大学基础物理学课后答案习岗著高等教育出版社
- 格式:pdf
- 大小:203.83 KB
- 文档页数:15
大学基础物理课后答案主编:习岗高等教育出版社第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。
对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B 将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。
在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。
相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。
<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。
伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。
如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。
<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。
斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。
练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。
在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。
练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l °== 该面积元上所受的水压力为 0d d d [(5)]sin 60hF p S p ρg h l°==+-水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ¢=-,高度微元取法不变,即d d h h ¢=,将h ¢与d h ¢带入水坝压力积分公式,同样可解出水坝所受压力大小。
129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。
· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。
该式称维恩位移定律。
3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。
该结果称斯忒藩—玻尔兹曼定律。
· 对于一般的物体4T M εσ=ε称发射率。
4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。
· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。
由普朗克公式可以很好地解释黑体辐射现象。
· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u ==这两个公式称为德布罗意公式或德布罗意假设。
第七章 电磁感应本章提要1. 法拉第电磁感应定律∙ 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。
∙ 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化时,回路中产生的感应电动势i ε与磁通量m Φ对时间的变化率的负值成正比,即mi d d tΦε=-2. 楞次定律楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。
3. 动生电动势∙ 当磁感应强度不变,而回路或回路的一部分相对于磁场运动时产生的电动势称动生电动势。
∙ 动生电动势是由洛仑兹力引起的。
由动生电动势的定义可得()d bab ae 醋ò=v B l4. 感生电动势∙ 当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。
∙ 产生感生电动势的原因是变化的磁场在空间激发了感生电场。
由电动势的定义和法拉第电磁感应定律可知感生电动势为m d dd d d d k lSt t Φε=⋅=-=-⎰⎰⎰E l B S 其中,E k 为感生电场。
5. 自感当回路中的电流发生变化时,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:m i d d d d I L t tΦε=-=-负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。
6. 互感∙ 对于两个临近的载流回路,当其中一个回路中的电流变化时,电流所激发的变化磁场会在另一个回路中产生感应电动势,这种现象称为互感现象。
