高一数学上学期单元素质测试题——1.2函数及其表示
- 格式:doc
- 大小:213.50 KB
- 文档页数:4
高一数学函数及其表示试题答案及解析1.下列各组函数为同一函数的是()A.,B.C.D.【答案】B【解析】选项A中两函数的定义域不同,选项B中两函数的定义域和对应关系均相同,选项C中两函数的定义域不同,选项D中两函数的对应关系不同,所以只有B中两函数是同一个函数.【考点】本小题主要考查函数的三要素的判断,考查学生的判断推理能力.点评:函数有三要素:定义域、值域和对应关系,其实只要定义域和对应关系相同就能得出两函数是同一个函数.2.如图所示,当时,函数的图象是 ( )【答案】D【解析】对于D,当a<0时,b<0,所以抛物线的开口向下,并且直线的斜率为负值,在y轴上的截距为负值.因而选D.3.下列哪组中的两个函数是同一函数()A.与B.与C.与D.与【答案】B【解析】根据同一函数的定义可知,定义域和对应法则相同时。
那么选项A中,定义域不同,选项B中,定义域和对应法则相同;选项C中,定义域不同,选项D中,定义域不同,故选B.4.定义在R上的偶函数满足:对任意的,有.则( ) A.B.C.D.【答案】B【解析】因为函数在R上的偶函数,那么且在给定区间上是减函数,那么在x<0上递增函数,因此可知f(-3)="f(3)," f(-2)=f(2),所以f(-3)<f(-2)< f(1),故选B.5.若函数,则=_____ __ _____【解析】因为函数,,令x=1,则可知f(2)=1-1=0.6.(本小题满分12分)已知,求的值【答案】n-【解析】本试题主要是考查了函数解析式的运用。
根据由已知得,f(1)=且f(x)+ =+=1,得到所求的函数值。
解:由已知得,f(1)=且f(x)+ =+=1∴=n-1+=n-7.下列对应法则中,可以构成从集合到集合的映射的是()A.B.C.D.【答案】B【解析】解:根据映射的概念,在集合A中的每一个元素在集合B中都有唯一的元素和它对应,观察所给的四个选项,对于A选项,在B中有2个元素与它对应,不是映射,对于D选项,在B中没有和A的元素0对应的象,对于C选项,在B中没有与A的元素0对应的象,对于B选项,符合映射的意义,故选B.8.下列对应法则中,可以构成从集合到集合的映射的是()A.B.C.D.【答案】D【解析】解:根据映射的概念,在集合A中的每一个元素在集合B中都有唯一的元素和它对应,观察所给的四个选项,对于A选项,在B中有2个元素与它对应,不是映射,对于B选项,在B中没有和A的元素0对应的象,对于C选项,在B中没有与A的元素0对应的象,对于D选项,符合映射的意义,故选D.9.下列各组函数中表示同一函数的是()①与;②与;③与;④与.A.①②B.②③C.③④D.①④【答案】C【解析】因为①与;中定义域不同②与;对应关系不同,③与;相同。
掌握函数的三种表示方法(列表法,解析法,图象法),及其互相转化;理解分段函数的概念。
列表法:
解析法:
图象法:
三、典例欣赏
例1.购买某种饮料x听,所需钱数为y元。
若每听2元,试分别用解析法、列表法、图象法将y表示为x(x∈{1,2,3,4})的函数,并指出函数的值域。
例2.某市出租汽车收费标准如下:在以内(含)路程按起步价7元收费,超过以外的路程按2.4元收费,试写出收费额关于路程的函数的解析式。
(1)概念:
(2)理解:
练习与思考:考虑例2中所求得的函数解析式,
回答下列问题:
(2)理解:
练习与思考:考虑例2中所求得的函数解析式,
回答下列问题:
(1)函数的定义域是_______________.
(2)若x = 8,则y =_______________;若y = 11.8,则x =_______________.
(3)画出函数的图像.
(4)函数的值域是_______________.
