相似三角形辅助线
- 格式:doc
- 大小:682.50 KB
- 文档页数:4
相似三角形之常用辅助线在与相似有关得几何证明、计算得过程中,常常需要通过相似三角形,研究两条线段之间得比例关系,或者转移线段或角。
而有些时候,这样得相似三角形在问题中,并不就是十分明显、因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需得结论。
专题一、添加平行线构造“A"“X”型定理:平行于三角形一边得直线与其它两边(或两边延长线)相交,所构成得三角形与原三角形相似。
定理得基本图形:例1、平行四边形ABCD中,E为AB中点,AF:FD=1:2,求AG:GC变式练习:已知在△ABC中,AD就是∠BAC得平分线.求证:、(本题有多种解法,多想想)例2、如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若==2,求BE:EA得比值、变式练习:如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若错误!= 错误!=2,求BE:E A得比值。
例3、BE=AD,求证:EF·BC=AC·DF变式1、如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC得延长线相交于点F,证明:AB·DF=AC·EF。
例4、已知:如图,在△ABC中,AD为中线,E在AB上,AE=AC,CE交AD于F,EF∶FC=3∶5,EB=8cm,求AB、AC得长、变式:如图,,求。
(试用多种方法解)说明:此题充分展示了添加辅助线,构造相似形得方法与技巧.在解题中方法要灵活,思路要开阔.总结:(1)遇燕尾,作平行,构造字一般行。
(2)引平行线应注意以下几点:1)选点:一般选已知(或求证)中线段得比得前项或后项,在同一直线得线段得端点作为引平行线得EF EF EFEF点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形 一、基本图形例1、,,那么吗?试说明AC BD AC BC CA CD ⊥=⋅22理由?(用多种解法)v变式练习:平行四边形ABC D中,CE ⊥A E,CF ⊥AF,求证:A B·AE+AD ·AF=AC 2例2、如图,RtA BC 中,CD 为斜边AB 上得高,E 为CD 得中点,AE 得延长线交B C于F,FG AB 于G,求证:FG =CFBF【练习】1.如图,一直线与△ABC 得边AB,AC 及BC 得延长线分别交于D,E,F 。
高中几何添加辅助线的常用技巧
高中几何学习中,添加辅助线是解决许多问题的有效方法。
以下是几种常用的几何辅助线技巧:
1、平移辅助线:通过将线段或图形平移,将其移动到更方便处理的位置来简化问题。
比如,对于一条直线外一点的角平分线,我们可以通过平移这条直线,使该点与角的顶点重合,然后再画出该点到角两边的垂线,这样就可以得到角平分线。
2、垂线辅助线:通过向一条直线引垂线来解决问题。
比如,对于一条直线上一点到另一条直线的垂线,我们可以通过在该点处引垂线使两条直线相交,然后再利用垂线的性质来解题。
3、相似三角形辅助线:利用相似三角形的性质来解决问题。
比如,对于一条直线外一点到两条平行线的距离,我们可以利用相似三角形的性质,构造出一个相似三角形,然后利用相似三角形的对应边比相等的性质来求出所需的距离。
4、角平分线辅助线:通过构造角平分线来解决问题。
比如,对于一个三角形的内角平分线,我们可以通过构造该角的外角平分线,然后利用外角和内角的性质来求出该角的内角平分线。
5、中垂线辅助线:通过构造线段中点的垂线来解决问题。
比如,对于一个三角形的垂心,我们可以通过构造三角形三边的中垂线,然后利用中垂线的性质来求出垂心的位置。
这些技巧可以帮助学生更好地理解几何概念和解题思路,提高几何水平。
相似三角形解题方法、技巧、步骤、辅助线解析贵有恒何必三更眠五更起,最无益只怕一日曝十日寒。
一、相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础.二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要添加适当的辅助线,构造出基本图形,从而使问题得以解决三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例;3)若无对应角相等,则只考虑三组对应边是否成比例;1、已知一对等角①找另一角,两角对应相等,两三角形相似;②找夹边对应成比例,两边对应成比例且夹角相等,两三角形相似2、已知两边对应成比例①找夹角相等,两边对应成比例且夹角相等,两三角形相似;③找第三边也对应成比例,三边对应成比例,两三角形相似3、已知可能的一个直角三角形①找一个直角,斜边、直角边对应成比例,两个直角三角形相似;②找另一角,两角对应相等,两三角形相似③找两边对应成比例判定定理1或判定定理44、与等腰三角形有关的①找顶角对应相等判定定理1②找底角对应相等判定定理1③找底和腰对应成比例判定定理35、相似形的传递性若△1∽△2,△2∽△3,则△1∽3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
八年级上册数学几何辅助线经典题一、概述在数学几何学科中,辅助线是解决问题的重要方法之一。
在八年级上册数学教材中,有许多经典的数学几何辅助线题目,通过这些题目的练习,可以帮助学生更好地掌握辅助线的运用方法,提高解题能力。
本文将针对八年级上册数学几何辅助线经典题进行详细介绍和解析。
二、题目一:相似三角形的辅助线应用题目描述:如图所示,∠ABC=∠ACD=90°,AB=4cm,AC=6cm,CD=9cm,求AD的长度。
解析:根据题目给出的信息,我们可以通过绘制辅助线来解决这道题。
连接BD并延长至E点,使得BE=BC。
接下来,连接AE,可得到相似三角形ABE与ACD。
根据相似三角形的性质,我们可以得出以下等式:AB/AC=BE/AD,即4/6=4/(4+AD)。
通过解方程,可以求得AD=8cm。
三、题目二:三角形中的中位线问题题目描述:如图所示,△ABC中,D为AB的中点,E为AC的中点,连接DE,求证:DE//BC。
解析:这道题目考察了中位线的性质和应用。
根据△ABC的性质,可以得出AD=DC,AE=EB,通过连接DE可以得到四边形ADBE。
根据四边形的性质,可以得出ADBE是一个平行四边形,而平行四边形的对角线互相平分,因此DE//BC。
四、题目三:正方形中的选点问题题目描述:如图所示,ABCD为正方形,E为BC的中点,连接AE,求证:AE⊥CD。
解析:这道题目是典型的正方形中的选点问题。
首先根据正方形的性质可以得出AB⊥BC,BC⊥CD,AD⊥DC,因此AD//BC。
接下来连接AE,并可得到△ADE与△CDE,由△ADE≌△CDE,可得出AE⊥CD。
五、结语通过以上三道典型的数学几何辅助线经典题目的解析,我们可以看到辅助线在解决问题中的重要作用。