对应产生的电动势称为互感电动势。
∙ 因为回路1中的电流I 1变化而在回路2中产生的互感电动势为tIM t 1d d d d 2121-=-=Φε因为回路2中电流I 2变化而在回路1中产生的互感电动势为 12212d d d d IM t tΦε=-=-其中,M 为互感系数。
118第九章 波动光学本章提要1. 几个基本概念● 相干条件:参与叠加的两束光满足振动方向相同、频率相同、相位差恒定的条件称相干条件。
只有满足相干条件的光叠加时才能产生干涉现象。
● 分波前法和分振幅法:利用普通光源获得相干光的方法有分波前法和分振幅法。
分波前法是在同一波前上通过波前的分割获得相干光,分振幅法是通过对同一束光进行振幅(光强)的分割获得相干光的。
● 光程:光走过的几何路程与路程上的介质折射率的乘积称为光程。
2. 分波前法干涉● 杨氏双缝干涉是利用分波前法产生干涉现象的,它是光具有波动性的经典实验,具有十分重要的意义。
● 杨氏双缝干涉实验的基本原理是:波长为λ的自然光源通过一个狭缝后形成狭缝光源,由狭缝光源发出的光通过间距为d 的双缝后形成两束相干光,这两束相干光在屏上相遇就会形成等间距的干涉条纹。
条纹间距为D x dλ∆= 其中,D 为双缝与光屏的距离。
● 洛埃镜实验也是分波前法干涉实验,其重要意义在于显示了光的半波损失现象。
即光在光疏媒质和光密媒质截面反射时,光要多走或少走2λ的光程。
3. 分振幅法干涉分振幅法干涉的典型例子是薄膜干涉,其又可分等厚干涉和等倾干涉两种。
(1)等厚条纹当光线垂直入射在膜表面时,在薄膜表面等厚处形成相同的干涉条纹的现象称等厚干涉。
当膜两侧都是空气时,定位于膜上表面的明纹满足0022λλk ne =+,3,2,1=k 对暗纹满足2)12(220λλ+=+k ne 0,1,2,3,k=其中,n 为膜的折射率,e 为膜的厚度。
等厚干涉的应用有:119●利用劈尖干涉测量微小角度、微小长度、检验工件的平整度等。
● 制备增加透射或反射的增透膜或增反膜。
● 利用牛顿环测量透镜曲率半径或光的波长。
(2) 等倾条纹以相同倾角i 入射到厚度均匀的平面膜上的光线,经膜上、下表面反射后产生的相干光束有相等的光程差,这样形成的干涉条纹称为等倾干涉。
等倾干涉条 纹是同心圆形条纹。
等倾干涉的一个重要的应用是迈克耳孙干涉仪。
第八章 振动和波动8-1由T=0.5s, 得ππω42==T, 设简谐振动方程为)4cos(02.0ϕπ+=t x (1)由于物体在正方向端点,由旋转矢量法得 0=ϕ所以振动方程为t x π4cos 02.0=(2)由于物体在负方向端点,由旋转矢量法得πϕ= 所以振动方程为)(ππ+=t x 4cos 02.0 (3)振动物体在平衡位置,向负方向运动,由旋转矢量法得2/πϕ= 所以振动方程为)(24cos 02.0ππ+=t x(4)振动物体在平衡位置,向正方向运动,由旋转矢量法得2/πϕ-= 所以振动方程为)(24cos 02.0ππ-=t x (5)振动物体在x=0.01m 处,向负方向运动,由旋转矢量法得3/πϕ=所以振动方程为)(34cos 02.0ππ+=t x (6)振动物体在x=-0.01m 处,向正方向运动,由旋转矢量法得3/2πϕ= 所以振动方程为)(324cos 02.0ππ+=t x 8-2由振动方程为)38cos(5.0ππ+=t x 得 35.025.028πϕωππω=====m A s T22max max 324πωπω====A a A v(2)t=1s,2s,10s 时的相位分别是:3241349325πππ,, 8-15 (1)波动方程为 )(cos )cos(B Cx t B A Cx Bt A y -=-= 标准波动方程为 )(cos uxt A y -=ω,比较系数得:振幅为A, B =ω, BC u =, ππων22B ==, B T π2=, C B C B uT ππλ22=== (2) ))cos(Cl Bt A y -=(3)dc d==∆λπϕ28-16(1) 设波源振动方程为)cos(ϕω+=t A y ,根据题意得:A = 0.01m, πππω20001.022===T , 由旋转矢量得2/πϕ-=)2/200cos(01.0ππ-=t y(2) 波动方程为)2/)400(200cos(01.0ππ--=xt y(3) 波源8米处振动方程为:)2/)501(200cos(01.0ππ--=t y(4) ππϕ5.049102=-=∆8-17(1) 由题意得 ππλππω5004.0122/2====uT由旋转矢量得2/πϕ=,又 A = 0.03m ,)2/)1(50cos(03.0ππ+-=xt y (2)tt t xt y πππππππ50cos 03.0)250cos(03.0)2/)105.0(50cos(03.0)2/)1(50cos(03.0=+=+-=+-= (3) 02121.0)2/)1045.03(50cos(03.0=+-=ππys m x t v /33.3)2/5050sin(5003.0-=+-⨯-=ππππ8-18由图得:A = 2 cm=0.02m, m 6=λ, s m u /30=, πω102.0==s T 由初始条件:2πϕ-=]2)30(10cos[02.0ππ-+=x t y8-19由于t y π2cos 1.01=,所以传到 P 点的分振动方程为: )42cos(1.0)20(2cos 1.01'1πππ-=-=t r t y由于)2cos(1.02ππ+=t y ,所以传到 P 点的分振动方程为:)42cos(1.0])20[(2cos 1.02'2ππππ-=+-=t r t y m A A A A A A A 2.0cos 221212221=+=∆++=ϕ8-20由题意可设两波源振动方程分别为:)(ϕπ+=t y 200cos 001.01)(2200cos 001.02πϕπ++=t y 则波源的振动传到P 点的振动分别为: )(ϕπ+-=)400(200cos 001.011r t y )(2)500(200cos 001.022πϕπ++-=r t y 所以两振动的相差为:02)50075.34004(200=---=∆ππϕ 所以P 点合振幅为 m A A A 002.021=+=。
面向21世纪课程教材学习辅导书普通高等教育“十一五”国家级规划教材配套参考书大学基础物理学第四版习题解答陈建军主编后德家王贤锋副主编高等教育出版社内容简介本书是与“面向21世纪课程教材”和“普通高等教育‘十一五’国家级规划教材”《大学基础物理学》(第四版)配套的学习辅导书.全书的内容按照主教材的章节顺序编排,习题解答过程规范、详细.本书可为学生学习课程内容,复习和巩固知识以指导与帮助.本书适合于选用“面向21世纪课程教材”和“普通高等教育‘十一五’国家级规划教材”《大学基础物理学》(第四版)的学校选作教学辅导书,也可供其他大学物理学习者使用.前言 (1)第1章流体力学 (1)第2章气体动理论 (7)第3章热力学基础 (12)第4章静电场恒定电场 (20)第5章恒定磁场 (28)第6章交变电磁场 (36)第7章光的波动性 (41)第8章光的量子性 (46)第9章量子力学初步 (49)第10章光谱分析原理及应用 (51)第11章放射性核物理及其应用 (52)测试练习(一) (55)测试练习(一)参考答案 (59)测试练习(二) (62)测试练习(二)参考答案 (65)《大学基础物理学》(第四版)是专为高等农林院校农、林类专业编写的大学物理课程教学的教材,本书是与之配套的教学参考书.大学物理课程学习中,做习题是一个不可缺的教学环节,不仅可以检查学生对课程知识点掌握的程度,还能巩固所学的知识,而且有利于提高分析问题和解决问题的能力.为了帮助学生掌握正确的解题方法,我们修订了《大学基础物理学》(第三版)《习题解答》教学参考书.全书的内容按照主教材的章编排,习题解答规范,过程详细.本书将给农林院校农、林类专业学生学习大学物理课程以极大的帮助.本书第一章(流体力学)、第二章(气体动理论)、第三章(热力学基础)、第八章(光的量子性)、第九章(量子力学初步)由华中农业大学陈建军修订;第四章(静电场恒定电场)、第五章(恒定磁场)、第六章(交变电磁场)由华中农业大学王贤锋修订;第七章(光的波动性)、第十章(光谱分析原理及应用)、第十一章(放射性核物理及其应用)由华中农业大学后德家修订.华中农业大学谭佐军、卢军、魏薇、程其娈、张纾、邓海游参与题目审核工作,刘玉红参与公式编辑工作,陈建军负责全书统稿和定稿.华中农业大学罗贤清和丁孺牛细致审阅了本习题解答,并提出了许多建设性的意见,在此表示衷心的感谢.同时编者也对参加第一版、第二版和第三版编写工作的同志表示诚挚的谢意.感谢教育部大学物理课程教学指导委员会农林水工作委员会、全国高等农林水院校物理教学委员会对本次修订工作的指导.由于编者水平有限,书中难免有错误和疏漏之处,我们衷心期待得到广大读者、同行专家的批评、指正,感谢对编者的关爱和帮助.编者2017年6月于狮子山南湖畔第1章流体力学1.1从水龙头缓缓流出的水流,下落时逐渐变细,为什么?答:从水龙头缓缓流出的水流,下落时由于重力做功,水流的速度越来越大.根据连续性原理Sv =常量,可知水流的速度越大,其横截面积就越小,所以从水龙头缓缓流出的水流,下落时逐渐变细.22121122121v v ρρgh ρp p -++=Pa1062Pa 52100121108910010510012110515233235⨯=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯+⨯=........1.4如习题1.4图所示,一水管向水井中放水的流量为141094--⋅⨯=s m .3Q ,井底有一截面积为2cm .50=S 的小孔,当井中水面不再升高时,井中水深多高?习题1.4图解:本题是关于伯努利方程的应用.设机翼上面的气流速率为v 2,机翼下面的气流速率为v 1,由于飞机机翼比较薄,所以可近似取h 1=h 2,机翼压强差为p 1–p 2=1000Pa.