影响乳液聚合的因素
- 格式:doc
- 大小:34.00 KB
- 文档页数:3
乳液聚合爆聚现象
乳液聚合爆聚现象是指在乳液聚合过程中,由于聚合反应速度过快或温度过高等原因,导致聚合体内部能量积累过多,最终导致聚合体猛烈分解的现象。
这种现象不仅会导致生产过程中的安全问题,还会影响产品质量和产量,因此需要引起足够的重视。
乳液聚合爆聚现象的发生原因主要有以下几点:
1.聚合反应速度过快。
在乳液聚合过程中,如果聚合反应速度过快,会导致聚合体内部能量积累过多,从而引发爆聚现象。
2.温度过高。
在乳液聚合过程中,如果温度过高,会导致聚合反应速度加快,从而加剧聚合体内部能量积累,最终引发爆聚现象。
3.聚合体内部存在不稳定因素。
在乳液聚合过程中,如果聚合体内部存在不稳定因素,如氧化物、自由基等,会导致聚合体内部能量积累过多,最终引发爆聚现象。
为了避免乳液聚合爆聚现象的发生,我们可以采取以下措施:
1.控制聚合反应速度。
在乳液聚合过程中,可以通过控制反应物的投入
速度、添加稳定剂等方式来控制聚合反应速度,从而避免爆聚现象的发生。
2.控制温度。
在乳液聚合过程中,可以通过控制反应器的温度、加热方式等方式来控制温度,从而避免聚合反应速度过快,最终避免爆聚现象的发生。
3.添加稳定剂。
在乳液聚合过程中,可以添加稳定剂来稳定聚合体内部的结构,从而避免聚合体内部能量积累过多,最终避免爆聚现象的发生。
总之,乳液聚合爆聚现象是一种严重的安全问题,需要引起足够的重视。
通过控制聚合反应速度、温度和添加稳定剂等方式,可以有效地避免爆聚现象的发生,从而保障生产过程的安全和产品质量。
乳液聚合的影响因素乳液聚合的影响因素(2007-03-09 15:48:57)转载分类:现代水性涂料一、乳化剂影响(1)乳化剂浓度[s]的影响[s]越大,胶束数目越多,按胶束机理成核的乳胶粒数Np也就越多,乳胶粒的直径Dp也就越小对于水中溶解度不大的单体的乳液聚合,Np∝[s]0.6[s]越大,分子量Mn越高,聚合反应速率Rp越大。
(2)乳化剂种类的影响特性临界参数CMC,聚集数及单体的增溶度各不相同CMC越小和聚集数越大的乳化剂成核几率大,所生成的乳胶粒数Np就越大,乳胶粒直径Dp越小,且聚合反应速率Rp大及聚合物分子量高;增溶度大的乳化剂所生成的增溶胶束多,成核几率高,故可生成更多的乳胶粒。
二、引发剂的影响引发剂浓度[I]增大,Mn降低Rp提高三、搅拌速度的影响搅拌的一个重要作用就是把单体分散成单体珠滴,并有利于传热和传质。
(1)搅拌速度对乳胶粒直径的影响在乳液聚合中的分散阶段,搅拌强度不宜太高,否则会使单体分散成更小的单体珠滴,每立方厘米水中单体珠滴的表面积更大,在单体珠滴表面所吸附的乳化剂量增多,致使每立方厘米水中胶束数目减少,胶束成核几率下降,故生成的乳胶粒数目减少、乳胶粒直径增大。
所以搅拌强度增大时,乳胶粒的直径不但不减小,反而增大。
(2)搅拌速度对聚合反应速率的影响一方面,每立方厘米中乳胶粒数目减少,反应中心减少,聚合反应速率降低;另一方面,会使混入乳液聚合体系中的空气增多,而空气中的氧是自由基反应的阻聚剂,会使聚合反应速率降低。
(3)搅拌对乳液稳定性的影响过于激烈的搅拌同时会使乳液产生凝胶,甚至破乳。
四、反应温度的影响温度高,Mn降低,Rp增大温度高,乳胶粒数目Np增大,粒径Dp减小。
温度高,乳液稳定性降低。
五、单体相比的影响相比M0为乳液聚合中初始加入的单体和水的质量比乳胶粒的平均直径随相比的增大而增大单体转化率随相比的增大而降低六、电解质的影响电解质的用量盐析降低CMC 提高乳化剂有效比率。
丙烯酸酯乳液聚合的影响因素前言乳液聚合是在用水或其它液体作介质的乳液中,按胶束(Miceell)机理或低聚物(oligmer)机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合来生产高聚物的一种聚合方法[ 1 ]。
作为高分子合成手段之一的核- 壳乳液聚合以其独特的结构形态大大改善了聚合物乳液的性能,其应用非常广泛。
例如,(1)用于抗冲改性剂和增韧剂[ 2 ]:许多树脂本身脆性较大,限制了它们在许多领域的应用。
在脆性聚合物中引入橡胶态聚合物,是提高脆性聚合物抗冲击性和韧性的有效方法。
但是由于橡胶相与基体树脂常存在兼容性的问题,导致了橡胶相的聚集,影响了增韧改性的效果。
而在弹性粒子表面包覆一层与基体树脂兼容或能与其反应的聚合物,则就可以解决上述问题,并能增加两相接口的相互作用。
所以,以橡胶态聚合物为核,硬聚合物为壳的复合粒子被广泛用做高分子材料的抗冲改性剂和增韧剂,这也是核- 壳聚合物最多和最重要的研究领域[ 3 ];(2)特种涂料和胶黏剂[ 4 ]:由于核- 壳结构乳胶粒子的核与壳之间存在着某种特定的相互作用,在相同原料组成的情况下,这种核- 壳化结构可以显著提高聚合物的耐水、耐磨、耐候、抗污及粘合强度等力学性能,并可显著降低乳胶的最低成膜温度,且核- 壳结构聚合物一般都是由乳液聚合得到的,因此它首先被用做涂料和胶黏剂[5 ]。
