有理数11正数和负数一
- 格式:ppt
- 大小:830.00 KB
- 文档页数:14
初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
1.1正数和负数(1)正数:大于0的数叫正数。
(2)负数:在正数前面加“-”的数叫负数(3)0既然不是正数也不是负数1.2有理数及其大小比较(1)整数范围:负整数,正整数,0统称为整数(2)有理数:可以写成分数形式的数,所以有理数包含整数(有限小数和无限循环小数也可以化成分数形式)(3)原点:在直线上任取一个点表示0,这个点就叫作原点。
(4)正方向:从原点向右或向上为正方向(5)负方向:从原点向左或向下为负方向(6)单位长度:数轴上0和1或任意两个相邻整数之间的距离。
(一个单位长度就表示1,但一个单位长度有多长并不固定)(7)数轴:规定了原点,正方向,单位长度的直线叫数轴(8)相反数:绝对值相等正负号相反的两个数互为相反数。
(3,—3)(9)0的相反数还是0(10)绝对值:一个数在数轴上所对应点到原点的距离。
(11)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
(12)有理数比大小原则:正数大于0;0大于负数;正数大于负数;两个负数比较时绝对值大的反而小(-3>-5;-3的绝对值是3,-5的绝对值是5,-5的绝对值大于-3的绝对值,所以反而-3>-5)(13)倒数的定义:数学上设一个数x与其相乘的积为1的数。
(1的倒数是1;0没有倒数)(1)原则:①符号相同的两个数相加,和的符号不变,和的绝对值等于加数的绝对值的和。
[例如3+5=8;-3+(-6)=-9,-3的绝对值是3,-6的绝对值是6。
都是负数取-号,3+6=9,所以最后是-9]②绝对值不相等的异号相加,和的符号取绝对值大的那个,最后的值是两个加数绝对值作差。
[(-3)+5;-3的绝对值是3,5的绝对值是5,所以取正号,作差是5-3=2,所以最后的结果是2。
]③互为相反数相加等于0④一个数和0相加,仍然得这个数。
(2)运算技巧:先定号再算绝对值。
(3)加法交换律:两个数相加,交换加数的位置,和不变。
字母表示为:a+b=b+a(4)加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
全国初中数学教材目录大全篇一:最新人教版初中数学教材目录第一章有理数1.1正数和负数1.2有理数1.3有理数的加减法1.4有理数的乘除法1.5有理数的乘方第二章整式的加减2.1整式2.2整式的加减第三章一元一次方程3.1从算式到方程3.2解一元一次方程(一)合并同类项与移项3.3解一元一次方程(二)去括号与去分母3.4实际问题与一元一次方程第四章图形认识初步4.1多姿多彩的图形4.2直线、射线、线段4.3角4.4课题学习设计制作长方体形状的包装纸盒七年级下册第五章相交线与平行线5.1相交线5.2平行线5.3平行线的性质5.4平移第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用第七章三角形7.1与三角形有关的线段7.2与三角形有关的角7.3多边形及其内角和7.4课题学习镶嵌第八章二元一次方程组8.1二元一次方程组8.2消元8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.2实际问题与一元一次不等式9.3一元一次不等式组9.4课题学习利用不等关系分析比赛(1)第十章实数10.1平方根10.2立方根10.3实数第十一章一次函数11.1变量与函数11.2一次函数11.3用函数观点看方程(组)与不等式第十二章数据的描述12.1几种常见的统计图表12.2用图表描述数据12.3课题学习从数据谈节水第十三章全等三角形13.1全等三角形13.2三角形全等的条件13.3角的平分线的性质第十四章轴对称14.1轴对称14.2轴对称变换14.3等腰三角形复习题14第十五章整式15.1整式的加减15.2整式的乘法15.3乘法公式15.4整式的除法15.5因式分解八年级下册第十六章分式16.1分式16.1分式的运算16.1分式方程第十七章反比例函数17.1反比例函数17.1实际问题与反比例函数第十八章勾股定理18.1勾股定理18.2勾股定理的逆定理第十九章四边形19.1平行四边形19.