根据伯努利方程有2222112121v v ρp ρp +=+机翼上面的气流速率为11221212s m 107s m 10029110002)(2--⋅=⋅+⨯=+-=.v v ρp p 1.6水从管1流入,通过支管2和3流入管4,管4的出口与大气相通,整个管道系统在同一水平面内.已知各管的横截面积分别是S 1=15cm 2,S 2=S 3=5cm 2,S 4=10cm 2,管1中的体积流量Q 1=600cm 3·s -1.求(1)各管中的流速;(2)各管中的压强与大气压强之差.Pa 0Pa =⨯-⨯⨯⨯=-=-=--42232224420210)6060(100.121)(21v v ρp p p p 同理,Pa 0=-03p p .1.7将一半径为1.0mm 的钢球,轻轻放入装有甘油的缸中,当钢球的加速度是其自由落体加速度一半时,其速度是多少?钢球的最大速度是多少?钢球的密度为8.5×103kg·m -3,甘油的密度为1.32×103kg·m -3,甘油的粘度为0.83Pa·s.解:本题是关于斯托克斯定律的应用.钢球在甘油中下落,所受重力为g ρr mg 钢球3π34=,所受甘油的浮力为g ρr F 甘油浮3π34=,根据斯托克斯定律所受黏性阻力为v r ηF f 甘油π6=.根据牛顿第二定律F =ma ,钢球的加速度是其自由落体加速度的一半时,有mg ―F f ―F 浮=ma =mg /2,即解:本题是关于斯托克斯定律及雷诺数的应用.对下落雨滴进行受力分析,雨滴所受重力为ρg r mg 3π34=,所受空气的浮力为g ρr F 空气浮3π34=,根据斯托克斯定律,所受黏性阻力为v r ηF π6=f .当雨滴受到的空气黏性阻力加上空气对雨滴的浮力等于其受到的重力,雨滴将匀速下落,此时速度为终极速度,于是有ρg r g ρr r 33π34π34π6=+空气v η雨滴的终极速度为23223352m m kg sPa s m )10600()2911001(10818992)(92⨯⋅⨯⋅⋅⨯⨯⨯-⨯⨯⨯⨯==----.....-空气空气r ρρg ηv 11s m 1034--⋅⨯=.根据泊肃叶定律lηR p p Q V 8)π(421-=,得大动脉内单位长度上的压强差Pa 10092ms m m s Pa )10521(1431050110048π844134363421⨯=⋅⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===∆----.....-R lQ ηp p p V 根据圆管中实际流体的流速随半径的分布规律公式)(42221r R ηlp p --=v ,得轴心处(即r =0)血液流动速度为122334221s 04m 2m ms Pa Pa )10251(0110044100924---⋅=⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯=-=.....R ηl p p v第2章气体动理论2.1气体的平衡态有何特征?与力学中所指的平衡有什么不同?答:所谓平衡态是指系统与外界没有能量交换,内部也没有化学变化等形式的能量转化,系统的宏观性质不随时间变化.当气体处于平衡时,其状态的宏观参量值不随时间变化,即气体内部各部分具有相同的压强、密度和温度.热力学系统的平衡态与力学中所指的平衡是两个不同的概念.力学中的平衡平动动能也相等.(2)平均动能包括分子的平均平动动能、平均转动动能和平均振动动能,与每个分子的自由度数有关,为T k iB 2.氢气和氦气分子结构不同,则自由度数i 不相同,所以它们的平均动能不相等.(3)根据RT i M m 2,虽然温度T 和物质的量Mm相同,但氢和氦两种气体分子自由度i 不同,所以它们的内能不相等.2.4温度为27℃时,计算1mol 氮气的平均动能,平均转动动能和内能.解:本题是关于理想气体的能量均分定理及内能的应用.氮气分子是双原子分子,自由度为5,根据能量均分定理,其平均动能为23-120B 551.3810300J K K 1.0351022J--==⨯⨯⨯⨯⋅⨯=⨯w k T2.6将kg 10×83的氧气从10℃加热到20℃,求氧气的内能增加多少?解:本题是关于理想气体内能公式的应用.氧气分子是双原子分子,自由度为5,氧气的摩尔质量M =32×10-3kg·mol-1,根据理想气体内能公式RT iM m 2,可知氧气增加的内能[]J52mol kg K K mol J kg )10273()20273(31.8251032108211133=⋅⋅⋅⋅⨯⨯+-+⨯⨯⨯⨯⨯=∆=-----T R i m E M 2.7储有氮气的容器以速度-1200m sυ=⋅运动,假若该容器突然停止,气体的全部机械平动动能转化为气体的内能,这时气体的温度将会升高多少?(设氮气可看做理想气体.)解:设容器内氮气总质量为m ,则全部机械平动动能为0p (4)⎰∞2d )(υυf υ表示气体分子速率平方的平均值;(5)υυnf d )(表示单位体积内,分子速率在v ~v +d v 区间的分子数.2.9求在温度为27℃时氧气分子的平均速率、方均根速率以及最概然速率.