以PSi 为种子、丙烯酸酯类为第二单体进行乳液聚合所得胶乳,具有很好的耐水性和耐候性,用于涂料、胶黏剂和密封剂等领域可直接作为金属、塑料和纸张等的胶黏剂[6 ]。
具有核- 壳结构的P(St/MMA)的乳液可以配成上光涂料;采用不同玻璃化温度的聚合物为核或壳,可以设计理想的具有较低成膜温度的涂料,成膜性有明显的改进和提高[ 7 ]。
将乳液混合到水泥中形成聚合物水泥砂浆,能显著改善水泥的性能,提高水泥的抗张强度,使水泥不易龟裂,还能增加水泥的粘接力和抗磨性、防止土壤侵蚀,是合成乳液的一个新用途。
常规乳液聚合的影响因素卢志敏国明(华南师大学化学与环境学院,510631)摘要:就常规乳液聚合的几个重要影响因素:单体、乳化剂、引发剂、缓冲剂、温度、搅拌强度以及聚合工艺进行了比较详细的综述。
关键词:乳液聚合;单体;乳化剂;引发剂;缓冲剂;温度;搅拌强度;聚合工艺中图分类号:TQ 630.1 文献标识码:A 文章编号:1009-1696(2005)12-0023-06 乳液聚合技术作为获取高聚物的重要方法之一,它起始于20世纪初,并于30年代开始广泛工业化。
目前,乳液聚合大多分为常规水包油型乳液聚合、反相的油包水型乳液聚合、介于溶液聚合与乳液聚合之间的多相乳液聚合、以液氨、甲酰胺、甲酸等为分散介质的非水分散介质乳液聚合、有机分散介质分散乳液聚合、辐射乳液聚合、无胶束乳液聚合、双连续乳液聚合、乳液定向聚合、杂化乳液聚合、原子转移自由基乳液聚合等,它们的影响因素各有异同,本文将对常规乳液聚合的影响因素进行讨论。
常规乳液聚合就是以油相为分散相,水为连续相的水包油型乳液聚合。
虽然常规乳液聚合最简单的配方只是由单体、水、水溶性引发剂和乳化剂4部分组成,但其体系具有特定的复杂性,影响因素很多,以下将对单体、乳化剂、引发剂、缓冲剂、温度、搅拌速率和聚合工艺等因素进行介绍。
1单体1.1 主要单体能进行乳液聚合的单体种类很多,在常规乳液聚合中应用得比较广泛的有乙烯基单体、共轭二烯单体、丙烯酸及甲基丙烯酸系单体。
这些单体在乳液聚合中作为主要单体,它们在水中溶解度很小,与水的表面力相差很大,在静置时分为两层。
加入乳化剂后由于单体可以进入胶束,单体在乳化剂溶液中的溶解度增加,单体就可以稳定地分散在体系中,形成水包油体系,混合单体的乳化稳定性与乳液共聚稳定性结果一致。
如要乳液聚合顺利进行,单体还必须符合以下3个条件:(1)可以增溶溶解但不是全部溶解于乳化剂水溶液;(2)可在增溶的温度下进行聚合;(3)与水或乳化剂无任何活化作用,即不水解。
浅析乳液聚合的合成原理及和材料及稳定性在乳液聚合过程中,乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。
功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,容易产生絮凝现象,极易破乳。
因而选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要。
聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。
在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。
凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。
在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。
严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。
凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效转化率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。
目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。
乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。
当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。
乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。
乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。
此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。
乳液聚合的影响因素(2007-03-09 15:48:57)转载分类:现代水性涂料一、乳化剂影响(1)乳化剂浓度[s]的影响[s]越大,胶束数目越多,按胶束机理成核的乳胶粒数Np也就越多,乳胶粒的直径Dp也就越小对于水中溶解度不大的单体的乳液聚合,Np∝[s]0.6[s]越大,分子量Mn越高,聚合反应速率Rp越大。
(2)乳化剂种类的影响特性临界参数CMC,聚集数及单体的增溶度各不相同CMC越小和聚集数越大的乳化剂成核几率大,所生成的乳胶粒数Np就越大,乳胶粒直径Dp越小,且聚合反应速率Rp大及聚合物分子量高;增溶度大的乳化剂所生成的增溶胶束多,成核几率高,故可生成更多的乳胶粒。
二、引发剂的影响引发剂浓度[I]增大,Mn降低Rp提高三、搅拌速度的影响搅拌的一个重要作用就是把单体分散成单体珠滴,并有利于传热和传质。
(1)搅拌速度对乳胶粒直径的影响在乳液聚合中的分散阶段,搅拌强度不宜太高,否则会使单体分散成更小的单体珠滴,每立方厘米水中单体珠滴的表面积更大,在单体珠滴表面所吸附的乳化剂量增多,致使每立方厘米水中胶束数目减少,胶束成核几率下降,故生成的乳胶粒数目减少、乳胶粒直径增大。
所以搅拌强度增大时,乳胶粒的直径不但不减小,反而增大。
(2)搅拌速度对聚合反应速率的影响一方面,每立方厘米中乳胶粒数目减少,反应中心减少,聚合反应速率降低;另一方面,会使混入乳液聚合体系中的空气增多,而空气中的氧是自由基反应的阻聚剂,会使聚合反应速率降低。
(3)搅拌对乳液稳定性的影响过于激烈的搅拌同时会使乳液产生凝胶,甚至破乳。
四、反应温度的影响温度高,Mn降低,Rp增大温度高,乳胶粒数目Np增大,粒径Dp减小。
温度高,乳液稳定性降低。
五、单体相比的影响相比M0为乳液聚合中初始加入的单体和水的质量比乳胶粒的平均直径随相比的增大而增大单体转化率随相比的增大而降低六、电解质的影响电解质的用量盐析降低CMC 提高乳化剂有效比率。
常规乳液聚合的影响因素卢志敏李国明(华南师范大学化学与环境学院,广州510631)摘要:就常规乳液聚合的几个重要影响因素:单体、乳化剂、引发剂、缓冲剂、温度、搅拌强度以及聚合工艺进行了比较详细的综述。
关键词:乳液聚合;单体;乳化剂;引发剂;缓冲剂;温度;搅拌强度;聚合工艺中图分类号:TQ 630.1 文献标识码:A 文章编号:1009-1696(2005)12-0023-06 乳液聚合技术作为获取高聚物的重要方法之一,它起始于20世纪初,并于30年代开始广泛工业化。
目前,乳液聚合大多分为常规水包油型乳液聚合、反相的油包水型乳液聚合、介于溶液聚合与乳液聚合之间的多相乳液聚合、以液氨、甲酰胺、甲酸等为分散介质的非水分散介质乳液聚合、有机分散介质分散乳液聚合、辐射乳液聚合、无胶束乳液聚合、双连续乳液聚合、乳液定向聚合、杂化乳液聚合、原子转移自由基乳液聚合等,它们的影响因素各有异同,本文将对常规乳液聚合的影响因素进行讨论。
常规乳液聚合就是以油相为分散相,水为连续相的水包油型乳液聚合。
虽然常规乳液聚合最简单的配方只是由单体、水、水溶性引发剂和乳化剂4部分组成,但其体系具有特定的复杂性,影响因素很多,以下将对单体、乳化剂、引发剂、缓冲剂、温度、搅拌速率和聚合工艺等因素进行介绍。
1单体1.1 主要单体能进行乳液聚合的单体种类很多,在常规乳液聚合中应用得比较广泛的有乙烯基单体、共轭二烯单体、丙烯酸及甲基丙烯酸系单体。
这些单体在乳液聚合中作为主要单体,它们在水中溶解度很小,与水的表面张力相差很大,在静置时分为两层。
加入乳化剂后由于单体可以进入胶束内,单体在乳化剂溶液中的溶解度增加,单体就可以稳定地分散在体系中,形成水包油体系,混合单体的乳化稳定性与乳液共聚稳定性结果一致。
如要乳液聚合顺利进行,单体还必须符合以下3个条件:(1)可以增溶溶解但不是全部溶解于乳化剂水溶液;(2)可在增溶的温度下进行聚合;(3)与水或乳化剂无任何活化作用,即不水解。
水性乳液是水性涂料的重要组成部分,而乳液聚合是合成水性乳液的重要方法之一。
本文着重探讨影响乳液聚合的主要因素。
1 单体的影响单体不溶于水,由于单体与水的表两张力相差很大,在静置时,分为;两层,加入乳化剂后由于单体可以进入胶束内,就增加了单体在乳化剂中的溶解度。
溶解度越大,乳液聚合效果就越好。
混合平体乳化稳定性与乳液共聚稳定性结果一致。
两种或两种以上单体参与乳液聚合中,不同的加料方式及聚合条件均能引起胶粒形态发生变化,从而对聚合物的性能产牛影响。
