模考吧网提供最优质的模拟试题,最全的历年真题,最精准的预测押题!
A |t|≥t
α/2
(99)
B |t|<t
α/2
(100)
C |t|<t
α/2
(99)
D |t|≤t
α/2
(99)
【正确答案】:C
【本题分数】:1.0分
【答案解析】
[解析] 采用t检验法进行双边检验时,因为,所以在显著性
水平α下,接受域为|t|≤t
α/2
(99)。
第4题
在假设检验中,若抽样单位数不变,显著性水平从0.01提高到0.1,则犯第二类错误的概率( )。
A 也将提高
B 不变
C 将会下降
D 可能提高,也可能不变
【正确答案】:C
【本题分数】:1.0分
【答案解析】
[解析] 原假设H
0非真时作出接受H
的选择,这种错误称为第二类错误。
在一定
样本容量下,减少α会引起β增大,减少β会引起α的增大。
第5题
机床厂某日从两台机器所加工的同一种零件中,分别抽取两个样本,检验两台机床的加工精度是否相同,则提出假设
( )。
【正确答案】:B
【本题分数】:1.0分
【答案解析】
模考吧网提供最优质的模拟试题,最全的历年真题,最精准的预测押题!。