通过练习和掌握这些经典题目,不仅可以提高学生的数学运算能力,还可以加深对数学几何知识的理解。
希望学生能够在课堂上认真学习,多加练习,提高自己的解题能力,取得好成绩。
思维特训(十一) 相似三角形中的辅助线作法归类在添加辅助线时,所添加的辅助线往往能构造出一组或多组相似三角形,或得到成比例的线段,或得出等角、等边,从而为证明三角形相似或进行有关的计算找到等量关系. 作辅助线的方法主要有以下几种:(1)作平行线构造“A ”型或“X ”型相似;(2)作平行线转换线段比;(3)作垂直证明相似.图11-S -1类型一 作平行线构造“A ”型或“X ”型相似1.如图11-S -2,已知平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 延长线上一点,OE 交BC 于点F ,若AB =a ,BC =b ,BE =c ,求BF 的长.图11-S -22.如图11-S -3,在△ABC 中,AD 为BC 边上的中线,CF 为任一直线,CF 交AD 于点E ,交AB 于点F .求证:AE DE =2AF BF. 图11-S -33.在一节数学课上,老师出示了这样一个问题让学生探究:如图11-S -4,在△ABC中,D 是BA 延长线上一动点,点F 在BC 上,且CF BF =12,连接DF 交AC 于点E . (1)如图△,当E 恰为DF 的中点时,请求出AD AB的值; (2)如图△,当DE EF =a (a >0)时,请求出AD AB的值(用含a 的代数式表示). 思考片刻后,同学们纷纷表达自己的想法:甲:过点F 作FG △AB 交AC 于点G ,构造相似三角形解决问题;乙:过点F 作FG △AC 交AB 于点G ,构造相似三角形解决问题;丙:过点D 作DG △BC 交CA 的延长线于点G ,构造相似三角形解决问题. 老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问中AD AB的值. 图11-S -4类型二 作平行线转换线段的比4.如图11-S -5,B 为AC 的中点,E 为BD 的中点,求AF AE的值. 图11-S -55.如图11-S -6,已知等边三角形ABC ,D 为AC 边上的一动点,CD =nDA ,连接BD ,M 为线段BD 上一点,∠AMD =60°,连接AM 并延长交BC 于点E .(1)若n =1,则BE CE =______,BM DM=______; (2)若n =2,如图△,求证:BM =6DM ;(3)当n =________时,M 为BD 的中点(直接写出结果,不要求证明).图11-S -66.2019·朝阳 已知:如图11-S -7,在△ABC 中,点D 在AB 上,E 是BC 的延长线上一点,且AD =CE ,连接DE 交AC 于点F .(1)猜想证明:如图△,在△ABC 中,若AB =BC ,学生们发现:DF =EF .下面是两位学生的证明思路:思路1:过点D 作DG △BC ,交AC 于点G ,可通过证△DFG △△EFC 得出结论;思路2:过点E 作EH △AB ,交AC 的延长线于点H ,可通过证△ADF △△HEF 得出结论. 请你参考上面的思路,证明DF =EF (只用一种方法证明即可).(2)类比探究:在(1)的条件下(如图△),过点D 作DM △AC 于点M ,试探究线段AM ,MF ,FC 之间满足的数量关系,并证明你的结论.(3)延伸拓展:如图△,在△ABC 中,若AB =AC ,∠ABC =2△BAC ,AB BC=m ,请你用尺规作图在图△中作出AD 的垂直平分线交AC 于点N (不写作法,只保留作图痕迹),并用含m的代数式直接表示FN AC的值. 图11-S -7类型三 作垂直证相似7.如图11-S -8,在△ABC 中,∠C =90°,D 为边AB 的中点,M ,N 分别为边AC ,CB 上的点,且DM ⊥DN .(1)求证:DM DN =BC AC; (2)若BC =6,AC =8, CM =5,直接写出CN 的长.图11-S -88.如图11-S -9,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连接AD . 问题引入:(1)如图△,当D 是BC 边的中点时,S △ABD ∶S △ABC =________;当D 是BC 边上任意一点时,S △ABD ∶S △ABC =________(用图中已有线段表示).探索研究:(2)如图△,在△ABC 中,O 是线段AD 上一点(不与点A ,D 重合),连接BO ,CO ,试猜想S △BOC 与S △ABC 之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图△,O 是线段AD 上一点(不与点A ,D 重合),连接BO 并延长交AC 于点F ,连接CO 并延长交AB 于点E .试猜想OD AD +OE CE +OF BF的值,并说明理由. 图11-S -99.如图11-S -10,已知一个直角三角形纸片ACB ,其中,∠ACB =90°,AC =4,BC =3,E ,F 分别是AC ,AB 边上的点,连接EF .(1)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且S 四边形ECBF =3S △EDF ,则AE =________;(2)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且MF △CA ,求EF 的长;(3)如图△,若FE 的延长线与BC 的延长线相交于点N ,CN =1,CE =47,求AF BF的值. 图11-S -10详解详析1.解:如图,过点O 作OM △BC 交AB 于点M .∵O 是AC 的中点,OM ∥BC ,∴M 是AB 的中点,即MB =12a , ∴OM 是△ABC 的中位线,OM =12BC =12b . ∵OM ∥BC ,∴△BEF ∽△MEO ,∴BF MO =BE ME , 即BF 12b =c a 2+c ,∴BF =bc a +2c . 2.证明:如图,过点D 作DG △CF 交AB 于点G .∵DG ∥CF ,D 为BC 的中点,∴G 为BF 的中点,FG =BG =12BF . ∵EF ∥DG ,∴AE DE =AF GF =AF 12BF =2AF BF . 3.解:(1)甲同学的想法:如图△,过点F 作FG △AB 交AC 于点G ,∴△AED ∽△GEF ,∴AD GF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =GF .∵FG ∥AB ,∴△CGF ∽△CAB ,∴GF AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =GF AB =CF CB =13. 