种子乳液聚会是合成功能性乳液最重要的方法之一,人们对极性- 非极性(减弱极性)单体对的种子乳液聚合进行了广泛的研究。
当种子聚合物的亲水性比第二单体聚合物大时,往往形成具有相分离结构形态的乳液,甚至在一定条件下会形成种子聚合物包覆第二单体聚合物的反相核壳结构乳液;当种子聚合物亲水性小于第二单体聚合物时,易形成种子聚合物在内、第二单体聚合物在外的核壳结构乳液。
一般单体在乳液聚合配方中的质量分数为30%~60%。
2 乳化剂的影响2.1 乳化剂的种类及特点的影响乳化剂是一种表向活性剂,能降低水的表向张力,其对实现乳液聚合用乳液稳定性起着重要作用。
乳化剂分为阴离子型乳化剂、阳离子型乳化剂、两性离子型乳化剂和非离子型乳化剂。
乳化剂分为两部分:一部分是亲油部分,另一部分是亲水部分阴离子型乳化剂在水中发生解离,与亲油基团相连的是带负电荷的阴离子,如肥皂类、硫化物、磺化物等。
肥皂类乳化剂,如长链脂肪酸类的Na+、K+、NH++盐,具有良好的乳化能力,但较易被酸和钙、镁离子破坏;硫化物类乳化剂主要是高级脂肪醇酯类,其乳化能力强,比肥皂类乳化剂稳定,能耐酸和钙离子;磺化物类乳化剂的水溶性比硫化物差,但在酸性介质中稳定性较好。
阳离子型乳化制在水中离解后是带正电的阳离子。
两件离子型乳化剂在水中离解后,同时存在带正、负电荷的离子。
阳离子型乳化剂和两性离子型乳化剂在乳液聚合中应用较少。
1、在乳化剂的作用下,借助机械搅拌,使单体在水或非水介质中形成稳定的乳液,从而进行非均相聚合,生成具有胶体溶液特征的乳液聚合物的聚合方法称为乳液聚合。
乳液聚合的特点是聚合过程中散热较易,聚合速度较快,聚合物分子量较高,但常含有少量杂质。
例如,1,3-丁二烯与苯乙烯共聚及其它合成橡胶和胶粘剂等的合成属于乳液聚合。
查看全文2、单体在水中,在乳化剂、引发剂和机械搅拌作用下,分散成乳状液而进行的聚合反应,叫做乳液聚合。
它的主要特点是:聚合物颗粒很小,直径约为0.05~0.2μm;聚合速率快,高分子产物分子量较高;以水为介质,体系粘度低,聚合物反应温度较低,传热控温容易;反应后期,粘度仍很低,适于制取粘性较大的聚合物(如丁苯橡胶)及直接应用乳液的场合...... 查看全文"乳液聚合" 在工具书中的解释1、乳液聚合是指在表面活性剂(乳化剂)的存在下通过机械搅拌使高分子单体分散于水中形成乳状液然后在水溶性引发剂的作用下进行聚合.乳液聚合的组成较复杂最简单的配方由单体、乳化剂、水和水溶性引发剂四个组分组成 文献来源2、乳液聚合是指在水相中,由单一的或是不同的烯类单体的非均相体系,在乳化剂的作用下,由水性引发剂所引发的一系列复杂的聚合反应 文献来源3、乳液聚合是指八甲基环四硅氧烷(D4)或二甲基硅氧烷混合环体(DMC)与硅氧烷偶联剂(如540.550、560、602),在以水为分散介质,碱或酸为催化剂,表面活性剂为乳化剂的胶束中低中温聚合形成微乳液 文献来源4、单体在乳化剂的作用下在水中形成乳液而进行的聚合反应称为乳液聚合[2],自Stoffer[3]于20世纪80年代初首次报道微乳液聚合以来,微乳液聚合作为乳液聚合的一个分支已引起人们的广泛关注 文献来源"乳液聚合" 在学术文献中的解释 先说一下乳液聚合技术的历史乳液聚合技术萌生于本世纪早期,30年代见于工业生产,目前乳液聚合已成为高分子科学和技术的重要领域,是生产高聚物的重要方法之一。
乳液聚合的影响因素(2007-03-09 15:48:57)转载分类:现代水性涂料一、乳化剂影响(1)乳化剂浓度[s]的影响[s]越大,胶束数目越多,按胶束机理成核的乳胶粒数Np也就越多,乳胶粒的直径Dp也就越小对于水中溶解度不大的单体的乳液聚合,Np∝[s]0.6[s]越大,分子量Mn越高,聚合反应速率Rp越大。
(2)乳化剂种类的影响特性临界参数CMC,聚集数及单体的增溶度各不相同CMC越小和聚集数越大的乳化剂成核几率大,所生成的乳胶粒数Np就越大,乳胶粒直径Dp越小,且聚合反应速率Rp大及聚合物分子量高;增溶度大的乳化剂所生成的增溶胶束多,成核几率高,故可生成更多的乳胶粒。
二、引发剂的影响引发剂浓度[I]增大,Mn降低Rp提高三、搅拌速度的影响搅拌的一个重要作用就是把单体分散成单体珠滴,并有利于传热和传质。
(1)搅拌速度对乳胶粒直径的影响在乳液聚合中的分散阶段,搅拌强度不宜太高,否则会使单体分散成更小的单体珠滴,每立方厘米水中单体珠滴的表面积更大,在单体珠滴表面所吸附的乳化剂量增多,致使每立方厘米水中胶束数目减少,胶束成核几率下降,故生成的乳胶粒数目减少、乳胶粒直径增大。
所以搅拌强度增大时,乳胶粒的直径不但不减小,反而增大。
(2)搅拌速度对聚合反应速率的影响一方面,每立方厘米中乳胶粒数目减少,反应中心减少,聚合反应速率降低;另一方面,会使混入乳液聚合体系中的空气增多,而空气中的氧是自由基反应的阻聚剂,会使聚合反应速率降低。
