动力学图象问题
- 格式:doc
- 大小:65.32 KB
- 文档页数:2
牛顿运动定律之图像问题【基础知识】(1)牛顿第一定律:任何物体都要保持直线运动或状态,直到外力迫使它运动状态为止。
力与运动的关系:力不是的原因,力是的原因。
(2)牛顿第二定律:物体加速度的大小跟成正比,跟物体的成反比,加速度的方向跟的方向相同。
牛顿第二定律公式:=a。
牛顿第二定律的性质:①瞬时性②矢量性③因果性④同一性。
(3)牛顿第三定律:相互作用的两个物体之间的作用力和反作用力总是相等,方向,作用在同一条直线上。
牛顿第三定律公式:=F .相互作用力的性质:同时性,同一性,异体性。
(3)物理公式在确定物理量的数量关系的同时,也确定了物理量的关系。
因此物理学中选定七个物理量的单位作为基本单位,根据物理公式中其他物理量和这几个物理量的关系,推导出其他物理量的单位。
这些推导出来的单位叫做。
基本单位和导出单位一起组成了。
国际单位制中三个力学基本单位分别是:。
(4)超重:。
失重:。
完全失重:。
判断依据:。
1.质量为0.8 kg的物体在一水平面上运动,如图a、b分别表示物体不受拉力作用和受到水平拉力作用时的v-t图像,则拉力和摩擦力之比为()A. 9∶8B. 3∶2C. 2∶1D. 4∶32.(多选)如图(1)所示,在粗糙的水平面上,物块A在水平向右的外力F的作用下做直线运动,其v-t图象如图(2)中实线所示.下列判断正确的是()A.在0~1 s内,外力F不断变化B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断变化D.在3~4 s内,外力F的大小恒定3.(多选)如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标出的数据可计算出()A.物体的质量B.物体与水平面间的滑动摩擦力C.物体与水平面间的最大静摩擦力D.在F为14 N时,物体的速度最小4.如图甲所示,一物块质量为m=2 kg,以初速度v0=10 m/s从0点沿粗糙的水平面向右运动,同时受到一水平向左的恒力F作用,物块在运动过程中速度随时间变化的规律如图乙所示,求:甲乙(1)恒力F的大小及物块与水平面的动摩擦因数μ;(2)物块在4 s内的位移大小.5.在水平地面上有一质量为10 kg的物体,在水平拉力F的作用下由静止开始运动,10 s后拉力大小减为,方向不变,再经过20 s停止运动.该物体的速度与时间的关系如图所示(g=10 m/s2).求:(1)整个过程中物体的位移大小;(2)物体与地面的动摩擦因数.6.一个物块置于粗糙的水平地面上,受到水平方向推力F的作用,推力F 随时间变化的关系如图甲所示,速度v随时间变化的关系如图乙所示.取g=10 m/s2,求:(1)第1 s末和第3 s末物块所受摩擦力的大小F f1和F f2;(2)物块与水平地面间的动摩擦因数μ;(3)若第6 s末撤去外力,物块前7.5 s内的位移大小.7.竖直运行的升降机地板上有一个质量为100 kg的物体,它对地板的压力随时间变化的图象如图所示.若升降机从静止开始向上运动,g取10 m/s2,求8 s内升降机上升的高度.8.一质量为0.25 kg的物块静止在水平地面上(图甲),从t=0 s时刻开始受到一个竖直向上的力F的作用,F随时间t的变化规律如图乙所示,重力加速度g取10 m/s2.求:(1)t=2 s时,物块速度的大小:(2)t=0到t=3 s的过程中,物块上升的高度.甲乙答案解析1.【答案】B【解析】由v-t图像可知,图线a为仅受摩擦力的运动,加速度大小a1=1.5 m/s2;图线b为受水平拉力和摩擦力的运动,加速度大小为a2=0.75 m/s2;由牛顿第二定律列方程得ma1=F f,ma2=F-F f,解得F∶F f =3∶2.2.【答案】BC【解析】在0~1 s内,直线的斜率不变,加速度不变,外力F是恒力,故A错误;在1~3 s内,速度不变,物体做匀速直线运动,加速度等于零,F等于摩擦力,外力F的大小恒定,故B正确;在3~4 s内,斜率越来越大,说明加速度越来越大,所以物体做加速度增大的减速运动;根据题意,拉力水平向右,根据a=知力F不断减小,故C正确,D错误.3.