1特殊的平行四边形19.1梯形第二十章数据的分析20.1数据的代表20.2数据的波动20.3课题学习体质健康测试中的数据分析第二十一章二次根式21.1二次根式21.2二次根式乘除复习题21第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程22.3实际问题与一元二次方程第二十三章旋转23.1图形的旋转23.2中心对称23.3课题学习图案设计第二十四章圆24.1圆24.2与圆有关的位置关系24.3正多边形和圆24.4弧长和扇形面积复习题24第二十五章概率初步25.1概率25.2用列举法求概率25.3利用频率估计概率25.4课题学习键盘上字母的排列规律第二十六章二次函数26.1二次函数26.2用函数观点看一元二次方程26.3实际问题与二次函数第二十四章相似27.1图形的相似27.2相似三角形27.3位似第二十八章锐角三角函数28.1锐角三角函数28.2解直角三角形第二十九章投影与视图29.1投影29.2三视图29.3课题学习制作立体模型篇二:初中数学教材目录及分析第十四章整式的乘法与因式分解14.1整式的乘法*第二十三章旋转23.1图形的旋转23.2中心对称23.3课题学习图案设计第二十四章圆*24.1圆的有关性质*24.2点和圆、直线和圆的位置关系24.3正多边形和圆*24.4弧长和扇形面积第二十五章概率初步25.1随机事件与概率*25.2用列举法求概率(树状图和列表法) *25.3用频率估计概率九年级下册第二十六章反比例函数*26.1反比例函数信息技术应用探索反比例函数的性质26.2实际问题与反比例函数阅读与思考生活中的反比例关系第二十七章相似27.1图形的相似*27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质*第二十八章锐角三角函数28.1锐角三角函数阅读与思考一张古老的“三角函数表”28.2解直角三角形及其应用阅读与思考山坡的高度第二十九章投影与视图29.1投影*29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型初中数学学科特点:考纲要求:初中数学要求学生具备五种能力:1、基础运算能力,2、空间想象能力,3、逻辑思维能力,4、将实际问题转化为数学问题的能力,5、数形结合的能力。
有理数的正负数运算与开方计算有理数是代数数学中最基本的一个概念之一,它包括整数、分数以及二者的有限和无限小数之和。
在数学中,有理数的加法、减法、乘法和除法运算是非常基础且重要的内容。
本文将重点讨论有理数的正负数运算以及开方计算。
一、有理数的正负数运算有理数中包括正数、负数和零,其中正数用“+”表示,负数用“-”表示。
在有理数的加法与减法中,负数与负数相加为负,正数与正数相加为正,而正数与负数相加需作减法处理。
例如,(-3) + (-5) = -8,(-3) - (+5) = -8。
在有理数的乘法与除法中,两个正数相乘或相除的结果为正,两个负数相乘或相除的结果也为正。
而一个正数和一个负数相乘或相除的结果为负。
例如,(-2) × (-3) = 6,(-6) ÷ (+2) = -3。
二、有理数的开方计算在数学中,开方是一个数学运算符号,表示对一个数进行开方运算。
若一个数的平方等于被开方数,则称这个数为被开方数的平方根。
开方运算亦适用于有理数,包括正数和负数。
对于正数的开方计算,例如√9 = 3,√16 = 4。
而对于负数的开方计算,则需要引入复数的概念。
虚数单位i是数学中表示虚数单位的符号,其中i² = -1。
因此,对于负数的开方计算,如√(-9) = 3i,√(-16) = 4i。
综上所述,有理数的正负数运算与开方计算是数学中重要且基础的概念,对于学习代数和高等数学都具有重要意义。
通过对有理数的运算规则和开方计算方法的掌握,能够更好地理解和应用数学知识,提升数学解题的能力。
希望本文的内容能够为读者提供一定的帮助和启发。
有理数之正数、负数及数轴本讲要点:1、理解有理数的概念,会用正数和负数表示相反意义的量,懂得有理数不仅可分为正数、零和负数,还可以分为整数(包括正整数、零和负整数)和分数(包括正分数和负分数)。
2、有理数:凡能写成pq(p、q均为整数,且0p≠)形式的数,一定都是有理数。
3、有理数是有限小数或无限循环小数。
理解数轴的概念。