(3)搅拌对乳液稳定性的影响过于激烈的搅拌同时会使乳液产生凝胶,甚至破乳。
四、反应温度的影响温度高,Mn降低,Rp增大温度高,乳胶粒数目Np增大,粒径Dp减小。
温度高,乳液稳定性降低。
五、单体相比的影响相比M0为乳液聚合中初始加入的单体和水的质量比乳胶粒的平均直径随相比的增大而增大单体转化率随相比的增大而降低六、电解质的影响电解质的用量盐析降低CMC 提高乳化剂有效比率如有侵权请联系告知删除,感谢你们的配合!。
醋酸乙烯酯的乳液聚合实验报告一、实验目的。
本实验旨在通过醋酸乙烯酯的乳液聚合实验,探究其聚合反应的特性和影响因素,为相关领域的研究提供实验数据和参考。
二、实验原理。
醋酸乙烯酯是一种重要的合成树脂,其乳液聚合是一种重要的合成方法。
乳液聚合是指在水相中形成微乳滴,通过引发剂或辐射引发,使得乳液中的单体发生聚合反应,形成聚合物微粒。
在本实验中,我们将通过引发剂引发醋酸乙烯酯的乳液聚合反应,得到乳液聚合物。
三、实验步骤。
1. 实验准备,准备所需的醋酸乙烯酯、乳化剂、引发剂等原料,并进行称量和配制。
2. 乳化,将醋酸乙烯酯和乳化剂加入适量的水中,通过机械搅拌或超声处理使其充分乳化。
3. 引发,加入引发剂,并进行引发反应,使得醋酸乙烯酯在乳液中发生聚合反应。
4. 分离,将乳液聚合物进行分离、洗涤和干燥处理,得到最终的乳液聚合产物。
5. 实验记录,记录实验过程中的关键参数和观察结果,包括乳液的稳定性、引发反应的速率和产物的性质等。
四、实验结果与分析。
经过实验操作,我们得到了醋酸乙烯酯的乳液聚合产物,并进行了相关分析。
实验结果表明,乳化剂的类型和用量、引发剂的种类和浓度等因素对乳液聚合反应具有重要影响。
在实验中,我们观察到乳液的稳定性、引发反应的速率和产物的颗粒大小等参数,这些结果为进一步研究提供了重要参考。
五、实验结论。
通过本次实验,我们成功地进行了醋酸乙烯酯的乳液聚合实验,并得到了相关的实验数据和结果。
实验结果表明,乳液聚合反应受多种因素影响,需要进一步深入研究和探讨。
本实验为相关领域的研究提供了重要的实验基础和参考。
六、实验总结。
本次实验通过醋酸乙烯酯的乳液聚合实验,探究了乳液聚合反应的特性和影响因素,并取得了一定的实验成果。
在今后的研究中,我们将进一步深入探讨乳液聚合反应的机理和影响因素,为相关领域的研究提供更多的实验数据和理论支持。
七、参考文献。
[1] Smith A, Jones B. Emulsion polymerization: a mechanistic approach. London: Academic Press, 2010.[2] Wang C, Zhang D, Li H. Advances in emulsion polymerization. Beijing: Chemical Industry Press, 2015.八、致谢。
异丙醇在丙烯酸乳液聚合反应中的作用概述说明1. 引言1.1 概述丙烯酸乳液聚合反应是一种重要的聚合工艺,在涂料、粘胶和塑料制品等行业中广泛应用。
在这个反应过程中,异丙醇作为常用的溶剂被广泛添加到乳液中,并对聚合反应产生重要影响。
1.2 文章结构本文将从以下几个方面探讨异丙醇在丙烯酸乳液聚合反应中的作用。
首先,我们会介绍异丙醇的基本特性和用途。
然后,我们会详细探讨异丙醇对乳液稳定性的影响以及对聚合速率和分子量的影响。
接下来,我们会解析丙烯酸乳液聚合反应的机理与过程,并特别关注反应条件对该过程的影响。
最后,我们会深入探讨异丙醇在乳液聚合反应中的作用机制,并总结其在该过程中的重要性。
1.3 目的本文旨在全面了解和解释异丙醇在丙烯酸乳液聚合反应中所起到的作用。
通过对其影响因素和机制的研究,可以为进一步优化乳液聚合反应条件、提高产品质量以及开发新型异丙醇聚合体系提供理论依据。
此外,本文还将探讨可能存在的限制和挑战,并提出未来进一步研究的方向,以促进该领域的发展与创新。
2. 异丙醇在丙烯酸乳液聚合反应中的作用2.1 异丙醇的介绍异丙醇,也称为2-丙醇或异丙基醇,是一种无色透明、具有刺激性气味的液体。
它是一种重要的溶剂和化学原料,在众多工业领域得到广泛应用。
2.2 异丙醇对乳液稳定性的影响在丙烯酸乳液聚合反应中,异丙醇起着调节乳液稳定性的关键作用。
添加适量的异丙醇可以改善乳液的稳定性,防止其析出分散相和发生凝胶化现象。
异丙醇通过与聚合物链相互作用,降低了分子间的排斥力,增加了聚合物链之间的相互吸引力,从而提高了乳液的稳定性。
2.3 异丙醇对聚合速率和分子量的影响异丙醇对于丙烯酸乳液聚合反应具有显著影响。
适量添加异丙醇能够促进聚合反应的进行,并缩短聚合时间。
这是因为异丙醇分子与自由基活性物种之间发生反应,生成具有稳定自由基特性的中间产物,从而加速了聚合过程。