例3.(1)已知,求。
(2)已知函数,若。
例4.如图是边长为2的正三角形,这个三角形在直线左侧部分的面积为y,求函数的解析式,并画出的图象.。
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
高一数学函数及其表示试题1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与【答案】D【解析】表示同一函数必须具备两个条件:一是定义域相同,二是对应法则相同.对于A,的定义域为,而的定义域为,不符合;对于B,的定义域为,对于的定义域为,不符合;对于C,函数与函数的定义域都为,但当时,与的对应法则不相同,也不符合;对于D,函数与函数的定义域都为,且,两个函数的对应法则也相同,故相同函数的是答案D.【考点】1.函数的概念;2.对数的恒等式.4.设是集合M到集合N的映射, 若N="{1,2}," 则M不可能是()A.{-1}B.C.D.【答案】D【解析】对应法则是,根据映射的定义,集合M中的任何一个元素在N中都要有唯一的元素和他对应,而D选项中的2,,,不满足定义,所以不正确,故选D.【考点】映射的定义5.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.6.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|,由题,a≤0,则|x-a|≤|x|-a,f(x)≥1,A错误;f(x)≥1恒成立,则a≤0,x≥0,B错误,a<0,则0≤|x-a|≤|x|-a,方程f(x)=a,左边是正数,右边是负数,无解,所以C错误,方程f(x)=a有解,则两边同号,即|x|-a与a同号,可解得0<a≤1,选D.【考点】函数与绝对值不等式.7.下列四组中表示相等函数的是 ( )A.B.C.D.【答案】B【解析】A.的定义域不同;B.是同一函数;C.的定义域不同;D.的值域不同。
第1课时 函数的表示法A 级 基础巩固一、选择题1.以下形式中,不能表示“y 是x 的函数”的是( ) A.B.C .y =x 2D .x 2+y 2=1解析:根据函数的定义可知,x 2+y 2=1不能表示“y 是x 的函数”. 答案:D2.已知x ≠0,函数f (x )满足f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则f (x )的表达式为( )A .f (x )=x +1xB .f (x )=x 2+2C .f (x )=x 2D .f (x )=⎝ ⎛⎭⎪⎫x -1x 2解析:因为f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x -1x 2+2,所以f (x )=x 2+2. 答案:B3.已知f (x )的图象恒过点(1,1),则f (x -4)的图象恒过点( ) A .(-3,1) B .(5,1) C .(1,-3)D .(1,5)解析:由f (x )的图象恒过点(1,1)知,f (1)=1,即f (5-4)=1.故f (x -4)的图象恒过点(5,1).答案:B4.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .3x +2B .3x +1C .3x -1D .3x +4解析:方法一:令2x +1=t ,则x =t -12.所以f (t )=6×t -12+5=3t +2,所以f (x )=3x +2.方法二:因为f (2x +1)=3(2x +1)+2, 所以f (x )=3x +2. 答案:A5.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )解析:由题意知,当t >0时,S 的增长会越来越快,故函数S 图象在y 轴的右侧的切线斜率会逐渐增大.答案:B 二、填空题6.已知函数f (x ),g (x )分别由下表给出:则f [g (1)]的值为x =____________. 解析:f [g (1)]=f (3)=1.因为g [f (x )]=2, 所以f (x )=2, 所以x =1. 答案:1 17.已知f (x )是一次函数,且其图象过点A (-2,0),B (1,5)两点,则f (x )=__________. 解析:据题意设f (x )=ax +b (a ≠0), 又图象过点A (-2,0),B (1,5).所以⎩⎪⎨⎪⎧-2a +b =0,a +b =5,解得a =53,b =103.所以f (x )=53x +103.答案:53x +1038.如图,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2)))=________.解析:f (f (f (2)))=f (f (0))=f (4)=2. 答案:2 三、解答题9.若x ∈R,y =f (x )是y =2-x 2,y =x 这两个函数中的较小者,画出y =f (x )的图象,并求y =f (x )的值域.解:在同一坐标系中画出函数y =2-x 2,y =x 的图象,如图所示,根据题意知图中实线部分即为函数y =f (x )的图象,由2-x 2=x 得x =-2或1,由图象可知,函数y =f (x )的值域为(-∞,1].10.