解:本题是关于理想气体分子平均速率、方均根速率和最概然速率公式的应用.氧气的摩尔质量M =32×10-3kg·mol -1,温度T =(273+27)K=300K,可求得121113O s m 1044molkg KK mol J 10323.14300318882-----⋅⨯=⋅⨯⋅⋅⨯⨯⨯⨯⨯==6..M πRTv 121113O O 2s m 10834mol kg K K mol J 10323003183322-----⋅⨯=⋅⨯⋅⋅⨯⨯⨯⨯==..M RT v(1)按题给条件,速率分布函数是分段的.在F v v <<0速率区间,速率分布函数f (v )与v 2成正比;当F v v >时,速率分布函数f (v )为零.于是可画出速率分布函数曲线,如解题2.11图所示.(2)由归一化条件1=⎰∞d )(v v f ,有解题2.11图1===⎰⎰∞3F 0203d d )(Fv v v v v v A A f 得3F3v =A (3)根据最概然速率的定义,由图知,F p v v =.根据平均速率的定义式⎰∞=0d )(v v v v f ,得电子平均速率F F 033F 02075043d 3d A d )(FF v v v v v v v v v v v v v v .=====⎰⎰⎰∞f 根据方均速率的定义式⎰∞=022d )(v v v v f ,得电子速率平方平均值2F 043F 02202253d 3d A d )(FF v v v v v v v v v v v v v ====⎰⎰⎰∞f 所以,电子方均根速率为F F 27750515v v v .==第3章热力学基础3.1系统的温度升高是否一定要吸热?系统与外界不作任何热交换,而系统的温度发生变化,这种过程可能吗?答:系统的温度要升高不一定要吸热,外界对系统做功也可以使系统的温度升高;系统与外界不作任何热交换,而使系统的温度发生变化,这种过程是可能的,可以通过外界对系统做功或系统对外界做功来实现系统温度的变化.3.2(1)0.50kg 的水在大气压下用电热器加热,使水的温度自20℃缓慢的加热到30℃,试计算此水的内能的变化(水的比热容为3-1-14.1810J kg K⨯⋅⋅.)(2)一保温瓶里装有0.50kg、20℃的水,用力摇荡此瓶,使水的温度升高到30℃,初态及终态的压强均为大气压,试求水内能的变化及水所做的功.解:(1)在此过程中,等压地对水所加的热量为= t =0.5×4.18×10 ×10J =t.0 ×104J由于水的体积变化很小,故准静态过程的功A=0,依热力学第一定律有内能的变化= =t.0 ×104J (2)此过程不是准静态过程.但其始末状态与(1)相同,故内能变化与(1)相同,即= =t.0 ×104J由于系统被保温瓶所隔着,故无热量的传递,所以Q =0依 = + ,得水所做的功为=− =−t.0 ×104J3.3系统由习题 3.3图中的a 态沿abc 到达c 态时,吸收了400J 的热量,同时对外作150J 的功.(1)如果将沿adc 进行,则系统做功40J,问这时系统吸收了多少热量?(2)当系统由c 态沿着ca 返回a 态时,如果外界对系统做功80J,这时系统是吸热还是放热?热量传递时多少?习题 3.3图解:本题是关于热力学第一定律在准静态过程中的应用.根据热力学第一定律Q=△E+A,得a、b状态内能的变化△Eab =Eb-Ea=Qac b-Aac b=400J-150J=250J(1)对于adb过程,a、b状态相同,内能变化相同,根据热力学第一定律Q=△E+A,得此过程交换的热量为Qad b =△Eab+Aad b=250J+40J=290J(2)对于ba过程,由b→a,内能变化为负,即△Eba =Ea-Eb=150J-400J=-250J根据热力学第一定律Q=△E+A,得此过程交换的热量为Qba =△Eba+Aba=-250J-80J=-330J式中负号表示放热.3.41mol的氦气,在1atm、20℃时、体积为V.令使其经过一下两种过程达到同一状态;(1)先保持体积不变,加热,使其温度升高到80℃,然后令其做等温膨胀,体积变为原来的2倍.(2)先使其等温膨胀至原来体积的2倍,然后保持体积不变,加热到80℃.试分别计算上述两种过程中气体吸收的热量,气体对外所做的功和气体内能的增量.解:本题是关于热力学第一定律在准静态过程中的应用.依据题意,作出p-V图,如解题3.4图所示.图3.4abcd 四个状态(p ,V ,T ):a(1,V 0,T 1)b(p b ,V 0,T 2)c(p c ,2V 0,T 2)d(p d ,2V 0,T 1)T 1=293K,T 2=353K(1)先作等体升温(ab 过程),再作等温膨胀(bc 过程).①等体过程,氧气从热源吸取热量全部转化为系统内能的增加,做功为零,即121233d ()22T ab ab Tm m Q E R T R T T =∆==-⎰M M =1×t×8. 