【答案】ABC【解析】根据牛顿第二定律,F-F f=ma,由题图可读出外力F和加速度a的值,有:7-F f=0.5m,14-F f=4m.联立两式解得:F f=6 N,m=2 kg.故A、B正确;由图可知,当F=7 N时物体开始滑动,所以最大静摩擦力为7 N,故C正确;F=7 N开始增大,加速度逐渐增大,物体做变加速直线运动,可知F=14 N时,物体的速度不是最小,故D错误.4.【答案】(1)7 N0.15(2)6 m【解析】(1)由题图可知,0~2 s内,物体向右做匀减速直线运动,2 s~4 s内,物体向左做匀加速直线运动.0~2 s内,a1==m/s2=5 m/s2,方向水平向左;2 s~4 s内,a2==m/s2=2 m/s2,方向水平向左;由牛顿第二定律,得到:F+μmg=ma1F-μmg=ma2代入数据解得F=7 N,μ=0.15.(2)代据图像可知,物体4 s内的位移x=×2×10 m-×2×4 m=6 m.5.【答案】(1)150 m(2)0.1【解析】(1)整个过程的位移大小等于v-t图象中三角形的面积即x=×10×30 m=150 m(2)由图象知前10 s的加速度a1=1 m/s2后20 s的加速度大小为a2=0.5 m/s2由牛顿第二定律得F-μmg=ma1μmg-=ma2解以上两方程得μ=0.1.6.【答案】(1)8N (2)0.4 (3)14m【解析】(1)F f1=4 N,F f2=8 N;(2)2~4 s,由牛顿第二定律和运动学规律得F2-F f2=ma,a=,可求得m=2 kg由F f2=μF N,F N=mg得μ=0.4.(3)撤去外力后加速度a3=μg=4 m/s2,v=4 m/s,故减速到零所用时间t减==1 s,小于1.5 sx加=t加=4 mx 匀=vt 匀=8 mx 减==2 m所以x 总=x 加+x 匀+x 减=4 m +8 m +2 m =14 m.7.【答案】60 m【解析】取升降机地板上的物体为研究对象,物体受力情况如下图所示.取向上为正方向.由牛顿第三定律可知,物体对地面的压力等于地面对物体的支持力,即F =F N .在0~2 s 内,F N1=F 1>mg ,物体所受合外力竖直向上,所以物体向上做匀加速直线运动.由牛顿第二定律得F N1-mg =ma 1①a 1==5 m/s 2所以物体的位移:x 1=a 1t =10 m ②物体2 s 末的速度:v =a 1t 1=5.0×2.0 m/s =10 m/s ③ 在2~6 s 内,F N2=mg ,物体所受合外力为零,所以物体向上做匀速直线运动,则物体的位移:x 2=vt 2=10×4 m =40 m ④ 在6~8 s 内,F N3<mg ,物体所受合外力方向竖直向下,所以物体向上做匀减速直线运动,初速度为v =10 m/s.由牛顿第二定律F 3-mg =ma 3⑤a 3==-5 m/s 2所以物体的位移:x3=vt3+a3t=10 m⑥所整个过程中物体位移x=x1+x2+x3=10 m+40 m+10 m=60 m⑦8.【答案】(1)2 m/s(2)6 m【解析】(1)0-1 s内,F1<mg,物块静止1-2 s物块做匀加速直线运动,根据牛顿第二定律得,F2-mg=ma1解得a1==2 m/s2;则t=2 s时,物块的速度v=2×1 m/s=2 m/s.(2)1-2 s物块匀加速运动x1=a1t=1 m.2-3 s物块匀加速运动,根据牛顿第二定律得,F3-mg=ma2解得a2==6 m/s2;则x2=vt2+a2t=5 m.则物块上升的高度h=x1+x2=1 m+5 m=6 m.。
动力学中的图像问题一、动力学图像二、针对练习1、如图甲所示,水平长木板上有质量m=1.0 kg的物块,受到随时间t变化的水平拉力F 作用,用力传感器测出相应时刻物块所受摩擦力F f的大小.重力加速度g取10 m/s2.下列判断正确的是()A.5 s内拉力对物块做功为零B.4 s末物块所受合力大小为4.0 NC.物块与木板之间的动摩擦因数为0.4 D.6~9 s内物块的加速度的大小为2.0 m/s22、(多选)如图所示,蹦极运动就是在跳跃者脚踝部绑有很长的橡皮条的保护下从高处跳下,当人体落到离地面一定距离时,橡皮绳被拉开、绷紧、阻止人体继续下落,当到达最低点时橡皮再次弹起,人被拉起,随后,又落下,反复多次直到静止。