乙同学的想法:如图△,过点F 作FG △AC 交AB 于点G ,∴AD AG =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =AG .∵FG ∥AC ,∴AG AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =AG AB =CF CB =13. 丙同学的想法:如图③,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴GD =CF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC .∵CF BF =12,∴CF BC =13. ∴AD AB =DG BC =CF BC =13. (2)如图△,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵DE EF =a ,∴ED =aEF , ∴DG =aCF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC . ∵CF BF =12,∴CF BC =13,即BC =3CF . ∴AD AB =DG BC =aCF 3CF =a 3. 4.解:取CF 的中点G ,连接BG .∵B 为AC 的中点,∴BG AF =12,且BG △AF . 又E 为BD 的中点,∴F 为DG 的中点,△EF BG =12,∴EF AF =14, ∴AF AE =43. 5.解:(1)当n =1时,CD =DA .∵△ABC 是等边三角形,∴BD ⊥AC ,∠BAC =60°,∴∠ADM =90°.又△△AMD =60°,∴∠MAD =30°,∴∠BAE =△BAC -△MAD =30°,即△BAE =△EAD ,∴AE 为△ABC 的中线,∴BE CE=1. 在△AMD 中,DM =12AM (30°角所对的直角边等于斜边的一半). ∵∠BAM =△ABM =30°,∴AM =BM ,∴BM DM=2. (2)证明:△△AMD =△ABD +△BAE =60°,∠CAE +△BAE =60°,∴∠ABD =△CAE .又△BA =AC ,∠BAD =△ACE =60°,∴△BAD △△ACE (ASA),∴AD =CE ,∴CD =BE .如图,过点C 作CF △BD 交AE 的延长线于点F ,∴FC BM =CE BE =AD CD =12①,DM FC =AD AC =13②,由△×△得DM BM =16,∴BM =6DM . (3)△M 为BD 的中点,∴BM =MD .∵△BAD ≌△ACE ,∴AD =CE ,∴CD =BE .∵△AMD ∽△ACE ,△BME ∽△BCD ,△AD AE =MD CE ,BM BC =ME CD, ∴AD =MD ·AE CE ③,CD =BC ·ME BM④, 由△×△得CD =5-12DA ,∴n =5-12. 6.解:(1)思路1:如图△,过点D 作DG △BC ,交AC 于点G .∵AB =BC ,∴∠A =△BCA .∵DG ∥BC ,∴∠DGA =△BCA ,∠DGF =△ECF ,∴∠A =△DGA ,∴DA =DG .∵AD =CE ,∴DG =CE .又△△DFG =△EFC ,∴△DFG ≌△EFC ,∴DF =EF .思路2:如图△,过点E 作EH △AB ,交AC 的延长线于点H .∵AB =BC ,∴∠A =△BCA .∵EH ∥AB ,∴∠A =△H .∵∠ECH =△BCA ,∴∠H =△ECH ,∴CE =EH .∵AD =CE ,∴AD =EH .又△△AFD =△HFE ,∴△DF A ≌△EFH ,∴DF =EF .(2)结论:MF =AM +FC .证明:如图△,由思路1可知:DA =DG ,△DFG ≌△EFC ,∴FG =FC .∵DM ⊥AG ,∴AM =GM .∵MF =FG +GM ,∴MF =AM +FC .(3)AD 的垂直平分线交AC 于点N ,如图△所示.连接DN ,过点D 作DG △CE 交AC 于点G .设DG =a ,BC =b ,则AB =AC =mb ,AD =AG =ma .∵∠ABC =2△BAC ,设△BAC =x ,则△B =△ACB =2x ,∴5x =180°,∴x =36°,∴∠A =36°. ∵NA =ND ,∴∠A =△ADN =36°.∵∠ADG =△B =72°,∴∠NDG =△A =36°.又△△DGN =△AGD ,∴△GDN ∽△GAD ,∴DG 2=GN ·GA .易知DG =DN =AN =a ,∴a 2=(ma -a )·ma ,两边同除以a ,得m 2a -ma -a =0. ∵DG ∥CE ,∴DG ∶CE =FG △FC =DG △DA =1△m .∵CG =mb -ma ,∴FG =1m +1·m (b -a ), ∴FN =GN +FG =ma -a +1m +1m (b -a )=m 2a -a +mb -ma m +1=mb m +1, ∴FN AC =mbm +1mb =1m +1. 7.解:(1)证明:如图,过点D 作DP △BC 于点P ,DQ ⊥AC 于点Q ,∴∠DQM =△DPN =90°.又△△C =90°,∴四边形CPDQ 为矩形,∴∠QDP =90°,即△MDQ +△MDP =90°. ∵DM ⊥DN ,∴∠MDN =90°,即△MDP +△NDP =90°,∴∠MDQ =△NDP ,∴△DMQ ∽△DNP ,∴DM DN =DQ DP. ∵D 为AB 的中点,DQ ∥BC ,DP ∥AC ,∴DQ =12BC ,DP =12AC ,∴DQ DP =BC AC ,∴DM DN=BC AC. (2)由题意得AQ =CQ =4,MQ =CM -CQ =5-4=1,DQ =12BC =3,DP =12AC =4. ∵△DMQ ∽△DNP ,∴MQ NP =DQ DP ,∴NP =43. 又CP =PB =3,∴CN =3-43=53. 8.解:(1)1△2 BD △BC(2)猜想S △BOC 与S △ABC 之比应该等于OD △AD .理由:如图,分别过点O ,A 作BC 的垂线OE ,AF ,垂足分别为E ,F ,∴OE ∥AF ,∴OD ∶AD =OE △AF .∵S △BOC =12BC ·OE ,S △ABC =12BC ·AF , ∴S △BOC ∶S △ABC =⎝⎛⎭⎫12BC ·OE ∶⎝⎛⎭⎫12BC ·AF =OE △AF =OD △AD . (3)猜想OD AD +OE CE +OF BF的值是1.理由如下: 由(2)可知:OD AD +OE CE +OF BF =S △BOC S △ABC +S △BOA S △ABC +S △AOC S △ABC =S △BOC +S △BOA +S △AOC S △ABC =S △ABC S △ABC=1. 9.解:(1)△将△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S △ABC =4S △AEF .