画出二次函数f (x )=-x 2+2x +3的图象,并根据图象解答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.解:f (x )=-(x -1)2+4的图象,如图所示: (1)f (0)=3,f (1)=4,f (3)=0, 所以f (1)>f (0)>f (3).(2)由图象可以看出, 当x 1<x 2<1时,函数f (x )的函数值随着x 的增大而增大, 所以f (x 1)<f (x 2).(3)由图象可知二次函数f (x )的最大值为f (1)=4,则函数f (x )的值域为(-∞,4].B 级 能力提升1.若f (1-2x )=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12=( ) A .1 B .3 C .15 D .30 解析:方法一:令1-2x =t ,则x =1-t2(t ≠1),所以f (t )=1-⎝ ⎛⎭⎪⎫1-t 22⎝ ⎛⎭⎪⎫1-t 22=-t 2+2t +3(t -1)2.所以f (x )=-x 2+2x +3(x -1)2,所以f ⎝ ⎛⎭⎪⎫12=15.方法二:令1-2x =12,得x =14,所以f (12)=1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15.答案:C2.函数y =x 2-4x +6,x ∈[1,5)的值域是________.解析:画出函数的图象,如图所示,观察图象可得图象上所有点的纵坐标的取值范围是[f (2),f (5)),即函数的值域是[2,11).答案:[2,11)3.用长为l 的铁丝弯成下部为矩形、上部为半圆形的框架(如图所示),若矩形底边AB 长为2x ,求此框架围成的面积y 与x 的函数关系式,并写出其定义域.解:因为AB =2x , 所以CD ︵的长为πx ,AD =l -2x -πx 2,所以y =2x ·l -2x -πx 2+πx 22=-⎝ ⎛⎭⎪⎫π2+2x 2+lx . 由⎩⎪⎨⎪⎧2x >0,l -2x -πx 2>0,解得0<x <lπ+2,故函数的定义域为⎝ ⎛⎭⎪⎫0,l π+2.。
高一数学函数及其表示试题答案及解析1.函数的图象与直线的公共点数目是()A.0B.1C.0或1D.1或2【答案】B【解析】若函数在处有意义,在函数的图象与直线的公共点数目是1;若函数在处无意义,则两者没有交点,∴有可能没有交点,如果有交点,那么仅有一个,故选B.【考点】函数定义与图象2.如图所示,当时,函数的图象是 ( )【答案】D【解析】对于D,当a<0时,b<0,所以抛物线的开口向下,并且直线的斜率为负值,在y轴上的截距为负值.因而选D.3.若函数的定义域为,值域为,则的取值范围是()A.B.C.D.【答案】B【解析】因为,又因为x=2时,y=-6;当x=0或x=4时,y=-2.所以,故应选B.4.某工厂8年来某产品总产量y与时间t年的函数关系如下图,则:①前3年中总产量增长速度越来越慢;②前3年总产量增长速度增长速度越来越快;③第3年后,这种产品年产量保持不变.④第3年后,这种产品停止生产;以上说法中正确的是_______.【答案】②④【解析】由函数图象可知在区间[0,3]上,图象图象凹陷上升的,表明年产量增长速度越来越快;在区间(3,8]上,如果图象是水平直线,表明总产量保持不变,即年产量为0.∴②④正确.5.下列哪组中的两个函数是同一函数()A.与B.与C.与D.与【答案】B【解析】根据同一函数的定义可知,定义域和对应法则相同时。
那么选项A中,定义域不同,选项B中,定义域和对应法则相同;选项C中,定义域不同,选项D中,定义域不同,故选B.6.若函数,则=_____ __ _____【解析】因为函数,,令x=1,则可知f(2)=1-1=0.7.对于函数,定义域为,以下命题正确的是(只要求写出命题的序号)①若,则是上的偶函数;②若对于,都有,则是上的奇函数;③若函数在上具有单调性且则是上的递减函数;④若,则是上的递增函数。
【答案】②③【解析】因为根据偶函数的定义可知,要满足定义域内任何一个变量满足f(x)=f(-x),故命题1错误。
2022-2022年高一必修一第一章1.2.2 函数的表示法数学在线测验(人教A版)解答题某企业生产某种产品时的能耗y与产品件数x之间的关系式为y=ax+.且当x=2时,y=100;当x=7时,y=35.且此产品生产件数不超过20件.(1)写出函数y关于x的解析式;(2)用列表法表示此函数,并画出图象.【答案】(1) ;(2)详见解析.【解析】试题分析:(1)将x=2时,y=100;x=7时,y=35代入解析式,列方程组求出a和b,可写出函数y关于x的解析式;(2)根据定义域列出函数上的各点,在平面直角坐标系中描出这些点,即函数的图象.试题解析:(1)将代入y=ax+中,得⇒⇒所以所求函数解析式为.(2)当x∈{1,2,3,4,5,…,20}时,列表:x12345678910y19710068.35344.238.73532.529.6x11 12 13 14 15 16 17 18 19 20y 28.8 28.3 28.1 28 28.1 28.25 28.529.329.8依据上表,画出函数y的图象如图所示,由20个点构成的点列.