取起跳点为坐标原点O,以竖直向下为y轴正方向,忽略空气阻力和风对人的影响,人可视为质点。
从跳下至第一次到达最低点的运动过程中,用v、a、t分别表示在竖直方向上人的速度、加速度和下落时间。
下列描述v与t、a与、y的关系图像可能正确的是()A.B.C.D.3、水平地面上有一轻质弹簧,下端固定,上端与物体A相连接,整个系统处于平衡状态.现用一竖直向下的力压物体A,使A竖直向下匀加速运动一段距离,整个过程中弹簧一直处在弹性限度内.下列关于所加力F的大小和运动距离x之间的关系图象正确的是()()4、如图所示,竖直轻弹簧一端与地面相连,另一端与物块相连,物块处于静止状态。
现对物块施加一个竖直向上的拉力F,使物块向上做初速度为零的匀加速直线运动,此过程中弹簧的形变始终在弹性限度内,则拉力F随时间t变化的图像可能正确的是()A.B.C.D.5、水平力F方向确定,大小随时间的变化如图2a所示,用力F拉静止在水平桌面上的小物块,在F从0开始逐渐增大的过程中,物块的加速度a随时间变化的图象如图b所示,重力加速度大小为10 m/s2,最大静摩擦力大于滑动摩擦力,由图示可知()A.物块的质量m=2 kgB.物块与水平桌面间的动摩擦因数为0.2C.在4 s末,物体的动量为12 kg· m/sD.在2~4 s时间内,小物块速度均匀增加6、(多选)如图甲所示,物块A、B中间用一根轻质弹簧相连,放在光滑水平面上,物块A 的质量为1.2kg。
高中物理:动力学中的图像问题1.常见的图像形式在动力学与运动学问题中,常见、常用的图像是位移图像(x -t 图像)、速度图像(v -t 图像)和力的图像(F -t 图像)等,这些图像反映的是物体的运动规律、受力规律,而绝非代表物体的运动轨迹.2.图像问题的分析方法遇到带有物理图像的问题时,要认真分析图像,先从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图像给出的信息,再利用牛顿运动定律及运动学公式解题.[典例2] 如图,质量为M 的长木板,静止放在粗糙的水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板都静止的过程中,物块和木板的v -t 图像分别如图中的折线所示,根据v -t 图像(g 取10 m/s 2),求:(1)m 与M 间动摩擦因数μ1及M 与地面间动摩擦因数μ2.(2)m 与M 的质量之比.(3)从物块冲上木板到物块和木板都静止的过程中,物块m 、长木板M 各自对地的位移.[解析] (1)由图可知,线段ac 为m 减速时的速度—时间图像,m 的加速度为 a 1=Δv 1Δt 1=4-104m /s 2=-1.5 m/s 2 对m ,由牛顿第二定律可得:-μ1mg =ma 1,所以μ1=a 1-g=0.15 由图可知,线段cd 为二者一起减速运动时的速度—时间图像,其加速度为a 3=Δv 3Δt 3=0-48m /s 2=-0.5 m/s 2 对m 和M 组成的整体,由牛顿第二定律可得:-μ2(m +M )g =(m +M )a 3所以μ2=a 3-g=0.05. (2)由图像可得,线段bc 为M 加速运动时的速度—时间图像,M 的加速度为a 2=Δv 2Δt 2=4-04m /s 2=1 m/s 2对M ,由牛顿第二定律可得:μ1mg -μ2(mg +Mg )=Ma 2把μ1、μ2代入上式,可得m ∶M =3∶2.(3)由图线acd 与横轴所围面积可求得m 对地位移:x m =12×4×6 m +(4+12)×42m =44 m 由图线bcd 与横轴所围面积可求得M 对地位移:x M =12×12×4 m =24 m. [答案] (1)0.15 0.05 (2)3∶2 (3)44 m 24 m[方法技巧]动力学中图像问题的处理技巧(1)图像信息①v -t 图像:可以从所提供图像获取运动的方向、瞬时速度、某时间内的位移以及加速度,结合实际运动情况可以确定物体的受力情况.