在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =3,∴AB =5.∵∠EAF =△BAC ,∴Rt △AEF ∽Rt △ABC ,∴S △AEF S △ABC =(AE AB)2,即(AE 5)2=14,∴AE =2.5. (2)连接AM 交EF 于点O ,如图△,∵将△ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,∴AE =EM ,AF =MF ,∠AFE =∠MFE .∵MF ∥CA ,∴∠AEF =△MFE ,∴∠AEF =△AFE ,∴AE =AF ,∴AE =EM =MF =AF ,∴四边形AEMF 为菱形.设AE =x ,则EM =x ,CE =4-x .∵四边形AEMF 为菱形,∴EM ∥AB ,∴△CME ∽△CBA ,∴CM CB =CE CA =EM AB, 即CM 3=4-x 4=x 5,解得x =209,CM =43. 在Rt △ACM 中,AM =AC 2+CM 2=4103. ∵S 菱形AEMF =12EF ·AM =AE ·CM , ∴EF =2×43×2094103=4109. (3)如图△,过点F 作FH △BC 于点H ,∵EC ∥FH ,∴△NCE ∽△NHF , ∴CN ∶NH =CE △FH ,即1△NH =47∶FH ,∴FH ∶NH =4△7. 设FH =4x ,NH =7x ,则CH =7x -1,BH =3-(7x -1)=4-7x .∵FH ∥AC ,∴△BFH ∽△BAC ,∴BH ∶BC =FH △AC ,即(4-7x )△3=4x △4,解得x =0.4,∴FH =4x =85,BH =4-7x =65.第11页/共11页 在Rt △BFH 中,BF =(65)2+(85)2=2, ∴AF =AB -BF =5-2=3,∴AF BF =32.。
相似三角形(模型-辅助线)一、本章概述相似作为几何学习的一个重要内容,大量的出现在中考试卷中,它与勾股定理和锐角三角形函数并列为初中几何计算三大工具。
本章重点讲解相似的几个模型,如A字形,8字形,一线三等角等模型。
二、知识回顾1、图形的相似(1)相似图形:形状相同的图形叫做相似图形(2)相似多边形:对应角相等,对应边的比相等。
相似多边形对应边的比为相似比。
2.相似三角形(3)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
(4)相似三角形的判定①预备定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等。
②判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
③传递性定理:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(5)相似三角形的性质①相似三角形的对应角相等,对应边成比例②相似三角形的周长的比等于相似比;对应线段的比等于相似比;面积比等于相似比的平方。
3.位似(6)多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心。
(7)在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。
1.相似基本模型一、本节概述本节重点讲解“A”字形和“8”字形的应用和构造方法,这两个模型是相似三角形中最为基础的两个模型,但应用十分广泛。
1.“A”字形相似2. ”8”字形相似二、典例精析能力目标:1.熟练掌握正A型相似和正8型相似模型:2.借助平行线构造正A型相似和正8型相似模型解决相关问题。
【例1】已知:图下图,AD(1)若E为AD的中点,射线CE交AB于F,则(2)若E为AD上一点,且,射线CE交AB于F,则思维探究:方法一:通过平行线构造相似解析:过A点作A P//BC交CF于点P,“8”字模型A P CD方法二:过A作A H//CF交BC延长线于H,则方法三:作DK//CF交AB于K,则方法四:作DM//AB交CF于M,则AF=DM,( 2 ) 构造平行线,通过线段比解决问题作B P//AD交CF于点P,大家可尝试过其他点作平行线,解答中用了A点和D点,其它的同学们自己尝试。
相似三角形解题方法、技巧、步骤、辅助线解析一、相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形 (1)三角形相似的条件:① ;② ;③ . 三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似 找夹角相等 两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理1或判定定理4 找顶角对应相等 判定定理1a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
相似三角形的判定方法总结相似三角形是指具有相同形状但不一定相等的三角形,它们对应角相等,对应边成比例。
相似三角形的判定方法是数学中的重要知识点,下面将对相似三角形的判定方法进行总结。
一、AA判定法AA判定法是指当两个三角形的两个对应角分别相等时,这两个三角形相似。
具体来说,如果两个三角形有两对对应角相等,则这两个三角形相似。
这是由于相等的对应角可以确定相似三角形的对应边成比例。
二、SAS判定法SAS判定法是指当两个三角形的一个对应边成比例,同时夹在这两个边之间的两个对应角分别相等时,这两个三角形相似。
具体说来,如果两个三角形有一个对应边成比例,且夹在这两个边之间的两个对应角分别相等,则这两个三角形相似。
三、SSS判定法SSS判定法是指当两个三角形的三对对应边成比例时,这两个三角形相似。
具体说来,如果两个三角形的三对对应边长度成比例,则这两个三角形相似。
四、辅助线法辅助线法是指通过引入辅助线,使得两个三角形之间存在相等的对应角或对应边长度成比例的关系来判定相似。
常用的辅助线有角平分线、中位线、高、垂线等。
五、等角三角形判定法等角三角形是指拥有相同大小的三个角的三角形,对应的边长成比例。
如果两个三角形中有一个角相等,且另两个角分别相等,则这两个三角形相似。
六、勾股定理及其逆定理勾股定理及其逆定理也可以用来判定两个三角形是否相似。
勾股定理指出若两个三角形的两条直角边比例相等,则这两个三角形相似;逆定理则指出若两个三角形相似,则它们的两条直角边比例相等。
七、相似三角形的性质相似三角形具有一些特殊的性质,包括对应角相等、对应边成比例、周长比例相等、面积比例相等等。
通过以上总结,我们可以看到不同的判定方法适用于不同的情况。
在解决问题时,我们可以根据已知条件选择合适的判定方法,从而得出结论。
熟练掌握相似三角形的判定方法,对于解决相关的几何问题具有重要的指导意义。
高中立体几何辅助线技巧简述高中立体几何是数学中的一门重要分支,它主要研究空间中各种几何体的性质和相互关系。