【重点与难点】1、正数与负数的意义及有理数的分类方法;2、对负数意义的理解;3、数轴是一条直线,可以向两端无限延伸;数轴的三要素原点、正方向和单位长度缺一不可;在数轴上,表示的两个数,右边的数总比左边的数大【典型例题分析】例1.把下列各数-1、3.7、+3、125-、23、0、-84、93、300%。
填在相应的大括号内:正数集合:{…}整数集合:{…}分数集合:{…}负分数集合:{…}解:正数集合:3.7、+3、23、93、300%;整数集合:-1、+3、0、-84、93、300%;分数集合:3.7、125-、23。
负分数集合:125-注:明确93、300% 属于整数;3.7属于分数。
例2.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能写出第2002个数是什么吗?⑴-1,1,1,-1,-1,1,1,-1,,,…。
⑵2,-4,-6,8,10,-12,-14,16, , , …。
解:⑴ -1,1,1;第2002个数是1。
由于题中符号有规律,四个数一个周期,要确定一个数必须首先确定其符号; ⑵ 18、-20、-22;第2002个数是-4004。
同⑴也是符号出现四个数为一个循环。
注:在做题过程中,注意观察数与数之间的关系(包括符号),整体有什么规律。
例3.填空:甲、乙两人同时从A 地出发,如果甲向南走48m 记为+48m ,则乙向北走32m 记为 ;这时甲、乙两人相距 m 。
解: -32m , 80m 例4:选择题:⑴下面说法中正确的是:( )A .正数和负数统称为有理数B 。
全国初中数学教材目录大全篇一:最新人教版初中数学教材目录第一章有理数1.1正数和负数1.2有理数1.3有理数的加减法1.4有理数的乘除法1.5有理数的乘方第二章整式的加减2.1整式2.2整式的加减第三章一元一次方程3.1从算式到方程3.2解一元一次方程(一)合并同类项与移项3.3解一元一次方程(二)去括号与去分母3.4实际问题与一元一次方程第四章图形认识初步4.1多姿多彩的图形4.2直线、射线、线段4.3角4.4课题学习设计制作长方体形状的包装纸盒七年级下册第五章相交线与平行线5.1相交线5.2平行线5.3平行线的性质5.4平移第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用第七章三角形7.1与三角形有关的线段7.2与三角形有关的角7.3多边形及其内角和7.4课题学习镶嵌第八章二元一次方程组8.1二元一次方程组8.2消元8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.2实际问题与一元一次不等式9.3一元一次不等式组9.4课题学习利用不等关系分析比赛(1)第十章实数10.1平方根10.2立方根10.3实数第十一章一次函数11.1变量与函数11.2一次函数11.3用函数观点看方程(组)与不等式第十二章数据的描述12.1几种常见的统计图表12.2用图表描述数据12.3课题学习从数据谈节水第十三章全等三角形13.1全等三角形13.2三角形全等的条件13.3角的平分线的性质第十四章轴对称14.1轴对称14.2轴对称变换14.3等腰三角形复习题14第十五章整式15.1整式的加减15.2整式的乘法15.3乘法公式15.4整式的除法15.5因式分解八年级下册第十六章分式16.1分式16.1分式的运算16.1分式方程第十七章反比例函数17.1反比例函数17.1实际问题与反比例函数第十八章勾股定理18.1勾股定理18.2勾股定理的逆定理第十九章四边形19.1平行四边形19.1特殊的平行四边形19.1梯形第二十章数据的分析20.1数据的代表20.2数据的波动20.3课题学习体质健康测试中的数据分析第二十一章二次根式21.1二次根式21.2二次根式乘除复习题21第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程22.3实际问题与一元二次方程第二十三章旋转23.1图形的旋转23.2中心对称23.3课题学习图案设计第二十四章圆24.1圆24.2与圆有关的位置关系24.3正多边形和圆24.4弧长和扇形面积复习题24第二十五章概率初步25.1概率25.2用列举法求概率25.3利用频率估计概率25.4课题学习键盘上字母的排列规律第二十六章二次函数26.1二次函数26.