②F -t 图像:首先应明确该图像表示物体所受的是哪个力,然后根据物体的受力情况确定加速度,从而研究它的运动情况.(2)图像问题两关注:正确认识图像的截距、斜率、面积以及正负的含义,要做到物体实际受力与运动情况的紧密结合.4.质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m解析:物体与地面间最大静摩擦力f =μmg =0.2×2×10 N=4 N .由题图知0~3 s 内,F =4 N ,说明物体在这段时间内保持静止.3~6 s 内,F =8 N ,说明物体做匀加速运动,加速度a=F -f m=2 m /s 2,6 s 末物体的速度v =at =2×3 m/s =6 m /s ,在6~9 s 内物体以6 m/s 的速度做匀速运动.9~12 s 内又以2 m/s 2的加速度做匀加速运动.作v -t 图像如图所示,故0~12 s 内的位移s =12×3×6×2 m +6×6 m =54 m .故B 项正确.答案:B5.(多选)如图甲所示,用一水平外力F 拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图像如图乙所示,重力加速度g 取10 m/s 2.根据图乙中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .加速度由2 m /s 2增加到6 m/s 2的过程中,物体通过的位移D .加速度为6 m/s 2时物体的速度解析:由题图乙可知,当水平外力F =0时,物体的加速度a =-6 m /s 2,此时物体的加速度a =-g sin θ,可求出斜面的倾角θ=37°,选项B 正确;当水平外力F =15 N 时,物体的加速度a =0,此时F cos θ=mg sin θ,可得m =2 kg ,选项A 正确;由于不知道加速度与时间的关系,所以无法求出物体在各个时刻的速度,也无法求出物体加速度由2 m/s 2增加到6 m/s 2过程中的位移,选项C 、D 错误.答案:AB6.在水平地面上有一质量为2 kg 的物体在水平拉力F 的作用下由静止开始运动,10 s 后拉力大小减为F 3,该物体的运动速度随时间t 的变化规律如图所示(g 取10 m/s 2),求:(1)物体受到的拉力F 的大小.(2)物体与地面之间的动摩擦因数.解析:由v -t 图像可知,物体的运动分两个过程,设匀加速运动过程的加速度为a 1,匀减速运动过程的加速度为a 2,则由题图知a 1=8-010m /s 2=0.8 m/s 2 a 2=0-814-10m /s 2=-2 m/s 2 两过程物体受力分别如图甲、乙所示.加速过程:F -μmg =ma 1减速过程:F 3-μmg =ma 2(或μmg -F 3=m |a 2|) 联立以上各式解得F =8.4 N ,μ=0.34. 答案:(1)8.4 N (2)0.34。
2023届高三物理一轮复习多维度导学与分层专练专题16 动力学动态分析、动力学图像问题 导练目标导练内容 目标1动力学动态分析 目标2动力学v -t 图像 目标3动力学F -t 、F -a 图像 目标4动力学a -t 图像一、动力学动态分析 模型球+竖置弹簧模型球+水平弹簧模型 球+斜弹簧模型 蹦极跳模型 实例规律 ①A 点接触弹簧,弹簧处于原长状态,球的加速度a=g ,方向竖直向下; ②B 点mg=F=kx ,球受合外力为零,速度最大; ③C 点为A 点对称位置,球的加速度a=g ,①设定条件:水平面粗糙,物块与弹簧拴在一起;向左压缩弹簧最大松手; ②当kx=μmg 时,速度最大,所在位置为O 点的左侧。
①设定条件:斜面光滑;②B 点接触弹簧,弹簧处于原长状态,球的加速度a=gsin θ,方向沿斜面向下;③当mg=F=mgsin θ时,球受合外力为零,速度最大;④压缩至最低点,速度为规律类似于“球+竖置弹簧模型”方向竖直向上; ④D 点为最低点,速度为零,加速度a>g ,方向竖直向上。
零,加速度a>gsin θ,方向斜面向上。