在解决立体几何问题时,辅助线技巧是非常实用的工具。
通过巧妙地引入辅助线,可以简化问题的解决过程,提高解题效率。
本文将简要介绍一些常用的高中立体几何辅助线技巧,帮助读者更好地理解和应用这些方法。
一、平行线辅助线技巧在解决与平行线相关的立体几何问题时,可以尝试通过引入平行线辅助线来简化问题。
具体而言,可以考虑以下两种情况:1. 使用平行线比例关系当需要求解立体几何体的长度比或面积比时,可以尝试通过引入平行线辅助线来构造相应的比例关系。
在求解平行四边形的面积比时,可以通过连接对角线,将平行四边形分割成两个三角形,从而利用三角形面积公式求解面积比。
2. 使用平行线截线关系当需要求解立体几何体内部的长度或角度关系时,可以考虑通过引入平行线截线关系来简化问题。
在求解空间中两条直线的夹角时,可以通过引入一条与之平行的辅助线,从而将问题转化为求解两条平行线与辅助线的夹角,利用平行线夹角定理求解出所需的夹角值。
二、相似三角形辅助线技巧在解决与相似三角形相关的立体几何问题时,可以尝试通过引入相似三角形辅助线来简化问题。
具体而言,可以考虑以下两种情况:1. 使用相似三角形比例关系当需要求解立体几何体的长度比或面积比时,可以尝试通过引入相似三角形辅助线来构造相应的比例关系。
在求解棱锥的体积或表面积比时,可以通过在棱锥中引入一条高线,构造出两个相似三角形,从而利用相似三角形的边比关系求解出所需的比例值。
2. 使用相似三角形角度关系当需要求解立体几何体内部的角度关系时,可以尝试通过引入相似三角形辅助线来简化问题。
在求解棱锥的顶角时,可以通过在棱锥中引入一条高线,构造出一个与之相似的三角形,从而将该问题转化为求解相似三角形的对应角度关系,进而得到所需的顶角值。
三、垂线辅助线技巧在解决与垂线相关的立体几何问题时,可以尝试通过引入垂线辅助线来简化问题。
1相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:① ;② ;③ 。
二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决。
三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2a )已知一对b)己知两边对应成c)己知一个2找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e )相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
例1、已知:如图,ΔABC 中,CE ⊥AB ,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的 平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗? 说明理由。
相似三角形添加辅助线的方法举例1.垂直角辅助线:当三角形中存在垂直角时,我们可以通过添加一条垂直角辅助线来将问题简化。
例如,在一个直角三角形中,我们可以通过从直角顶点到斜边的任意一点画一条垂直辅助线,这样可以将原问题转化为两个相似的直角三角形的求解。
2.中位线辅助线:在一个任意三角形中,我们可以通过连接每个顶点与对边中点的线段来得到三条中位线。
这些中位线的交点被称为三角形的重心。
通过画三角形重心与其他顶点的连线,可以将原问题转化为多个相似的三角形的求解。
3.等角辅助线:当我们需要证明两个三角形相似时,可以通过添加等角辅助线来帮助我们得到一些相等的角度。
例如,在两个直角三角形中,如果我们能找到一个等角辅助线使得两个直角形成的角相等,那么我们可以推断这两个三角形相似。
4.比例辅助线:当我们需要求解相似三角形的长边与短边的比例时,可以利用比例辅助线。
例如,在两个相似三角形中,我们可以通过添加比例辅助线,将两个相似三角形分割成若干个相似的小三角形,并且利用小三角形的边长比例来求解长边与短边的比例关系。
5.平行辅助线:当我们需要证明两个三角形相似时,可以通过添加平行辅助线来帮助我们得到一些对应边平行的关系。
例如,在两个直角三角形中,如果我们能找到一条边使得它与另一个直角三角形的对边平行,那么我们可以推断这两个三角形相似。
以上是一些常见的相似三角形添加辅助线的方法,它们可以帮助我们更好地理解问题、简化问题以及找到解决问题的方法。
在实际解题过程中,根据问题的不同,我们可以选择适合的辅助线方法来解决问题。
相似三角形添加辅助线的方法举例例 1: 已知:如图,△ ABC 中, AB = AC , BD ⊥ AC 于 D .求证: BC 2= 2CD · AC .ADBC例 2.已知梯形 ABCD 中, AD // BC , BC 3AD , E 是腰 AB 上的一点,连结CE( 1)如果 CEAB , AB CD , BE 3AE ,求B 的度数;( 2)设 BCE 和四边形 AECD 的面积分别为S 1 和 S 2 ,且 2S 1 3S 2 ,试求BE的值AE例 3.如图 4-1,已知平行四边AF1ADABCD 中, E 是 AB 的中点,3,连 E 、F 交 AC 于 G .求 AG : AC的值.例4、如图 4—5, B 为 AC 的中点, E 为 BD 的中点,则 AF:AE=___________.例 5、如图 4-7,已知平行四边形ABCD 中,对角线AC、 BD 交于 O 点, E 为 AB 延长线上一点,OE 交 BC 于F,若 AB=a, BC=b, BE=c,求 BF 的长.AB BD例 6、已知在△ ABC 中, AD 是∠ BAC的平分线.求证:AC CD .相似三角形添加辅助线的方法举例答案例 1: 已知:如图,△ ABC 中, AB = AC , BD ⊥ AC 于 D .求证: BC 2= 2CD · AC .分析: 欲证 BC 2= 2CD ·AC ,只需证BCAC.但因为结论中有“2”,无法2CDBC直接找到它们所在的相似三角形,因此需要结合图形特点及结论形式,通过添加辅助线,对其中某一线段进行倍、 分变形, 构造出单一线段后, 再证明三角形相似. 由 “ 2”所放的位置不同,证法也不同.证法一 (构造 2CD ):如图,在 AC 截取 DE = DC , ∵ BD ⊥ AC 于 D ,∴ BD 是线段 CE 的垂直平分线, ∴ BC=BE ,∴∠ C=∠ BEC , 又∵ AB = AC , ∴∠ C=∠ ABC .∴ △BCE ∽△ ACB .∴ BCAC , ∴ BCAC BCEBC2CDBC∴ BC 2= 2CD · AC .证法二 (构造 2AC ):如图,在 CA 的延长线上截取 AE = AC ,连结 BE , ∵ AB = AC ,∴ AB=AC=AE . ∴∠ EBC=90°,又∵BD ⊥ AC .∴∠ EBC=∠ BDC=∠ EDB=90°, ∴∠ E=∠ DBC , ∴△ EBC ∽△ BDC∴ BCCE 即 BC 2 ACCDBC CDBC∴ BC 2= 2CD · AC .1BC ) :如图,取1BC .