填空题已知x≠0,函数f(x)满足,则________.【答案】【解析】因为,所以,故答案为.填空题如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f[f(0)]=________.【答案】2【解析】由,可得线段所在直线的方程为,即,即,同理所在直线的方程为,即,∴,∴,故,故答案为2.选择题函数f(x)=|x-1|的图象是()A. B. C. D.【答案】B【解析】由于,故其对应的图象为B,即答案为B.填空题已知函数f(2x+1)=3x+2,且f(a)=4,则a=________.【答案】【解析】令3x+2=4,得x=,则2x+1=2×+1=,∴a=.解答题已知函数(为常数,且)满足,方程有唯一解,求函数的解析式,并求的值.【答案】,【解析】试题分析:将代入可得,根据有唯一解,得到,解出方程组,故而可得解析式,代入即可求出的值.试题解析:因为,所以,即①,又因为有唯一解,即有唯一解,所以有两个相等的实数根,所以,即,代入①得,所以,所以.选择题如图是反映某市某一天的温度随时间变化情况的图像.由图像可知,下列说法中错误的是()A. 这天15时的温度最高B. 这天3时的温度最低C. 这天的最高温度与最低温度相差13℃D. 这天21时的温度是30℃【答案】C【解析】横轴表示时间,纵轴表示温度,温度最高应找到函数图象的最高点所对应的值与值:为15时,,A对;温度最低应找到函数图象的最低点所对应的值与值:为3时,,B对;这天最高温度与最低温度的差应让前面的两个值相减,即,C错;从图象看出,这天21时的温度是,D对,故选C.选择题函数y=f(x)(f(x)≠0)的图象与x=1的交点个数是()A.1B.2C.0或1D.1或2【答案】C【解析】试题分析:根据函数定义可知:对于集合A中的任意实数x,在集合B中都有唯一实数y与之对应。
必修1数学章节测试〔3〕—第一单元〔函数及其表示〕一、选择题:在每题给出四个选项中,只有一项为哪一项符合题目要求,请把正确答案代号填在题后括号内〔每题5分,共50分〕. 1.以下四种说法正确一个是 〔 〕 A .)(x f 表示是含有x 代数式 B .函数值域也就是其定义中数集BC .函数是一种特别映射D .映射是一种特别函数2.f 满意f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 〔 〕 A .q p + B .q p 23+ C .q p 32+ D .23q p + 3.以下各组函数中,表示同一函数是〔 〕A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==4.函数23212---=x x x y 定义域为〔 〕A .]1,(-∞B .]2,(-∞C .]1,21()21,(-⋂--∞ D . ]1,21()21,(-⋃--∞ 5.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,那么=-)]}1([{f f f〔 〕A .1+πB .0C .πD .1-6.以下图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数图象只可能是 〔 〕7.设函数x x xf =+-)11(,那么)(x f 表达式为 〔 〕A .x x -+11B . 11-+x xC .xx +-11D .12+x x8.二次函数)0()(2>++=a a x x x f ,假设0)(<m f ,那么)1(+m f 值为 〔 〕 A .正数 B .负数 C .0 D .符号与a 有关 9.在x 克%a 盐水中,参与y 克%b 盐水,浓度变为%c ,将y 表示成x 函数关系式 〔 〕 A .x bc ac y --=B .x cb ac y --=C .x ac bc y --=D .x ac cb y --=10.)(x f 定义域为)2,1[-,那么|)(|x f 定义域为〔 〕A .)2,1[-B .]1,1[-C .)2,2(-D .)2,2[-二、填空题:请把答案填在题中横线上〔每题6分,共24分〕. 11.x x x f 2)12(2-=+,那么)3(f = . 12.假设记号“*〞表示是2*ba b a +=,那么用两边含有“*〞和“+〞运算对于随意三个实数“a ,b ,c 〞成立一个恒等式 .13.集合A 中含有2个元素,集合A 到集合A 可构成 个不同映射.14.从盛满20升纯酒精容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满. 这样接着下去,建立所倒次数x 和酒精残留量y 之间函数关系式 . 三、解答题:解容许写出文字说明、证明过程或演算步骤(共76分). 15.〔12分〕①.求函数|1||1|13-++-=x x x y 定义域;②求函数x x y 21-+=值域;③求函数132222+-+-=x x x x y 值域.16.〔12分〕在同一坐标系中绘制函数x x y 22+=,||22x x y +=得图象.17.