【例1】如图,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由c →b 的运动过程中,下列说法正确的是( )A .小球的机械能守恒B .小球的动能一直增加C .小球的加速度随时间减少D .小球动能的增加量小于弹簧弹性势能的减少量【答案】D【详解】A .在弹簧、小球和地球组成的系统中,重力势能、动能、弹性势能相互转化,机械能总量守恒,A 错误;B .小球由c →b 的运动过程中,小球先向上加速,当重力等于弹力时,加速度减小到零,速度达到最大,此后向上减速运动,则小球的动能先增大后减小,故B 错误;C .小球由c→b 的运动过程为先加速后减速,加速度先向上减小到零,后变为向下逐渐增大,故C 错误;D .小球由c →b 的运动过程,重力势能和动能增加,弹簧的弹性势能减小,由能量守恒定律可知pk k pG ΔΔΔE E E =+则有pk pG ΔΔE E >,pk k ΔΔE E >小球动能的增加量小于弹簧弹性势能的减少量,故D 正确;【例2】如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则()A.物体从A到O加速,从O到B减速B.物体从A到O速度越来越小,从O到B加速度不变C.物体从A到O间先加速后减速,从O到B一直减速运动D.物体运动到O点时所受合力为零【答案】C【详解】D.物体在运动过程中,一直受到摩擦力的作用,在O点时,弹簧弹力为零,但仍受摩擦力作用,合力不为零,D错误;ABC.物体从A到O过程中,存在某个位置弹簧弹力等于摩擦力。
专题课6动力学图像问题题型一由运动学图像求物体受力1.常见的图像有:v-t图像,a-t图像,F-t图像,F-x图像,a-F图像等。
2.图像间的联系:加速度是联系v-t图像与F-t图像的桥梁。
3.图像的应用(1)已知物体在一过程中所受的某个力随时间变化的图像,要求分析物体的运动情况。
(2)已知物体在一运动过程中速度、加速度随时间变化的图像,要求分析物体的受力情况。
(3)通过图像对物体的受力与运动情况进行分析。
4.解题策略(1)弄清图像斜率、截距、交点、拐点、面积的物理意义。
(2)应用物理规律列出与图像对应的函数方程式,进而明确“图像与公式”“图像与物体运动”间的关系,以便对有关物理问题作出准确判断。
一质量为m的乘客乘坐竖直电梯上楼,其位移x与时间t的关系图像如图所示。
乘客所受支持力的大小用F N表示,速度大小用v表示。
重力加速度大小为g。
以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg[解析]由x-t图像的斜率表示速度,可知在0~t1时间内速度增大,即乘客的加速度向上,F N>mg;在t1~t2时间内速度不变,即乘客匀速上升,F N=mg;在t2~t3时间内速度减小,即乘客减速上升,F N<mg,故A正确,B、C、D错误。
[答案] A两物块A、B并排放在水平地面上,且两物块接触面为竖直面。
现用一水平推力F作用在物块A上,使A、B由静止开始一起向右做匀加速运动,如图甲所示。
在A、B的速度达到6 m/s时,撤去推力F。
已知A、B质量分别为m A=1 kg、m B=3 kg,A与水平地面间的动摩擦因数为μ=0.3,B与地面没有摩擦,B物块运动的v-t图像如图乙所示。
g取10 m/s2,求:(1)推力F的大小;(2)A物块刚停止运动时,物块A、B之间的距离。
2022年高考物理热点考点专题06 动力学中的图像问题一、单选题1.如图所示,竖直墙与水平地面交点为O,从竖直墙上的A、B两点分别搭两条光滑轨道到M点,∠AMO=60°∠BMO=45°,M点正上方与A等高处有一C点。
现同时将a、b、c球分别从A、B、C 三点由静止开始释放,则()A.c球最先到达M点B.b球最先到达M点C.b球最后到达M点D.a球和c球同时到达M点2.将某物体从地面竖直向上抛出,一段时间后物体又落回地面。
在此过程中物体所受空气阻力大小不变,其动能E k随距离地面高度h的变化关系如图所示,取g=10m/s2,下列说法中正确的是()A.上升过程中机械能减少,下降过程中机械能增加B.全过程中克服空气阻力做功120JC.上升与下降的时间之比为√3:√2D.上升过程中动能减少量与机械能减少量之比为6:13.随着我国5G技术的领先,无人驾驶汽车已在多地试验成功。