证法三 (构造 BC 的中点 E ,连结 AE ,则 EC= 22又∵ AB=AC ,∴ AE ⊥BC ,∠ ACE=∠ C ∴∠ AEC=∠ BDC=90°∴△ ACE ∽△ BCD .ADB CAEDCEADBCA∴ CE1BCAC . AC即 2CDBC CDBCDBEC∴ BC 2=2CD · AC .1BC ):如图,取1BC .证法四 (构造 BC 中点 E ,连结 DE ,则 CE= 22A∵ BD ⊥ AC ,∴ BE=EC=EB , ∴∠ EDC=∠ CD∴ BCAC J 即 BC AC .CDEC CD1BC2∴ BC 2= 2CD · AC .说明: 此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔.例 2.已知梯形 ABCD 中, AD // BC , BC 3AD , E 是腰 AB 上的一点,连结 CE( 1)如果 CEAB , ABCD , BE3AE ,求 B 的度数;( 2)设 BCE 和四边形 AECD 的面积分别为S 和 S ,且 2S 1 3S 2 ,试求BE的值12AE( 1)设 AEk ,则 BE 3k解法 1 如图,延长 BA 、CD 交于点 FAD // BC , BC 3AD , BF 3AF AF 2k , E 为 BF 的中点又 CE BF BC CF ,又 CF BFB C F 为等边三角形 故 B 60解法 2如图作 DF // AB 分别交 CE 、 CB 于点 G 、 F 则 CE DF ,得平行四边形 ABFD 同解法 1 可证得 CDF 为等边三角形故 B1 60 解法 3如图作 AF // EC 交 CD 于 G ,交 BC 的延长线于 F作 GI // AB ,分别交 CE 、 BC 于点 H 、 I 则 CE GI ,得矩形 AEHGBC BE ,AF // CE 3又 BC 3AD CF AD ,故 G 为 CD 、 AF 的中点以下同解法 1 可得CGI 是等边三角形故B 1 60解法 4如图,作 AF // CD ,交 BC 于 F ,作 FG // CE ,交 AB 于 G ,得平行四边形AFCD ,且 FG AB 读者可自行证得ABF 是等边三角形,故 B 60解法 5如图延长 CE 、 DA 交于点 F ,作 AG // CD ,分别交BC 、 CE 于点 G 、 H ,得平行四边形 AGCD 可证得 A 为 FD 的中点,则 AH2k ,故 160得 ABG 为等边三角形,故B60解法 6 如图(补形法),读者可自行证明CDF 是等边三角形,得B F 60(注:此外可用三角形相似、等腰三角形三线合和一、等积法等)( 2)设S BCE3S,则 S四边形AECD2S解法 1(补形法)如图补成平行四边形ABCF ,连结 AC ,则 DF 2AD设SACD x ,则 S ACE2S x, S CDF 2x由SABC S ACF得,3s2s x x 2x , x 5 s4SACE2s x 3 s BE S4AE S BCEACE3s43s解法 2(补形法)如图,延长BA 、 CD 交于点 F ,SS FADABC191SFADSFAD8S梯形ABCD5sSFAD 5s , S FEC5s 2s21s ,又S EBC3s 888EF SFBC7BE SBEC8设 BE8m,则 EF7m , BF15m , AF 5mAE2m,BE4 AE解法 3(补形法)如图连结 AC ,作 DF // AC 交 BA 延长线于点F 连结 FC则FAD ∽ABC ,故 AB 3AF (1)SACD SACF,S四边形AECDSFECBE S BEC S BCE3EF S FEC S四边形AECD2故 2BE 3EF 3( AE AF ) 3AE 3AF (2)由( 1 )、( 2)两式得BE4AE即BE4 AE解法 4(割补法)如图6连结 A 与 CD 的中点 F并延长交 BC 延长线于点 G ,如图,过 E 、 A 分别作高h1、h2,则 CG AD且S四边形AECD S四边形AECG,SABGS梯形ABCD5s3S 5S EBCABG1BC h1BC3 2,又1BG h2BG4 2h1 4 ,BE 4 ,故 BE4h25AB5AE说明本题综合考查了等腰三角形的性质,相似三角形的判定和性质,解题关键是作辅助线,构造相似三角形 .例.如图,已知平行四边中,是AF 1AD、交于.求:34-1ABCD E AB 的中点,3,连ACE F G AG AC的值.解法 1:延长 FE交 CB的延长线于H,∵四边形 ABCD是平行四边形,∴AD// BC ,∴∠H=∠ AFE,∠ DAB=∠ HBE 又AE=EB,∴△AEF≌△ BEH,即 AF=BH,AF 1AD AF1 BCAF 1 CH∵3,∴3,即4.∵AD∥ CH,∠ AGF=∠ CGH,∠ AFG=∠BHE,∴△ AFG∽△ CGH.∴AG: GC=AF: CH,∴AG: GC=1: 4,∴ AG: AC=1: 5.解法 2:如图4—2,延长EF与CD的延长线交于M ,由平行四边形ABCD可知,AB//DC,即 AB∥ MC,AF 1ADAF: FD=1:2,∴AF: FD=AE: MD , AG: GC=AE: MC.∵3,∴∴AE: MD=1 :2.AE 1AB 1 DC∵22.∴AE:MC=1: 4,即 AG: GC=1: 4,∴AG: AC=1: 5例4、如图 4—5, B 为 AC 的中点, E 为 BD 的中点,则 AF:AE=___________.解析:取CF的中点 G,连接 BG.∵ B 为 AC的中点,∴BG:AF=1:2,且 BG∥ AF,又 E 为 BD 的中点,∴ F 为 DG 的中点.∴EF: BG=1: 2.故EF: AF=1: 4,∴ AF: AE=4: 3.例 5、如图 4-7,已知平行四边形ABCD 中,对角线AC、 BD 交于 O 点, E 为 AB 延长线上一点,OE 交 BC 于F,若 AB=a, BC=b, BE=c,求 BF 的长.解法 1:过O点作OM∥ CB交AB于M,∵O 是 AC 中点, OM ∥CB,MB 1 a∴M 是 AB 的中点,即2,OM 是△ ABC的中位线,OM1BC 1 b∴2 2 ,且OM ∥ BC,∠ EFB=∠EOM,∠ EBF=∠EMO.BF BE∴△ BEF∽△ MOE,∴OM EM ,BF c1 b a c bcBF即 22,∴ a 2c .解法 2:如图 4-8,延长 EO 与 AD 交于点 G,则可得△ AOG≌△ COF,BF BE BF c∴ AG=FC=b-BF,∵BF∥ AG,∴AG AE .即 b BF a c ,BF c BF bc2c .∵b a 2c∴aBF BE解法 3:延长 EO与 CD的延长线相交于N,则△ BEF与△ CNF的对应边成比例,即CF CN .BF bca 2c .解得AB BD例 6、已知在△ ABC 中, AD 是∠ BAC的平分线.求证:AC CD .