此外,异丙醇还可以调节聚合物的分子量分布,使其更加均匀。
乳液聚合用的引发剂必须是水溶的.引发剂用量增大,反应速度快,胶膜拉伸强度增大,但乳液不稳定易破乳凝聚.用量过少,聚合反应慢[6].引发剂用量和滴加方式会影响乳液聚合物的分子量大小,分子苯丙乳液合成1.2.1 配方去离子水75.84 mL 甲基丙稀酸甲酯 2.85 mL苯乙烯33.2 mL甲基丙稀酸丁酯34.4 mL丙稀酸1.2 mL聚乙烯醇0.3 g阴离子表面活性剂D 1.31 g过硫酸钾0.38 g非离子表面活性剂T 3.28 mL碳酸氢钠0.189 6 g氨水1.2.2 操作方法(1)配制一定百分含量的过硫酸钾水溶液以及一定百分含量的碳酸氢钠的水溶液.(2)称取阴离子表面活性剂D 1.31 g加入25.0 g水(额外添加)中配成5%的水溶液,再加入15 g水稀释,加入非离子活性剂T 3.28 mL.称取聚乙烯醇0.3 g加入5.7 g水(额外添加)配成5%的水溶液,再加入15.0 g水稀释.取上述过硫酸钾水溶液12.67 mL,用10.0 g水稀释.(3)在乳化器中加入部分原料进行单体预乳化.包括去离子水,活性剂稀释液,苯乙烯,甲基丙稀酸丁酯,丙稀酸.剧烈搅拌后,成一乳白色混合物.(4)制备种子乳液:当三口烧瓶的温度在50℃时,加入部分水,部分乳化剂和部分引发剂,再加入部分预乳化液,慢慢升温至反应放热,表明乳液聚合反应已经开始.最后温度控制在70~90℃之间.(5)配制滴加乳液:把剩余的乳化液和剩余药品加入乳液加料斗中,剧烈搅拌使之混合均匀制成滴加乳液.(6)最后把剩余的引发剂和滴加乳液连续的加入反应器中,在 3.5 h内滴完.滴加速度120 L·h-1.(7)加完乳液后,恒温1 h,待反应完全.再冷却至70℃ ,恒温30 min后,冷却至40℃以下,调节pH值在8~9之间,即得具有微蓝色乳光的乳白色粘稠状液体.1.3 乳液的性能测试项目1.3.1 外观观察乳液中有无颗粒结块,以判断其聚合质量[4].1.3.2 粘度使用涂4杯测粘度.当乳液总量较小时,可使用落球粘度法,测相对值,即用直径为8.118 mm 的刚球,用秒表记录在5 mL量筒乳液中,移动3 mm所需的时间[4].1.3.3 Ca2+稳定性在100 mL试管中,按V乳液∶VCa Cl2=4∶1比例配制溶液.在乳液中加入0.5%Ca Cl2溶液混合.静置24 h.无沉淀物为合格[5].1.3.4 水稀释稳定性在10 mL试管中,按V乳液∶V去离子水=1∶4比例,在乳液中加入去离子水.混合均匀后静置24 h.无沉淀物为合格[4].1.3.5 固含量按国标,用常压加热法测定,即将1~2 g乳液于105℃的电热恒温干燥箱中干燥2 h,至恒重,称重计算固含量[4].乳液固含量S按下式计算S=(W1/W0)×100(%)其中:W1,W0分别为恒重后及干燥前乳液重量(g)1.3.6 膜的耐水、耐酸碱性将涂有乳液的玻璃载片在室温下干燥后,分别浸入去离子水,5%硫酸溶液和氢氧化钠饱和溶液中放484西南师范大学学报(自然科学版)摘要:以水作溶剂,苯乙烯,丙稀酸酯,丙稀酸,聚乙烯醇等共聚合成乳液,探索了聚合乳液的物料组成及反应温度、反应时间、加料时间及引发剂的用量对共聚乳液性能的影响,并在此基础上进一步制备了乳胶内墙涂料,确定了颜基比及各种填料的较好用量.测试并报道了乳液及内墙涂料的性能试验结果,最后给出了乳液和内墙涂料较佳的合成工艺.关键词:苯丙乳液;内墙涂料;乳胶漆建筑乳胶漆在中国建筑漆中已成为主要产品.但是乳胶漆大量用于建筑在中国走了很长的路.距今已有45年的历史.45年间乳胶漆的发展经历了3次高潮[1].目前,作为建筑乳胶漆用的乳液,在我国开发生产的有:聚醋酸乙烯乳液、醋酸乙烯顺丁稀二酸二丁酯共聚乳液、醋酸乙烯丙稀酸酯共聚乳液、氯乙烯偏氯乙烯共聚乳液、苯乙烯丙稀酸酯共聚乳液、纯丙稀酸酯共聚乳液以及醋酸乙烯叔碳酸乙烯酯共聚乳液等.因为在合成工艺和性质上的优越性以及价格相对较低的原因,苯乙烯丙稀酸酯共聚乳液在各种乳胶漆的调制上得到了广泛的应用[2]. 通常的溶剂型涂料在合成中使用了不同品种、不同数量的有机溶剂,主要成膜物溶解为稀薄的溶液,利于涂料的施工.但溶剂易燃、有毒、污染环境,且经济上造成一定的浪费,各国都在尽量减少有机溶剂在涂料中的使用.但是苯丙乳胶涂料是一种水溶性的乳胶漆.它克服了以往普通聚乙烯醇类涂料的缺点.苯丙乳胶漆耐水、耐碱、耐擦性好,而且涂膜的耐候性、附着力都有上好的表现,且价格适中,制备工艺稳定[3].因此,为满足普通家庭或者单位的大众化需求,本着经济实惠的原则,并兼顾生产过程及开发的能力,通过对苯丙乳液的改性,研制出高档次的内墙涂料.1 实验部分1.1 仪器与试剂电热恒温干燥箱,高速搅拌机,ME-100高剪切混合乳化机.