1× 5 −t ×mol ×J ∙mol −1∙K −1×K =香4香. J A ab =0②等温膨胀,氧气从热源吸取热量全部转化为对外做功,而内能不变,即11d d ln cbcc bc bc bbV A p V V ====⎰⎰V V V m mQ RT RT M M V =1×8. 1× 5 ×lnt ×mol ×J ∙mol −1∙K −1×K =t.0 ×10 J△E bc =0abc 过程吸取的热量为Q ab c =Q ab +Q bc =747.9J +2.03×103J =2.78×103Jabc 过程做的功为A ab c =A bc = 2.03×103Jabc 过程内能改变为△E ab c =△E ab =香4香. J(2)a →d 等温膨胀过程,氧气从热源吸取热量全部转化为对外做功,而内能不变,即22d d ln dadd ad ad aaV A p V V ====⎰⎰V V V m mQ RT RT M M V =1×8. 1×t ×lnt ×mol ×J ∙mol −1∙K −1×K =1. ×10 J△E dc =0习题 3.5图解:根据方程()00V V e p p -=,有9ln ln000c +=+=V p p V V c。
第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。
对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B 将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。
在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。
相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。
<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。
伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。
如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。
<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。
斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。
练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。
在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。
练习题1-6用图l d h d F hθ高线d hd m由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l °==该面积元上所受的水压力为 0d d d [(5)]sin 60hF p S p ρg h l°==+- 水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ¢=-,高度微元取法不变,即d d h h ¢=,将h ¢与d h ¢带入水坝压力积分公式,同样可解出水坝所受压力大小。
第四章 静电场本章提要1. 库仑定律两个静止的点电荷之间的作用力满足库仑定律,库仑定律的数学表达式为1212002204q q q q kr rπε==F r r 其中922910(N m /C )k =⨯⋅122-1-2018.8510(C N m )4k επ-==⨯⋅⋅2. 电场强度∙ 电场强度表示单位正电荷在静电场中所受的电场力。
其定义式为q =F E 其中,0q 为静止电荷。
∙ 在点电荷q 的电场中,电场强度为0204q r πε=E r3. 电场强度的计算∙ 点电荷系的电场N21014iii i q r πε==∑r 0E ∙ 电荷连续分布的带电体系的电场2 01d4qqrπε=⎰r E 0其中的积分遍及q 电荷分布的空间。
4. 高斯定理∙ 电通量电场强度通量简称电通量。
在电场强度为E 的某点附近取一个面元,规定S ∆=∆S n ,θ为E 与n 之间的夹角,通过S ∆的电通量定义为e cos E S θ∆ψ=∆=∆E S通过电场中某闭合曲面S 的电通量为d e sψ=⎰⎰E S∙ 高斯定理在真空中,通过电场中任意封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε。
即i 01d sq=∑⎰⎰E S 内ε使用高斯定理可以方便地计算具有对称性的电场分布。
5. 电势∙ 电势能电荷q 0在电场中某点a 所具有的电势能等于将q 0从该点移到无穷远处时电场力所作的功。
即0 d a a a W A q ∞∞==⎰E l∙ 电势电势是描述电场能的属性的物理量。