分析 1比例线段常由平行线而产生,因而研究比例线段问题,常应注意平行线的作用,在没有平行线时,可以添加平行线而促成比例线段的产生.此题中AD 为△ ABC 内角 A 的平分线,这里不存在平行线,于是可考虑过定点作某定直线的平行线,添加了这样的辅助线后,就可以利用平行关系找出相应的比例线段,再比较所证的比例式与这个比例式的关系,去探求问题的解决.证法 1:如图 4—9,过 C点作 CE∥ AD,交 BA 的延长线于 E.BD BA在△ BCE中,∵DA∥ CE,∴DC AE①又∵CE∥ AD,∴∠1=∠ 3,∠ 2=∠ 4,且 AD 平分∠ BAC,∵∠ 1=∠2,于是∠ 3=∠ 4,BD AB∴AC=AE.代入②式得DC AC .证法 2:如图4—10,过D作DE∥ AC交AB于E,则∠ 2=∠ 3.∵∠ 1=∠2,∴∠ 1=∠ 3.于是 EA=ED.BE BD AB BE BE AB BD又∵ EA DC ,∴AC ED EA ,∴AC CD .分析 3欲证式子左边为AB:AC,而 AB、AC不在同一直线上,又不平行,故考虑将AB 转移到与 AC 平行的位置.证法 3:如图4—11,过B作BE∥ AC,交AD的延长线于E,则∠ 2=∠ E.∵∠ 1=∠2,∴∠ 1=∠ E,AB=BE.BD BE AB BD又∵ DC AC ,∴AC CD .分析 4由于 AD 是∠ BAC的平分线,故可过 D 分别作 AB、 AC 的平行线,构造相似三角形求证.证法 4如图 4—12,过 D 点作 DE∥ AC 交 AB 于 E, DF∥ AB 交 AC 于 F.易证四边形AEDF是菱形.则DE=DF.BD BE BE由△ BDE∽△ DFC,得DC DF DE .BE AB AB BD 又∵ DE AC ,∴AC DC .。
相似证明方法在数学和科学研究中,证明两个对象或现象相似的方法是非常重要的。
相似性的证明可以帮助我们理解事物之间的关联,推断出新的结论,甚至指导我们解决实际问题。
本文将介绍几种常见的相似证明方法,帮助读者更好地理解和运用相似性的概念。
一、比例法。
比例法是证明两个对象或现象相似的常用方法之一。
当我们需要证明两个图形相似时,可以通过比较它们对应边的比例来进行证明。
例如,对于两个三角形ABC和DEF,如果它们的对应边长之比相等,即AB/DE=BC/EF=AC/DF,那么可以得出这两个三角形是相似的。
比例法的优点是简单直观,容易理解和应用,适用于各种类型的图形。
二、角度法。
角度法是另一种常见的相似证明方法。
在证明两个三角形相似时,我们可以通过比较它们的对应角度来进行证明。
如果两个三角形的对应角相等,即角A等于角D,角B等于角E,角C等于角F,那么可以得出这两个三角形是相似的。
角度法的优点是适用范围广,不仅适用于三角形,也适用于其他类型的图形。
三、辅助线法。
辅助线法是在证明图形相似时常用的方法之一。
通过引入辅助线,我们可以将原来的图形分解成若干个简单的几何图形,从而更容易进行相似性的证明。
例如,在证明两个三角形相似时,我们可以通过引入垂直平分线、中位线等辅助线,将原来的三角形分解成若干个全等的三角形,从而得出它们是相似的结论。
辅助线法的优点是能够简化证明过程,使证明更直观、更易理解。
四、比较法。
比较法是在证明两个对象或现象相似时常用的方法之一。
通过比较它们的性质、特征、规律等,我们可以得出它们之间的相似性。
例如,在证明两个函数相似时,我们可以比较它们的定义域、值域、增减性、奇偶性等性质,从而得出它们是相似的结论。
比较法的优点是灵活多样,适用于各种类型的对象或现象。
五、数学归纳法。
数学归纳法是在证明一类对象或现象相似时常用的方法之一。
通过证明某个基本情况成立,并假设对于任意n都成立,然后证明n+1也成立,从而得出结论。
相似三角形中的辅助线:
在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。
主要的辅助线有以下几种:
○
1作平行线 例题:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的
中点,求:BE :EF 的值.
解法一:过点D 作CA 的平行线交BF 于点P ,则
∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1.
解法二:过点D 作BF 的平行线交AC 于点Q ,
∴BE :EF=5:1.
解法三:过点E 作BC 的平行线交AC 于点S ,
解法四:过点E 作AC 的平行线交BC 于点T , ∵BD=2DC ∴ ∴BE :EF=5:1.
练习:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的
中点, 连结BE 并延长交AC 于F,
求AF :CF 的值.(答案2:3)
解法一:过点D 作CA 的平行线交BF 于点P ,
解法二:过点D 作BF 的平行线交AC 于点Q ,
解法三:过点E 作BC 的平行线交AC 于点S ,
解法四:过点E 作AC 的平行线交BC 于点T ,
,1==AE DE FE PE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DC BC DQ BF ,EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 21==;TC BT EF BE =,DC BT 2
5=
例题1:如图,在△ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,
DE 延长线与BC 延长线相交于F ,求证: (证明:过点C 作CG//FD 交AB 于G ) (该题关键在于AD =AE 这个条件怎样使用.由这道题还可以增加一种证
明线段相等的方法:相似、成比例.)
例题2:如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC
的延长线相交于点F ,证明:AB ·DF=AC ·EF.
分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。
不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。
.
方法一:过E 作EM//AB ,交BC 于点M ,则△EMC ∽△ABC (两角对应相等,两三角形相似). 方法二:过D 作DN//EC 交BC 于N.
例题3:在△ABC 中,D 为AC 上的一点,E 为CB 延长线上的一点,
BE=AD ,DE 交AB 于F 。
求证:EF ×BC=AC ×DF
证明:过D 作DG ∥BC 交AB 于G ,则△DFG 和△EFB 相似,
∴ ∵BE =AD,∴ 由DG ∥BC 可得△ADG 和△ACB 相似,∴ 即 ∴EF ×BC =AC ×DF.
例题4:已知点D 是BC 的中点,过D 点的直线交AC 于E,交BA 的延长
线于F,求证: 分析:利用比例式够造平行线,通过中间比得结论 .