〔12分〕函数x x f x x f x =+-+-)()11()1(,其中1≠x ,求函数解析式.18.〔12分〕设)(x f 是抛物线,并且当点),(y x 在抛物线图象上时,点)1,(2+y x 在函数)]([)(x f f x g =图象上,求)(x g 解析式.19.〔14分〕动点P 从边长为1正方形ABCD 顶点动身顺次经过B 、C 、D 再回到A ;设x表示P 点行程,y 表示PA 长,求y 关于x 函数解析式.20.〔14分〕函数)(x f ,)(x g 同时满意:)()()()()(y f x f y g x g y x g +=-;1)1(-=-f ,0)0(=f ,1)1(=f ,求)2(),1(),0(g g g 值.参考答案〔3〕一、CBCDA BCABC二、11.-1; 12.c b a c b a *+=+)()*(; 13.4; 14.*,)2019(20N x y x ∈⨯= ;三、15. 解:①.因为|1||1|-++x x 函数值肯定大于0,且1-x 无论取什么数三次方根肯定有意义,故其值域为R ; ②.令t x =-21,0≥t,)1(212t x -=,原式等于1)1(21)1(2122+--=+-t t t ,故1≤y 。
高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是①与;②与;③与;④与。
A.①②B.①③C.③④D.①④【答案】C【解析】①中两函数定义域相同,值域不同,分别为;②中两函数定义域不同,分别为;③、④中两函数定义域、值域都相同。
【考点】函数的概念,即函数的三要素:定义域、对应法则、值域。
2.设计下列函数求值算法程序时需要运用条件语句的函数为().A.B.C.D.【答案】C.【解析】因为分段函数在求值时,不同范围内的自变量对应不同的函数,所以在编写函数求值的算法程序需运用条件语句,故本题选C.【考点】基本算法语句中的条件语句的理解.3.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围【答案】(1)f(x)=x2-x+1,(2)【解析】(1)求二次函数解析式,一般方法为待定系数法.二次函数解析式有三种设法,本题设一般式f(x)=ax2+bx+1,再利用等式恒成立,求出项的系数.由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立问题一般转化为最值问题.先构造不等式,再变量分离,这样就转化为求函数的最小值问题.试题解析:(1)设f(x)=ax2+bx+1a(x+1)2+b(x+1)-ax2-bx=2x2ax+a+b=2xf(x)=x2-x+1(2)考点:二次函数解析式,二次函数最值,不等式恒成立4.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.5.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.6.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.7.下列四组函数,表示同一函数的是( )A.,B.C.D.【答案】D【解析】 A选项两个函数的定义域相同,但至于分别是[0,+∞)和R,所以排除A.B选项的定义域分别为x≠0和x>0,所以排除B.C选项中的定义域分别为R和x≠0,所以排除C.D选项的两函数化简后都是y=x,所以选D.【考点】 1.常见函数的定义域,值域问题.2.同一函数的判定方法.8.下列4对函数中表示同一函数的是( )A.,=B.,=C.=,D.,=【答案】B【解析】A.与=定义域不同;B.与=定义域、值域、对应法则完全相同,所以是同一函数;C.=与的定义域不同;D.与=的值域不同。
2021年高中数学 1.2函数及其表示习题新人教A版必修1典例1:作出下列函数的图象.(1)y=2x+2.(2)y=(3)y=(4)y=|log2x-1|.分析:(1)(3)(4)可通过图象变换画出函数的图象,对于(2)可先化简解析式,分离常数,再用图象变换画图象.规范解答 (1)将y=2x的图象向左平移2个单位.图象如图.(2)因y= ,先作出y= 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y= 的图象,如图.(3)作出y= 的图象,保留y= 图象中x≥0的部分,加上y= 的图象中x>0部分关于y轴的对称部分,即得y=的图象,如图实线部分.(4)先作出y=log2x的图象,再将其图象向下平移一个单位,保留x轴上方的部分,将x轴下方的图象翻折到x轴上方,即得y=|log2x-1|的图象,如图.【易错警示】关注函数定义域本例在作函数图象时,有时会忽略定义域而致误,在作函数图象时要注意函数定义域.【规律方法】作函数图象的三个重要方法及适用类型(1)直接法:当函数表达式(或变形后的表达式)是熟悉的函数或解析几何中熟悉的曲线的局部(如圆、椭圆、双曲线、抛物线的一部分)时,就可根据这些函数的奇偶性、周期性、对称性或曲线的特征直接作出.