2用函数观点看一元二次方程26.3实际问题与二次函数第二十四章相似27.1图形的相似27.2相似三角形27.3位似第二十八章锐角三角函数28.1锐角三角函数28.2解直角三角形第二十九章投影与视图29.1投影29.2三视图29.3课题学习制作立体模型篇二:初中数学教材目录及分析第十四章整式的乘法与因式分解14.1整式的乘法*第二十三章旋转23.1图形的旋转23.2中心对称23.3课题学习图案设计第二十四章圆*24.1圆的有关性质*24.2点和圆、直线和圆的位置关系24.3正多边形和圆*24.4弧长和扇形面积第二十五章概率初步25.1随机事件与概率*25.2用列举法求概率(树状图和列表法) *25.3用频率估计概率九年级下册第二十六章反比例函数*26.1反比例函数信息技术应用探索反比例函数的性质26.2实际问题与反比例函数阅读与思考生活中的反比例关系第二十七章相似27.1图形的相似*27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质*第二十八章锐角三角函数28.1锐角三角函数阅读与思考一张古老的“三角函数表”28.2解直角三角形及其应用阅读与思考山坡的高度第二十九章投影与视图29.1投影*29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型初中数学学科特点:考纲要求:初中数学要求学生具备五种能力:1、基础运算能力,2、空间想象能力,3、逻辑思维能力,4、将实际问题转化为数学问题的能力,5、数形结合的能力。
初一数学上册11个有理数易错题型汇总类型一:正数和负数在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.类型二:有理数下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.类型三:数轴在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1B.3C.±2D.1或﹣3考点:数轴。
分析:此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,分别位于与表示数﹣1的点的左右两边.解答:解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选D.点评:注意此类题应有两种情况,再根据“左减右加”的规律计算.类型四:有理数的大小比较如图,正确的判断是()A.a<-2B.a>-1C.a>bD.b>2考点:数轴;有理数大小比较.分析:根据数轴上点的位置关系确定对应点的大小.注意:数轴上的点表示的数右边的数总比左边的数大.解答:解:由数轴上点的位置关系可知a<-2<-1<0<1<b<2,则A、a<-2,正确;B、a>-1,错误;C、a>b,错误;D、b>2,错误.故选A.点评:本题考查了有理数的大小比较.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.本题中要注意:数轴上的点表示的数右边的数总比左边的数大.类型五:有理数的加法已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1B.0C.1D.2考点:有理数的加法。
沪科版初中数学-目录备注:七年级上册:1-5七年级下册:6-11八年级上册:12-17八年级下册:18-22九年级上册:23-25九年级下册:26-28第1章有理数1.1正数和负数1.2数轴1.3有理数的大小1.4有理数的加减1.5有理数的乘除1.6有理数的乘方1.7近似数第2章整式加减2.1用字母表示数2.2代数式2.3整式加减第3章一次方程与方程组3.1一元一次方程及其解法3.2二元一次方程组3.3消元解决方程组3.4用一次方程(组)解决问题第4章直线与角4.1多彩的几何图形4.2线段、射线、直线4.3线段的长短比较4.4角的表示与度量4.5角的大小比较4.6作线段与角第5章数据处理5.1数据的收集5.2数据的整理5.3统计图的选择5.4从图表中获取信息第6章实数6.1平方根立方根6.2实数第7章一元一次不等式与不等式组7.1不等式及其基本性质7.2一元一次不等式7.3一元一次不等式组第8章整式乘除与因式分解8.1幂的运算8.2整式乘法8.3