实现顺序表元素的冒泡排序
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
冒泡排序代码c语言
冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
以下是冒泡排序的C语言代码:
```
void bubbleSort(int arr[], int n) {
int i, j;
for (i = 0; i < n-1; i++)
for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+1]);
}
void swap(int *xp, int *yp) {
int temp = *xp;
*xp = *yp;
*yp = temp;
}
```
其中,swap()函数用于交换两个数的值。
在主函数中,我们需要传递要排序的数列以及数列的长度n,然后调用bubbleSort()函数即可完成排序。
冒泡排序的时间复杂度为O(n^2),并不是最优秀的排序算法,但是它的实现简单,代码易于理解。
在处理小型数列时,冒泡排序的效率也是可以接受的。
希望本文提供的代码能够帮助到您,如果您还有其他问题欢迎与我们联系。
冒泡法排序流程图冒泡排序是一种基本的排序算法,它的原理是相邻的元素之间两两比较,如果顺序错误就进行交换,这样一轮比较下来,最大(或最小)的元素就会移动到最后(或最前)的位置。
冒泡排序的流程图如下:```开始设置列表list,列表长度n循环i从0到n-1嵌套循环j从0到n-i-1比较list[j]和list[j+1]如果list[j] > list[j+1],则交换list[j]和list[j+1]的位置结束内层循环结束外层循环输出排序后的列表list结束```下面我们通过一个例子来解释冒泡排序的具体流程:假设我们有一个列表 [5, 3, 8, 6, 4] 需要进行排序。
第一轮比较:比较 5 和 3,5 > 3,交换位置,列表变为 [3, 5, 8, 6, 4]比较 5 和 8,5 < 8,不交换位置,列表不变比较 8 和 6,8 > 6,交换位置,列表变为 [3, 5, 6, 8, 4]比较 8 和 4,8 > 4,交换位置,列表变为 [3, 5, 6, 4, 8]第一轮比较后,最大的元素 8 移动到了列表的最后。
第二轮比较:比较 3 和 5,3 < 5,不交换位置,列表不变比较 5 和 6,5 < 6,不交换位置,列表不变比较 6 和 4,6 > 4,交换位置,列表变为 [3, 5, 4, 6, 8]第二轮比较后,第二大的元素 6 移动到了列表的倒数第二个位置。
第三轮比较:比较 3 和 5,3 < 5,不交换位置,列表不变比较 5 和 4,5 > 4,交换位置,列表变为 [3, 4, 5, 6, 8]第三轮比较后,第三大的元素 5 移动到了列表的倒数第三个位置。
第四轮比较:比较 3 和 4,3 < 4,不交换位置,列表不变第四轮比较后,第四大的元素 4 移动到了列表的倒数第四个位置。
经过四轮比较和交换操作,列表已经完全有序,最后输出的排序后的列表为 [3, 4, 5, 6, 8]。
冒泡排序时间复杂度计算方法
冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
重复
地进行直到没有再需要交换,也就是说该数列已经排序完成。
冒泡
排序的时间复杂度取决于要排序的元素数量。
要计算冒泡排序的时间复杂度,可以分析最好情况、最坏情况
和平均情况下的比较次数和交换次数。
在最好情况下,即原始数列
已经是有序的情况下,冒泡排序只需要进行一次遍历,比较次数为
n-1次,n为元素数量,没有交换操作,所以时间复杂度为O(n)。
在最坏情况下,即原始数列是逆序的情况下,冒泡排序需要进行n-
1次遍历,每次遍历需要比较和交换n-i次,其中i为当前遍历的
次数,所以比较次数为n(n-1)/2,交换次数也为n(n-1)/2,时间复
杂度为O(n^2)。
在平均情况下,冒泡排序的时间复杂度也为O(n^2)。
总的来说,冒泡排序的时间复杂度为O(n^2),其中n为要排序
的元素数量。
这意味着随着要排序的元素数量的增加,冒泡排序所
需的时间将按平方级增长。
因此,在大规模数据的排序中,冒泡排
序并不是一个高效的选择。
第1篇一、实验目的1. 理解冒泡排序算法的基本原理和操作步骤。
2. 掌握冒泡排序算法的实现方法。
3. 分析冒泡排序算法的时间复杂度和空间复杂度。
4. 通过实验验证冒泡排序算法的效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019三、实验原理冒泡排序是一种简单的排序算法,其基本思想是通过多次比较和交换相邻元素,将待排序的序列变为有序序列。
冒泡排序算法的基本步骤如下:1. 从第一个元素开始,相邻的两个元素进行比较,如果它们的顺序错误(即第一个元素大于第二个元素),则交换它们的位置。
2. 重复步骤1,对相邻的元素进行比较和交换,直到整个序列的最后一个元素。
3. 第一轮排序完成后,最大的元素被放置在序列的最后一个位置。
4. 从第一个元素开始,对剩余的元素重复步骤1和步骤2,直到序列的倒数第二个元素。
5. 重复步骤3和步骤4,直到整个序列有序。
四、实验步骤1. 编写冒泡排序算法的C++代码,实现上述算法步骤。
2. 在主函数中创建一个待排序的数组。
3. 调用冒泡排序函数对数组进行排序。
4. 输出排序前后的数组,验证排序结果。
五、实验代码```cppinclude <iostream>using namespace std;// 冒泡排序函数void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) { if (arr[j] > arr[j + 1]) {// 交换相邻元素int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}// 打印数组函数void printArray(int arr[], int n) {for (int i = 0; i < n; i++) {cout << arr[i] << " ";}cout << endl;}int main() {// 创建待排序的数组int arr[] = {64, 34, 25, 12, 22, 11, 90};int n = sizeof(arr) / sizeof(arr[0]);// 打印排序前的数组cout << "排序前的数组:\n";printArray(arr, n);// 调用冒泡排序函数bubbleSort(arr, n);// 打印排序后的数组cout << "排序后的数组:\n";printArray(arr, n);return 0;}```六、实验结果与分析1. 运行实验程序,输出排序前后的数组,验证排序结果是否正确。