(2)图象变换法:①若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序;②对不能直接找到熟悉函数的,要先变形,同时注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点,就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质进行分析.提醒:当函数表达式是较复杂的高次、分式、指数、对数及三角函数式时,常借助于导数探究图象的变化趋势从而画出图象的大致形状.【变式训练】作出下列函数的图象.(1)y=e lnx. (2)y=|log2(x+1)|.(3)y= . (4)y=x2-2|x|-1.解析如下:(1)(2)(3)(4)典例2:(1)(xx·杭州模拟)已知函数f(x)是定义在R上的增函数,则函数y=f(|x-1|)-1的图象可能是( )(2)(xx·山东高考)函数y=xcosx+sinx的图象大致为( )分析:(1)根据函数f(x)的单调性及图象的平移、对称变换求解.(2)利用函数的奇偶性和函数值的变化规律求解.规范解答:(1)选 B.根据题意,由于函数f(x)是定义在R上的增函数,那么可知函数y=f(|x-1|)-1的图象先是保留在y轴右侧的图象不变为增函数,再作关于y轴对称的图象,再整体向右平移一个单位,再整体向下平移一个单位,那么可知为先减后增,同时关于直线x=1对称,故选B.(2)选D.函数y=xcosx+sinx为奇函数,所以图象关于原点对称,所以排除B,C.当x=π时,f(π)=-π<0,排除A,故选D.【互动探究】若本例题(1)中,函数f(x)是定义在R上的增函数改为“减函数”,则结果如何? 26928 6930 椰 26566 67C6 柆'32817 8031 耱 24780 60CC 惌@38706 9732 露22994 59D2 姒Y 99。
第一章 集合与概念函数及其表示1.2.1 函数的概念和函数的表示方法测试题知识点:函数的概念1、下列式子中不能表示函数()y f x =的是 ( ) A. 2x y =B. 1y x =+~C. 0y x +=D. 2y x =2、若函数()y f x =的定义域为{|38,5}x x x -≤≤≠,值域为{|12,0}y y y -≤≤≠,则()y f x =的图象可能是 ( )3、设集合{{|02},|02}M x x N y y =≤≤=≤≤,下面的四个图形中,能表示集合M 到集合N 的函数关系的有( )A.①②③④B.①②③C.②③D.②4、函数()y f x =定义在区间[-2,3]上,则()y f x =的图象与直线x a =的交点个数为 .}5、已知函数2()1(0)f x ax a =-≠,且((1))1f f =-,则a 的取值为 . 知识点:函数的定义域和值域6、下列函数中,与函数y =( )A. ()f x =B. 1()f x x=C. ()||f x x =D. y =7、函数y = ( ) A. {|1}x x ≤B. {|0}x x ≥C. {|1,x x ≥或0}x ≤D. {|01}x x ≤≤】8、函数21()()1f x x R x =∈+的值域是 ( )A.[0,1]B.[0,1)C.(0,1]D.(0,1)9、函数22y x x =-的定义域为{0,1,2,3},那么其值域为 .10、若函数12y x =-的定义域是A,函数y =B,则A ∩B= . 知识点:函数相等11、下列各组函数中,表示同一个函数的是 ( )A. 211x y x -=-与1y x =+B. y =1y x=C. 1y =与1y x =-D. y x =与y)知识点:函数的表示法12、已知()f x 是反比例函数,且(3)1f -=-,则()f x 的解析式为 ( )A. 3()f x x=-B. 3()f x x=C. ()3f x x =D. ()3f x x =-13、已知(1)26g x x -=+,则(3)g = .14、若()f x 是一次函数, (())41f f x x =-,则()f x = .15、如图,函数()f x 的图象是曲线OAB,其中点O,A,B 的坐标分别为(0,0),(1,2),(3,1),则1()(3)f f 的值等于 .{16、作出下列函数的图象: (1) 1,y x x Z =-∈. (2) 243,[1,3]y x x x =-+∈. 知识点:分段函数及映射17、设集合A={2,4,6,8,10},B={1,9,25,49,81,100},下面的对应关系f 能构成A 到B 的映射的是( ) A. 2:(1)f x x →- B. 2:(23)f x x →- C. :21f x x →-D. :23f x x →-18、集合A 的元素按对应关系“先乘12再减1”和集合B 中的元素对应,在这种对应所成的映射:f A B →,若集合B ={1,2,3,4,5},那么集合A 不可能是 ( )、A.{4,6,8}B.{4,6}C.{2,4,6,8}D.{10}19、已知2,0,()(1),0,x xf xf x x>⎧=⎨+≤⎩则44()()33f f+-等于( )B.420、已知函数()f x的图象是两条线段(如图,不含端点),则1(())3f f= ( )A.13- B.13C.23- D.2321、函数2,010,()4,1015,5,1520,xf x xx<<⎧⎪=≤<⎨⎪≤<⎩则函数的值域是.?22、已知集合{,},{,}A a bB c d==,则从A到B的不同映射有个.