甲基丙稀酸甲酯,甲基丙稀酸丁酯,苯乙烯,丙稀酸,聚乙烯醇为工业品,过硫酸钾,碳酸氢钠,氨水,各种表面活性剂等为分析纯试剂,水为去离子水.①收稿日期:200406 10作者简介:张树鹏(1979),男,吉林长春人,硕士研究生,主要从事材料化学方面的研究.通讯作者:傅相锴,教授,博士生导师.通家庭或者单位的大众化需求并且制备工艺简单.(2)本文的苯丙共聚乳液具有丙酸酯类聚合物的耐老化性、耐候性好,不泛黄等优点,它的外观细腻,附着力强,成膜后耐碱、耐水、耐擦拭性好.可以用作建筑涂料基料.苯丙乳液用苯乙烯作为硬单体代替了部分价格较贵的甲基丙烯酸酯,其综合性能虽然略低于纯丙共聚乳液,但成本显著下降,因此仍然具有明显的技术、经济效益,尤其用于内墙具有很好的性价比.展望目前涂料技术的发展,可归纳两个方面[6]:(1)大量研究表明,造成室内空气污染主要有两大因素:通风和建筑材料.空气调节设备的使用,导致室内外空气交换量大大减少;建筑和装修材料释放的挥发性有机物被大量浓缩,造成空气污染,危害人体健康.因此,调整配方,工艺减少建筑和装修材料挥发性有机物排放,是乳胶漆面对加强环境保护的重大课题.(2)深入研究漆膜的结构形态,调变聚合物分子在漆膜中的堆砌形态以提高漆膜的性能,是乳胶漆研究的另一重大课题.苯丙类弹性胶乳虽然具有优良的耐候性、成膜性能以及抗紫外光等优点,被广泛的应用在建筑物外墙等领域⑴,但在某些特殊场合使用时,仍有许多不足,如:耐玷污性、耐化学品性、机械力学性能差,限制了其进一步应用,而环氧树脂优异的耐碱性、耐化学品性、耐溶剂性、机械强度高、具有良好的附着力pm。
影响聚醋酸乙烯乳液质量的因素
单体质量的影响
醋酸乙烯单体应该用新精馏的,并控制一定的质量指标。
外观——无色透明液体
活化度(10ml单体加过氧化苯甲醚——<30min
沸点——72-73℃——20ml在70℃时测定)
含醛(以乙醛计)——<0.02%
含酸(以乙酸计)——<0.01%
醋类是醋酸乙烯单体中的主要杂质,能起到明显的阻聚作用,阻聚作用使得聚合物的分子量不易长大,并且使聚合过程变复杂。
在本体聚合和悬浮聚合时经常使用乙醛调节分子量大小。
酸对乳液聚合也有影响,活化度实际上是醛、酸和其他杂质在单体中的综合影响,杂质多聚合诱导期变长。
杂质少,诱导期短,活化时间也短。
活化度太差的单体在乳液聚合反应进行时会出现聚合反应时行缓慢,回流一直很大,使连续加入单体有困难。
加单体太慢或中途停止加单体则反应放热少而回流带出的热量多,反应温度就会下降,反应难于控制,无法平稳进行。
引发剂的影响
在乳液聚合中都用水溶性的引发剂,如过硫酸盐和过氧化氢,而不能用溶解于单体中的过氧化苯甲酰和偶氮二异丁腈,引发剂溶解在单体中不好。
过氧化氢在存放中易变化,而硫酸盐比过氧化氢易控制,在操作时加水溶解后即加入反应釜内,因此比较稳定,所以一般多采用过硫酸钾、过硫酸铵等。
一般情况下过硫酸钾的用量为单体量的0.2%,实际上在反应中只加入2/3,其余1/3是在反应最后阶段加入的,目的是为了减少乳液中的游离单体。
引发剂用量根据设备情况、投料量确定,反应设备越大,投料量越大,引发剂的用量就相应减少些。
做小试验的时候,引发剂使用的比例比中试、实际生产的比例要大一点。
而在每次反应时间中初加的部分也需视反应情况而稍有不同。
用过硫酸盐为引发剂时,乳液的pH值需加以控制,因为在反应中加入过硫酸盐会使反应液的酸性不断增加,而pH值太低(如小于2时),则反应速度很慢,有时会破坏了乳液聚合反应的正常进行,使乳液粒子变粗,甚至会使反应时间过长或使反应无法进行。
若所用聚乙烯醇是碱醇解的产品,水溶液呈弱碱性,则在反应前可不调整pH值,而在反应结束后加入部分碳酸氢钠中和至pH值4-6间。
乳化剂的影响
乳化剂是一种表面活性剂,在乳液聚合过程中能降低单体和水的表面张力,并增加单体在水中的溶解度,形成胶束和乳化的单体液滴。
乳化剂的选择对乳液的稳定性和质量有很大影响,乳化剂的用量多少也对乳液的稳定性有影响,乳化剂用量太少乳液的稳定性差,而用量太大耐水性则差。
聚乙烯醇是聚醋酸乙烯乳液聚合中最常用的乳化剂,由于对乳液的质量要求不同,聚乙烯醇的规格和用量也有所不同。
聚乙烯醇在乳液中起乳化作用,也起保护胶体的的作用,但也有使胶体增稠的作用,所以其用量不仅以乳化的角度也从增稠的角度,聚乙烯醇地一般用量是为单体的5%左右。
PVA的聚合度和使用量对粘度都有影响。
聚合度的高低对乳液的粘度影响较大,用聚合度高的聚乙烯醇可以得到粘度较大的乳液。
当然聚乙烯醇的用量对乳液的粘度也有同样的影响,但聚乙烯醇的用量大了就会使耐水性下降,所以当需要粘度较高的乳液时,最好用聚合度较大的聚乙烯醇而避免聚乙烯醇的用量增加过多。
一般常用平均聚合度1500以上的聚乙烯醇,如果制备粘度很大的乳液时,最好用平均聚合度2000以上的聚乙烯醇。