每一趟都能选出一个元素放到其最终位置上,并且不稳定冒泡排序:每一趟能选出一个元素放到其最终位置上,并且不稳定----------------------------------冒泡排序是一种比较简单的排序算法,它的基本思想是:通过重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
## 一、冒泡排序的原理冒泡排序是一种交换排序,它的工作原理如下:1. 比较相邻的元素。
如果第一个比第二个大,就交换他们两个;2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;3. 针对所有的元素重复以上的步骤,除了最后一个;4. 重复步骤1~3,直到排序完成。
## 二、冒泡排序的实现方式冒泡排序可以有多种实现方式,其中常用的有三种:1. 普通冒泡排序2. 改进冒泡排序3. 快速冒泡排序### 1. 普通冒泡排序冒泡排序最早发明是在1956年,由两位数学家F. W. Watson和A.M. Sorton发明。
它是一种简单而原始的排序方式,它采用相邻元素两两对比的方式,如果前者大于后者,就将两者交换位置,直到整个数列都有序为止。
它的基本原理如上文所述,具体实现代码如下所示:```pythondef bubble_sort(list):# 获取list的长度length = len(list)# 外层循环表示总共要循环length-1轮for i in range(length-1):# 内层循环表示每一轮要循环length-i-1次for j in range(length-i-1):if list[j] > list[j+1]:list[j], list[j+1] = list[j+1], list[j]```### 2. 改进冒泡排序在原始的冒泡排序中,如果待排序数列中存在大量已经有序的数列时,冒泡排序依然会执行大量的无用功,而“改进冒泡排序”就是为了解决这一问题而出现的。
冒泡排序实现代码以及图⽰详解⼀、冒泡排序冒泡排序(Bubble Sort),是⼀种计算机科学领域的较简单的排序算法。
它重复地⾛访过要排序的元素列,依次⽐较两个相邻的元素,如果顺序(如从⼤到⼩、⾸字母从Z到A)错误就把他们交换过来。
⾛访元素的⼯作是重复地进⾏直到没有相邻元素需要交换,也就是说该元素列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端(升序或降序排列),就如同碳酸饮料中⼆氧化碳的⽓泡最终会上浮到顶端⼀样,故名“冒泡排序”。
⼆、算法实现原理1. ⽐较相邻的元素。
如果第⼀个⽐第⼆个⼤,就交换它们两个;2. 对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对,在这⼀点,最后的元素理应会是最⼤的数;3. 针对所有的元素重复以上的步骤,除了最后⼀个;4. 持续每次对越来越少的元素重复上⾯的步骤,直到没有任何⼀对数需要⽐较;三、复杂度分析若⽂件的初始状态是正序的,⼀趟扫描即可完成排序。
所需的关键字⽐较次数C和记录移动次数M均达到最⼩值:所以,冒泡排序最好的时间复杂度为:O(n)若初始⽂件是反序的,需要进⾏n-1趟排序。
每趟排序要进⾏n-i次关键字的⽐较(1≤i≤n-1),且每次⽐较都必须移动记录三次来达到交换记录位置。
在这种情况下,⽐较和移动次数均达到最⼤值:冒泡排序的最坏时间复杂度为O(n^2)所以,冒泡排序总的时间复杂度为O(n^2)四、稳定性分析冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。
⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。
所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。
五、算法图⽰分析图⽰过程动图展⽰六、JAVA代码实现1//⽐较函数参考2static boolean less(Comparable v, Comparable w) {3return pareTo(w) < 0;4 }5//交换函数6static void exchange(Object[] a, int i, int j) {7 Object swap = a[i];8 a[i] = a[j];9 a[j] = swap;10 }1112public void bubblesort(Comparable[]a){13int n = a.length;14for(int i=0;i<n-1;i++){//记录已经排序的元素的数量15for(int j=0;j<n-i-1;j++){//开始排序,除去了已经排序了的16if(a[j]<a[j+1]){ //降序排列17 swap(a,j,j+1);18 }19 }20 }21 }七、算法优化针对问题:数据的顺序排好之后,冒泡算法仍然会继续进⾏下⼀轮的⽐较,直到arr.length-1次,后⾯的⽐较没有意义的。
c语言冒泡法对十个数排序C语言冒泡法对十个数排序冒泡排序是一种简单易懂的排序算法,它的实现原理是比较相邻的元素,将较大的元素交换到右侧,通过多次比较和交换,最终得到一个有序序列。
在C语言中,我们可以使用循环和数组来实现冒泡排序。
下面是使用C语言对十个数进行冒泡排序的示例代码:```c#include <stdio.h>void bubbleSort(int arr[], int n);int main() {int arr[10] = { 3, 5, 1, 4, 2, 7, 6, 8, 9, 0 };int n = 10;bubbleSort(arr, n);printf("排序后的结果为:");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}return 0;}void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```在上面的示例代码中,我们首先定义了一个包含十个元素的整型数组`arr`,然后使用循环和`bubbleSort`函数对该数组进行排序。
`bubbleSort`函数是实现冒泡排序的核心部分。
在函数中,我们首先使用两个嵌套的循环,第一个循环从数组的第一个元素到倒数第二个元素,第二个循环从第一个元素到倒数第i+1个元素,以便于将较大的元素交换到数组的右侧。
在每一次比较的过程中,我们使用一个临时变量`temp`来存储需要交换的元素,最后将排好序的数组返回给主函数。