【参考答案】1A.解:从函数的概念来看,一个自变量x对应一个y;而A中2x y=中一个x对应两个y.所以A不是函数.2¥B.A中y取不到2,C中不是函数关系,D中x取不到0.3 C.由函数的定义,对集合M中的任意一个元素,在集合N中都有唯一的元素与之对应,而①中对于集合M中满足1<x≤2的元素,在集合N中没有元素与之对应,故不表示集合M到集合N的函数关系;对于④集合M中的元素在N中有两个元素与之对应.故排除①④.4 0或1解:当a∈[-2,3]时,由函数定义知,y=f(x)的图象与直线x=a只有一个交点;当a∉[-2,3]时,y=f(x)的图象与直线x=a没有交点." 51解:因为f(x)=ax2-1,所以f(1)=a-1,f(f(1))=f(a-1)=a(a-1)2-1=-1,所以a(a-1)2=0,又因为a≠0,所以a-1=0,所以a=1.6B.解:因为函数y=的定义域是{x|x≠0},所以A,C,D都不对.)7D.解:要使函数有意义,需解得0≤x≤1.8C.解:因为x2≥0,所以x2+1≥1,所以0<≤1,所以值域为(0,1].9 {-1,0,3}$解:当x=0时,y=0;当x=1时,y=-1;当x=2时,y=0;当x=3时,y=3.故函数的值域为{-1,0,3}.10 [0,2)∪(2,+∞)解:由题意知A={x|x≠2},B={y|y≥0}, 则A∩B=[0,2)∪(2,+∞).11 D.解:对于选项A:函数y=的定义域不包含1,而y=x+1的定义域是R,显然不是同一个函数./对于选项B:函数y=x的定义域为x≥0,而函数y=的定义域是{x|x≠0},显然不是同一个函数.对于选项C:函数y=2x-1的值域是大于等于-1的,而直线y=x-1的值域是R,显然不是同一个函数.对于选项D:因为y=x与y=33x的最简解析式相等,且定义域都为R,所以为同一个函数.12B.解:设f(x)=(k≠0),由f(-3)=-1得=-1,所以k=3.所以f(x)=.1314、解:因为g(x-1)=2x+6,令x-1=t,则x=t+1,所以g(t)=2(t+1)+6=2t+8,即g(x)=2x+8, 所以g(3)=2×3+8=14.14 2x-或-2x+1解:设f(x)=kx+b,则f(f(x))=kf(x)+b=k(kx+b)+b=k2x+kb+b=4x-1. 所以解得或(所以f(x)=2x-或f(x)=-2x+1.15 2解:因为f(3)=1,所以=1, 所以f=f(1)=2.16 解:(1)因为x∈Z,所以图象为一条直线上的孤立点,如图(1)所示.(2)y=x2-4x+3=(x-2)2-1,当x=1,3时,y=0;¥当x=2时,y=-1,其图象如图(2)所示.17 A.解:观察集合A与B中的元素,可知集合A中元素减1后的平方对应集合B中的元素.故选项A构成从A到B的映射.18 C.解:选设x∈A,则f(x)=x-1,由f(x)=1得x=4,由f(x)=2,得x=6.由f(x)=3得x=8;由f(x)=4得x=10;由f(x)=5得x=12,据此可知,x≠2,故应选C.% 19B.解:选f=2×=,f=f=f=f =f=,故f+f=4.20B.解:选由图象知,f(x)=所以f=-1=-,所以f(f)=f=-+1=.21 {2,4,5}解:因为f(x)=所以函数的值域是{2,4,5}.422解:a→c,b→c;a→d,b→d;a→c,b→d;a→d,b→c,共4个.。
人教A 版数学必修1 1.2.2:函数的表示法解析法:用 表示两个变量之间的对应关系。
✧ 优点:简明、全面地概括了变量间的关系;利用解析式求出任意一个自变量所对应的函数值。
✧ 缺点:不够形象、直观,而且并不是所有的函数都可以用解析式表示。
图象法:用 表示两个变量之间的对应关系。
✧ 优点:不通过计算就可以直接看出与自变量的值相对应的函数值。
✧ 缺点:只能表示自变量取较少的有限值的对应关系。
列表法:通过 表示两个变量之间的对应关系。
✧ 优点:直观形象地表示出函数的变化情况,有利于通过图形研究函数的某些性质。
✧ 缺点:只能近似地求出自变量所对应的函数值,而且有时误差较大。
例1:回答以下问题:1) 已知函数()x f ,()x g 分别由下表给出。
① ()[]=1g f ;② 若()[]2=x f g ,则=x 。
2) 作出下列函数的图象并求出其值域。
①12+=x y ,∈x [0,2];②xy 2=,∈x [2,∞+); ③x x y 22+=,∈x [﹣2,2]。
知识点二:分段函数如果函数()x f y =,A x ∈,根据自变量x 在不同的取值范围内,函数有着不同的 ,称这样的函数为分段函数。
一个函数只有一个定义域,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式。
写分段函数的定义域时,区间端点应不重不漏。
求分段函数的值域,是分别求出各段上的值域后取并集。
例2:判断正误,正确的画“√”,错误的画“×”。
1) ( )解析法可以表示任意的函数。
2) ( )任何一个图形都可以表示函数的图象。