平方差公式与完全平方公式8.4整式除法8.5因式分解第9章分式9.1分式及其基本性质9.2分式的运算9.3分式方程第10章相交线平行线与平移10.1相交线10.2平行线的判定10.3平行线的性质10.4平移第11章频率分布11.1频数与频率11.2频数分布第12章平面直角坐标系12.1平面上点的坐标12.2图形在坐标系中的平移第13章一次函数13.1函数13.2一次函数-13.3一次函数与一次方程、一次不等式13.4二元一次方程组的图象解法第14章三角形中的边角关系14.1三角形中的边角关系14.2命题与证明第15章全等三角形15.1全等三角形15.2三角形全等的判定第16章轴对称图形与等腰三角形16.1轴对称图形16.2线段的垂直平分线16.3等腰三角形16.4角的平分线第17章勾股定理17.1勾股定理17.2勾股定理的逆定理第18章二次根式18.1二次根式18.2二次根式的运算第19章一元二次方程19.1一元二次方程19.2一元二次方程的解法19.3一元二次方程的根的判别式19.4一元二次方程的根与系数的关系19.5一元二次方程的应用第20章四边形20.1多边形内角和20.2平行四边形20.3矩形菱形正方形20.4梯形第21章数据的集中趋势21.1平均数21.2中位数与众数21.3从部分看总体第22章数据的离散程度22.1极差22.2方差、标准差第23章二次函数与反比例函数23.1二次函数23.2二次函数y=a某^2的图象和性质23.3二次函数y=a某^2+b某+c的图象和性质23.4二次函数与一元二次方程23.5.二次函数的应用23.6反比例函数第24章相似形24.1比例线段24.2相似三角形的判定24.3相似三角形的性质24.4相似多边形的性质24.5位似图形第25章解直角三角形25.1锐角三角函数25.2锐角三角函数值25.3解直角三角形及其应用第26章圆26.1旋转26.2圆的对称性26.3圆的确定26.4圆周角26.5直线与圆的位置关系26.6三角形的内切圆26.7圆与圆的位置关系26.8正多边形与圆26.9弧长与扇形面积第27章投影与视图27.1投影27.2三视图第28章概率初步28.1随机事件28.2等可能情形下的概率计算28.3用频数估计概率。
第一章有理数一、知识框架图知识点详列:1、正数和负数:数0 既不是正数也不是负数。
正数和负数是表示两种具有相反意义的量。
2、有理数分类(1)按定义分类:(2)按性质符3、数轴:通常,用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左为负方向;(3)选取适当的长度为单位长度。
4、相反数:绝对值相等,只有符号不同的两个数叫做互为相反数。
数仍是0.5、绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数记做|a| 。
由绝对值的定义可得:|a-b| 表示数轴上 a 点到 b 点的距离一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;对值是0.6、有理数比较大小分类:或下)0 的相反a 的绝对值,0 的绝正数大于0,0 大于负数,正数大于负数;两个负数,绝对值大的反而小7、有理数的四则运算(1)有理数的加法加法法则:①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.③一个数同0 相加,仍得这个数。
运算律:加法交换律:a+b=b+a 加法结合律: (a+b)+c=a+(b+c)(2)有理数的减法可转化为加法进行,减去一个数等于加上这个数的相反数,即a-b=a+(-b)正- 正=正+负;正- 负=正+正;负- 正=负+负;负- 负=负+正。
4)有理数的乘法乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘。
②任何数同0 相乘,都得0.③乘积是 1 的两个数互为倒数。
④几个不是0 的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积为负。
运算律:乘法交换律:ab=ba乘法结合律:(ab) c=ab+ac(5)有理数的除法除以一个不为0的数,等于乘这个数的倒数,即3-5"丄2 = 0) ob两数相除,同号得正,异号得负,并把绝对值相除。