电场中某点a 的电势定义为0 d a a a U W q ∞==⎰E l∙ 电势的计算(1) 已知电场强度的分布,可通过电势的定义做场强的积分来计算电 势。
(2)若不知道电场强度的分布,可通过下述的求和或积分来计算电势: 点电荷系产生的电场中的电势为N104i a i iq U r πε==∑电荷连续分布的带电体系电场中的电势为0d4a qq U rπε=⎰6. 静电场的环路定理静电场的电场强度沿任意闭合路径的线积分为零,即 d lE l ∙=⎰07. 静电场对导体的作用∙ 导体的静电平衡导体中不发生任何电荷定向运动的状态称静电平衡状态。
第八章振动与波动本章提要1. 简谐振动的描述●物体在一定位置附近所作的无阻尼的等幅振动称简谐振动。
简谐振动的运动方程为cos()x A t ωϕ=+其中,A 为振幅、ω 为角频率、(ωt+ϕ)为简谐振动的相位, ϕ 为初相位。
●简谐振动的速度方程d sin()d x v A t tωωϕ==-+ ●简谐振动的加速度方程 222d cos()d x a A t tωωϕ==-+ ●简谐振动可用旋转矢量法表示。
2. 简谐振动的能量●若弹簧振子劲度系数为k ,振动物体的质量为m ,在某一时刻物体的位移为x ,振动速度为v ,则振动物体的动能为212k E mv =●弹簧振子的势能为 212p E kx =●弹簧振子的总能量为 222222P 111sin ()+cos ()=222k E E E m A t kA t kA ωωϕωϕ=+=++ 该结果表明,在简谐振动中,动能和势能不断转换(转换频率是位移变化频率的二倍),但总能量保持不变。
3. 阻尼振动如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,这种振动称阻尼振动。
阻尼振动的动力学方程为222d d 20d d x x x t tβω++= 其中,γ是阻尼系数,2m γβ=。
●当22ωβ>时,振子的运动是一个振幅随时间衰减的振动,称阻尼振动。
●当22ωβ=时,振动物体不再出现振荡,而是以负指数方式直接趋向平衡点,并静止下来,这种情况称临界阻尼。
●当22ωβ<时,振动物体也将不再出现振荡,而是以一种比临界阻尼过程更慢的方式趋于平衡点,这种情况称过阻尼。
4. 受迫振动●振动物体在周期性外力作用下发生的振动叫受迫振动。
受迫振动的运动方程为 22P 2d d 2cos d d x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
大学物理学高等教育出版社答案【篇一:大学物理下册 (程守诛) 高等教育出版社课后答案】/p> created by xch page 1 7/29/2009单元一简谐振动一、选择、填空题1.对一个作简谐振动的物体,下面哪种说法是正确的?【c】(a)物体处在运动正方向的端点时,速度和加速度都达到最大值;(b)物体位于平衡位置且向负方向运动时,速度和加速度都为零;(c)物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(d)物体处在负方向的端点时,速度最大,加速度为零。
2.一沿x轴作简谐振动的弹簧振子,振幅为a,周期为t,振动方程用余弦函数表示,如果该振子的初相为?34,则t=0时,质点的位置在:【d】(a)过a21x 大学物理下册 (程守诛) 高等教育出版社课后答案?处,向负方向运动;(b)过a21x?处,向正方向运动;(c)过a21x?处,向负方向运动;(d)过a21x?处,向正方向运动。
3.将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度 ?,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为:【b】(a)?;(b);(c)?/2;-?4.图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的?(?为固有圆频率)值之比为:【b】(a) 2:1:1;(b) 1:2:4;(c) 4:2:1;:1:25.一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的:【c】(a)竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(b)竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动;(c)两种情况都可作简谐振动;(d)两种情况都不能作简谐振动。
6.一谐振子作振幅为a的谐振动,它的动能与势能相等时,它的相位和坐标分别为:【c】)4(填空选择)5(填空选择《大学物理习题集》(下册)习题参考解答共 75 页created by xch page 2 7/29/2009a2332,3)d(;a22,4or,4)c(;a23,65,6)b(;a21,32or,3)a(????????????,????????7.如果外力按简谐振动的规律变化,但不等于振子的固有频率。