3) ( )分段函数就是多个函数。
4) ( )任何一个函数都能用列表法表示。
5) ( )分段函数有多个定义域。
6) ( )分段函数只有一个值域。
7) ( )映射B A f →:,B 中的元素在A 中可以没有原象。
例3:已知函数()⎪⎩⎪⎨⎧≥-<<-+-≤+=212222212x x x x x x x x f ,,,。
1
新课标高一(上)数学单元素质测试题——1.2函数及其表示
(训练时间45分钟,满分100分) 姓名__________评价__________
一、选择题(本大题共6小题,每小题6分,共36分. 以下给出的四个备选答案中,只有一个正确)
1.(08全国Ⅰ)函数1yxx的定义域为( )
A.{|1}xx≤ B.{|0}xx≥ C.{|10}xxx≥或≤ D.{|01}xx≤≤
2.(99全国)已知映射BAf:,其中A = { –3 , –2 , –1,1,2,3,4},集合B中的元素
都是A中元素在映射f下的象,且对任意的 a A ,在B中和它对应的元素是 | a |,则集合
B中元素的个数是( )
A. 4 B.5 C.6 D.7
3. (10四川)函数2()1fxxmx的图象关于直线1x对称的充要条件是( )
A.2m B. 2m C.1m D.1m
4.(08江西)若函数()yfx的定义域是[0,2],则函数(2)()1fxgxx的定义域是( )
A.[0,1] B.[0,1) C. [0,1)(1,4] D.(0,1)
5.(11福建8)已知函数0102)(xxxxxf,,.若0)1()(faf,则实数a的值等于( )
A.3 B. 1 C.1 D.3
6.(08陕西)定义在R上的函数()fx满足()()()2fxyfxfyxy(xyR,),(1)2f,
则(2)f等于( )
A.2 B.3 C.6 D.9
二、填空题(本大题共3小题,每小题6分,共18分.把答案填在对应题号后的横线上)
7.(07浙江)函数)(122Rxxxy的值域是______________.
8.(08湖北)已知函数269)(2)(22xxbxfaxxxf,,其中baRx、,为常数,
则方程0)(baxf的解集为 .
9.(10陕西)已知函数232,1,(),1,xxfxxaxx若((0))4ffa,则实数a= .
2
三、解答题(本大题共3小题,共46分. 解答应写出文字说明,证明过程或演算步骤)
10. (本题满分14分)已知函数)(xf满足2)1(xxf.
(Ⅰ)求)(xf的解析式; (Ⅱ)求不等式11)(xf的解集.
11. (本题满分16分) 已知函数)()()(xhxgxf,其中,)(xg是x的正比例函数,)(xh是x的
反比例函数,且函数)(xf的图象经过)3,21()3,1(BA、两点.
(Ⅰ)求)(xf的解析式; (Ⅱ)求)(xf的值域;
12. (本题满分16分)如图,底角∠ABE=45°的直角梯形ABCD,底边BC长为4cm,腰长AB为22cm,
当一条垂直于底边BC的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两
部分,令BE=x,试写出阴影部分的面积y与x的函数关系式,并画出函数大致图象.
新课标高一(上)数学单元素质测试题——1.2函数及其表示
C D E l A B
3
(参考答案)
一、选择题答题卡:
题号 1 2 3 4 5 6
答案 D A A B A A
二、填空题
7.1,0. 8.. 9. 2 .
三、解答题
10.解:(Ⅰ)设tx1,则2)1(,1txt.……………………………………3分
.2)1()(,2)1(2ttfxxf
…………………………………5分
即.32)(2tttf
).1(32)(2xxxxf
…………………………………………………7分
(Ⅱ)根据题意得111322xxx,……………………………………………11分
解之得.41x.……………………………………………………………………13分
所以,所求的不等式的解集为.4,1………………………………………………14分
11.解:(Ⅰ)设xnxhmxxg)(,)(,则xnmxxf)(.…………………………3分
根据题意,得3223nmnm,…………………………………………………………5分
解之得1,2nm.……………………………………………………………………7分
所求的解析式为xxxf12)(.………………………………………………………8分
(Ⅱ)xxy12,122xxy,即.0122xyx……………………10分
关于x的方程0122xyx有实数根,则有082y,………………12分
解之得22,22yy或.…………………………………………………………15分
所以函数)(xf的值域为,2222,.………………………………………16分
12. 解:根据题意得:
D l A
4
当直线l从点B移动到点A时,20x,221xy;……5分
当直线l从点A移动到点D时,42x,
2)2(2221xy
,即22xy.……………………10分
所以阴影部分的面积y与x的函数关系式为
.4,2222,0212xxxxy
,
,
……………………………12分
函数图象如图所示:………………………………16分
4
O 2 4 x
2
y
6