现将质量相等的甲、乙两车辆进行对比,两车出发位置相同,同时出发,沿同一方向做直线运动,两者的速度随时间变化关系如图所示,已知甲、乙两车位移大小分别为x1、x2,所受牵引力大小分别为F1、F2,牵引力的冲量大小分别为I1、I2,牵引力做功大小分别为W1、W2,则()A.x1:x2=2:1B.F1:F2=6:1C.I1:I2=3:2D.W1:W2=3:2 4.2022年2月,北京市和张家口市将联合举办第24届冬季奥林匹克运动会,某冰壶队为了迎接冬奥会,积极开展训练。
某次训练中,蓝色冰壶静止在圆形区域内。
运动员用质量相等的红色冰壶撞击蓝色冰壶,红、蓝两只冰壶发生正碰,如图甲所示。
若碰撞前后两壶的v−t图像如图乙所示,则()A.两只冰壶发生碰撞过程中机械能守恒B.碰撞后,蓝色冰壶受到的滑动摩擦力较大C.碰撞后,蓝色冰壶经过5s停止运动D.碰撞后,两壶相距的最远距离为1.2m二、多选题5.蹦床属于体操运动的一种,有“空中芭蕾”之称。
专题1.7 动力学的图像问题【专题诠释】 1.“两大类型”(1)已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运动情况. (2)已知物体在某一过程中速度、加速度随时间的变化图线.要求分析物体的受力情况. 2.“一个桥梁”:加速度是联系v t 图象与F t 图象的桥梁. 3.解决图象问题的方法和关键(1)分清图象的类别:分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图象中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等表示的物理意义.(3)明确能从图象中获得哪些信息:把图象与物体的运动情况相结合,再结合斜率、特殊点、面积等的物理意义,确定从图象中得出的有用信息.这些信息往往是解题的突破口或关键点. (4)动力学中常见的图象:v -t 图象、x -t 图象、F -t 图象、F -a 图象等. 【高考引领】【2019·全国卷Ⅲ】如图a ,物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。
t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。
细绳对物块的拉力f 随时间t 变化的关系如图b 所示,木板的速度v 与时间t 的关系如图c 所示。
木板与实验台之间的摩擦可以忽略。
重力加速度取10 m/s 2。
由题给数据可以得出( )A .木板的质量为1 kgB .2~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2 【答案】 AB【解析】 木板和实验台间的摩擦忽略不计,由题图b 知,2 s 后木板滑动,物块和木板间的滑动摩擦力大小F 摩=0.2 N 。
由题图c 知,2~4 s 内,木板的加速度大小a 1=0.42m/s 2=0.2 m/s 2,撤去外力F 后的加速度大小a 2=0.4-0.21m/s 2=0.2 m/s 2,设木板质量为m ,据牛顿第二定律,对木板有:2~4 s 内:F -F摩=ma 1,4 s 以后:F 摩=ma 2,解得m =1 kg ,F =0.4 N ,A 、B 正确。
2023届高三物理一轮复习重点热点难点专题特训专题15 动力学图像、超重失重、等时圆、临界极值问题 特训目标特训内容 目标1动力学图像问题(1T —4T ) 目标2超重失重问题(5T —8T ) 目标3等时圆问题(9T —12T ) 目标4 临界极值问题(13T —16T )一、动力学图像问题1.如图甲所示,一质量为1kg m =的物体在水平拉力F 的作用下沿水平面做匀速直线运动,从某时刻开始,拉力F 随时间均匀减小,物体所受摩擦力随时间变化的规律如图乙所示。