聚乙烯醇一般用醋酸乙烯在甲醇中醇解来制取。
所以聚乙烯醇聚合度的大小取决于聚醋酸乙烯分子量的大小,而在醇解时总是有部分乙酰基残留下来,聚乙烯醇分解的程度就用醇解度多少或残留乙酰基多少来表示。
醇解度在99.5%以上的纺丝用的聚乙烯醇,由于聚乙烯醇分子结构中的乙酰基基本上被羟基取代,因此结晶性较大,其水溶液在低温时很容易成胶冻,用这样的聚乙烯醇制成的乳液防冻性就很差,冰冻成块融化后也不易还原,即一经冰冻,乳液就被破坏了。
如果醇解留下一部分乙酰基,则聚乙烯醇分子结构上带有部分不对称结构和极性不同的基团,破坏了分子结构的规整性,结晶性就较小,乳化作用也较好,所以用作乳化剂的聚乙烯醇都是这类低醇解度或称高乙酰基的聚乙烯醇。
这种聚乙烯醇在冷水中也能溶解,制成的乳液稳定性好,防冻性能也较好,最常用的是醇解度88%-90%,即乙酰基为10%-14%的产品。
如果使聚乙烯醇的羟基与少量的丁醛基缩合,也同样使聚乙烯醇分子上带上结构不同的基团,经这样改性的聚乙烯醇乳化性能很好,制成乳液的稳定性也很好,而且比高乙酰基聚乙烯醇有更好的耐水性。
但丁醛不能缩合太多,否则水溶性变差,并且有一个特点:在冷水中溶解性大,在热水中溶解性小。
所以在生产乳液时温度要逐渐上升至95℃,如丁醛基缩合过多,就会在加热时析出,使乳液破坏。
所以,一般丁醛基仅缩合3%-5%左右。
使用乳化剂除聚乙烯醇外也可用其他非离子型或阴离子型的表面活性剂,非离子型的大都是环氧乙烷缩合物,如脂肪醇或烷基苯酚的环氧乙烷聚合物或环氧乙烷的嵌段共聚物。
常用的如乳化剂。
OP/TX-10等,是烷基酚的环氧乙烷缩合物。
阴离子型常用的有十二烷基硫酸钠、十二烷基苯磺酸钠、丁二酸乙基乙酯磺酸钠等。
用两种乳化剂混合使用可形成混合胶束,乳化效果和稳定性比单独使用一种的要好,所以在乳液制备中较多的使用两种或一种非离子和一种阴离子型的乳化剂混合使用。
增塑剂的影响
增塑剂的使用对聚醋酸乙烯乳液来说是必要的,加入增塑剂后能改善胶膜的机械性能,使胶膜有较好的柔韧性和附着力,而主要的是能降低乳胶的最低成膜温度。
如不加增塑剂的聚醋酸乙烯乳液在低于15℃的条件下就不能很好成膜,而加入10%的苯二甲酸二丁酯后,就能使最低成膜温度降至5℃以下。
在聚醋酸乙烯乳液中较普遍使用的增塑剂有邻苯二甲酸二丁酯、磷酸三甲酚酯等。
磷酸三甲酚酯除了防火涂料及其他特殊要求外很少使用,是由于磷酸三甲酚酯的增塑效果比苯二甲酸二丁酯差些,对醋酸乙烯乳液的混溶性也较差些。
增塑剂的用量视要求不同而异,一般是单体量的10%-25%,加入的方法通常在乳液反应完毕之后降低温度至50℃左右时慢慢加入,然后搅拌1-2h使之均匀,因为增塑剂被吸收到聚合物粒子中去需要一段时间,也可以在乳化反应前加
入增塑剂的水溶液,搅拌均匀后再加入单体和引发剂开始反应,在一般情况下两者对乳液的质量影响没有什么显著的差别。
一般增塑剂在反应液中最好不超过5%-7%,否则会引起副作用,如降低聚合速度、降低分子量等。
因此从操作来说反应完毕后加入较为方便简单。
用其他合成树脂作增塑剂的,或用其他一些单体和醋酸乙烯共聚以起到内增塑作用。
这种共聚乳液没有增塑剂挥发、迁移等缺点,性能也要比外增塑剂的更好些。
用水量的影响
水是分散介质,醋酸乙烯单体或聚醋酸乙烯树脂的颗粒是分散在水中的,这样使反应热易于分散,放热反应较易控制,有助于制得均匀的高分子产物。
用水量影响乳液含量和粘度,因此,应根据使用要求确定水的用量。
操作工艺的影响
在醋酸乙烯聚合时,开始反应时加入过硫酸盐作引发剂,由于回流和连续慢慢加入单体,温度可在一段时间内无需加热和冷却而保持在80℃左右,随着反应继续进行,需被加少量过硫酸盐以维持反应,温度不会下降,经过反复试验,就能在不同的设备条件下摸索出最适宜的加单体的速度。
回流大小、每小时补加过硫酸盐的数量等操作控制条件。
使反应能稳定在78-82℃之间,使聚合反应能平稳地进行。
故在实际操作中需很好地控制热量平衡,操作时如果反应剧烈,温度上升很快,则应少加或不加过硫酸盐,并适当加快单体加入速度;如果温度有些偏低,则就要稍多加些过硫酸盐,并适当减慢单体加入速度。
反应时如果回流很小,可以加快醋酸乙烯的加入,反之就要适当减慢加入单体的速度,甚至暂住片刻,待回流正常后再继续加入单体。
把乳化剂水溶液先和单体一起搅拌乳化,再加引发剂引发聚合的工艺虽然也可以,但在诱导期过后反应十分激烈,要制成质量好的乳液是十分困难的。
因此可以先将乳化好的乳液放一部分在反应釜内,加入部分引发剂引发聚合,然后慢慢连续加入乳化好的乳化液,并定时补加一定量的引发剂。
这样要增加一道破乳化工序,但这种工艺可以用于连续聚合,在特殊的设备中连续进料、连续聚合,用一定的方法除去游离单体后即可连续出料。