(或利用中点”倍长中线”的思想平移线段EC,使得所得四条线段分
别构成两个三角形.)
例题5:已知:在等腰三角形ABC 中,AB=AC ,BD 是高,求证:BC2=2AC ·CD
分析:本题的 重点在于如何解决“2”倍的 问题;让它归属一条线段,
找到这一线段2倍是哪一线段.
CE
BD CF BF =DG DF BE EF =DG DF AD EF =DG AD BC AC =DG BC AD AC =EC
AE BF AF =
例题6;已知:从直角三角形ABC 的 直角顶点A 向斜边BC 引垂线,垂足为D ,边AC 的中点为E,直线ED 与边AB 的延长线交于F ,求证:AB:AC=DF:AF
分析:利用前两题的 思想方法,借助中点构造中位线,利用平行与2倍关系的 结论,证明所得结论.
找到后以比例式所在三角形与哪个三角形相似.
例题7:如图,△ABC 中,AD 是BC 边上中线,E 是AC 上一点,连接ED 且交AB 的延长线于F 点.求证:AE :EC=AF :BF.
分析:注意观察图形的 特殊性,有些像全等中,旋转的基本图形,因此可以没有相互关系的 成比例的四条线段转化为成比例的四条线段(通过全等找相等的线段)关键是要把成比例线段放在两个三角形中.
例题8:如图,平行四边形ABCD 中,E 为AB 边中点,点F
在AD 边上,且AF :FD=1:2,EF 交AC 于G ,求AG :GC 的
值
(构造线段相等转化比例式)
例题9:在∆ABC 中,AB=AC,AD 是中线,P 是AD 上一点,过C 作CF ∥AB,延长BP 交AC 于E ,交CF 于F,求证:BP ²=PE ·PF
分析:在同一直线上的三条线段成比例,可以通过中间比转化,也可以通过线段相等,把共线的线段转化为两个三角形中的线段,通过相似证明.另外在证明等积式时要先转化为比例式观察相似关系,有利于证明.
例题10:如图,梯形ABCD 中,AD ∥BC ,AC 、BD 交于O 点,BA 、CD 的延长线交于E 点,连结EO 并延长分别交AD 、BC 于N 、M 求证: BM=CM (证明线段相等的又一方法)
○
2作垂线 例题1:如图从 ABCD 顶点C 向AB 和AD 的延长线引垂线CE 和CF ,垂足分别为E 、F ,求证:
证明:过B 作BM ⊥AC 于M ,过D 作DN ⊥AC 于N
∴ AM :AE=AB :AC
(1) (1)+(2)得
BM AN EB EA BC AD OC AO MC AN ====2AC AF AD AE AB =⋅+⋅AM AC AE AB ⋅=⋅)(AN AM AC AN AC AM AC AF AD AE AB +=⋅+⋅=⋅+⋅BCM ADN ∆≅∆
例题2:∆ABC 中,AC=BC ,P 是AB 上一点,Q 是PC 上一点
(不是中点),MN 过Q 且MN ⊥CP ,交AC 、BC 于M 、N ,求证:
证明:过P 作PE ⊥AC 于E ,PF ⊥CB 于F ,则CEPF 为矩形
∴ PF EC ∵ ∠A =∠B=45° ∴Rt ΔAEP=Rt ΔPFB ∴ ∵ EC=PF ∴ (1) 在ΔECP 和ΔCNM 中CP ⊥MN 于Q
∴ ∠QCN+∠QNC=90°又 ∵ ∠QCN+∠QCM=90° ∴∠MCQ=∠CNQ
∴Rt ΔPEC ∽Rt ΔMCN ∴ 即 (2) 由(1)(2)得
○
3作延长线 例1. 如图,在梯形ABCD 中,AD ∥BC ,若∠BCD 的平分线CH ⊥AB 于点H ,BH=3AH ,且四边形AHCD 的面积为21,求△HBC 的面积。
分析:因为问题涉及四边形AHCD ,所以可构造相似三角形。
把问题转化为相似三角形的面积比而加以解决。
解:延长BA 、CD 交于点P ∵CH ⊥AB ,CD 平分∠BCD
∴CB=CP ,且BH=PH ∵BH=3AH ∴PA :AB=1:2 ∴PA :PB=1:3 ∵AD ∥BC ∴△PAD ∽△PBC
例2. 如图,RtABC 中,CD 为斜边AB 上的高,E 为CD 的中点,AE 的延长线交BC 于F ,FGAB 于G ,求证:FG=CF ·BF
分析:欲证式即 由“三点定形”,ΔBFG 与ΔCFG 会相似吗?显然不可能。
(因为ΔBFG 为Rt Δ),但由E 为CD 的中
点,∴可设法构造一个与ΔBFG 相似的三角形来求解。
不妨延长GF 与AC 的延长线交于H ,则 又ED=EC ∴FG=FH 又易证Rt ΔCFH ∽Rt ΔGFB
∴FG ·FH=CF ·BF ∵FG=FH ∴FG2=CF ·BF
○
4作中线 例题1:如图,中,AB ⊥AC ,AE ⊥BC 于E ,D 在AC 边上,若BD=DC=EC=1,求AC.
解:取BC 的中点M ,连AM ∵AB ⊥AC ∴ AM=CM ∴∠1=∠C 又 BD=DC ∴∠DBC=∠DCB ∴∠CAM=∠C=∠DBC ∴ΔMAC ∽ΔDBC
∴ 又 DC=1 MC= BC ∴ (1)
又 Rt ΔAEC ∽Rt ΔBAC 又 ∵ EC=1 ∴ (2)
由(1)(2)得, ∴
小结:利用等腰三角形有公共底角,则这两个三角形相似,取BC 中点M ,构造ΔMAC ∽ΔDBC 是解题关键 CN CM PB PA ::==//PF PE PB AP ::=EC PE PF PE PB PA ==CN EC CM EP =CN CM EC EP =CN CM PB PA =9
1::∴△△=PBC PAD S S PBC PCH S S △△∵21=72:∴四边形△==AH CD PAD S S 21=AH CD S 四边形∵6=PAD S △∴54=PBC S △2721==PBC HBC S S △△∴FG CF BF FG =EC FH ED FG AE AF ==EC FH ED FG =BF FH FG CF =BC AC DC MC =2122
1BC DC BC MC AC =⋅=BC BC CE AC =⋅=2421AC AC =32=AC。