则下列说法中正确的是( )A .1s t =时物体开始做匀减速运动B .物体匀速运动时的速度大小为2m /sC .物体与接触面间的动摩擦因数为0.2D .2s =t 时物体的加速度大小为22m /s【答案】B【详解】A .物体在开始在F 作用下做匀速直线运动,由图可知,滑动摩擦力的大小为4N ,拉力随时间均匀减小后,物体开始做减速运动,3s t =时,滑动摩擦力突变成静摩擦力,说明3s t =时物体刚好减速到速度为零,之后静摩擦力与拉力F 平衡,由图可知静摩擦力图线与滑动摩擦力图线交于1s t =时,可知在1s t =时,拉力F 开始均匀减小,物体开始做减速运动,合力逐渐增大,加速度逐渐增大,物体做加速度逐渐增大的减速运动,直到3s t =时停下,处于静止状态,A 错误;B .从1~3s 过程,根据动量定理可得0Ft ft mv -=-解得物体匀速运动时的速度大小为424222m /s 2m /s 1ft Ft v m +⨯-⨯-===,B 正确; C .由图可知滑动摩擦力大小为4N f mg μ==解得物体与接触面间的动摩擦因数为40.4110f mg μ===⨯,C 错误; D .2s =t ,由图可知拉力23N F =,根据牛顿第二定律可得,物体的加速度大小22243m /s 1m /s 1f F a m --=== D 错误。
故选B 。
0 t 1
t 2 t 3
F t
t 4
F 0
a
A ′
O F
甲
a
F
O
乙
丙 李林中学高一年级物理导学案
班级 姓名 使用时间 第 周
课 题
主 备
审 核
使用教师
编号 编写时间
动力学图象问题 王 雄
例题1.静止在光滑水平面上的物体受到一个水平拉力的作用,该力随时间变化的关系如图所示,则
( )
A .物体将做往复运动
B .2 s 内的位移为零
C .2 s 末物体的速度最大
D .3 s 内,拉力做的功为零
针对练习 1.一电子在如图所示按正弦规律变化的外力作用下由静止释放,则物体将:( )
A 、作往复性运动
B 、t 1时刻动能最大
C 、一直朝某一方向运动
D 、t 1时刻加速度为负的最大。
例题2.地面上有一个质量为M 的重物,用力F 向上提它,力F 的变化将引起物体加速度的变化.已知物体的加速度a 随力F 变化的函数图像如图所示,则( ) A .当F 小于F 0时,物体的重力Mg 大于作用力F B .当F =F 0时,作用力F 与重力Mg 大小相等 C .物体向上运动的加速度与作用力F 成正比 D .a ′的绝对值等于该地的重力加速度g 的大小
针对联系2.物体A 、B 、C 均静止在同一水平面上,它们的质量分别为m A 、m B 、m C ,与水平
面的动摩擦因力F 的关系图线如图4所对应的直线甲、乙、丙所示,甲、乙直线平行,则以下说法正确的是( )
①μ A <μB m A =m B ②μ B >μC m B >m C ③μ B =μC m B >m C ④μ A <μC m A <m C A .①② B .②④ C .③④ D .①④
A
a B
F
O
小卷子
1.某同学在由静止开始向上运动的电梯里,将一测量加速度的小探头固定在质量为
1 kg
的手提包上,到达某一楼层
停止,采集数据并分析处理后列表如下:
运动规律 匀加速直线运动
匀速直线运动 匀减速直线运动 时间段/s 0~2.5 2.5~11.5
11.5~14.0 加速度/m ·s -2
0.40
0.40
某同学在计算机上绘出如下图象,设F 为手对提包的拉力.请你判断下图中正确的是 ( )
2.如图所示,A 、B 两条直线是在A 、B 两地分别用竖直向上的力F 拉质量分别为
m A 、m B 的物体得出的两个加速度a 与力F 的关系图线,由图线分析可
知
A .两地的重力加速度g A >g
B B .m A <m B
C .两地的重力加速度g A <g B
D .m A >m B
3.一个质量为kg 4的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数
1.0=μ。
从0=t 开始,物体受到一个大小和方向呈周期性变化的水平力F 作用,力F 随时间的变化规律如图所示。
求83秒内物体的位移大小. g 取2/10s m 。