(完整版)微生物学第六章微生物的代谢
- 格式:doc
- 大小:138.51 KB
- 文档页数:16
周德庆编《微生物学教程》课后习题参考答案绪论1。
什么是微生物?它包括哪些类群?答:微生物是一切肉眼看不见或看不清的微小生物的总称。
包括:①原核类的细菌、放线菌、蓝细菌、支原体、立克次氏体和衣原体;②真核类的真菌、原生动物、和显微藻类;③属于非细胞类的病毒和亚病毒。
2。
人类迟至19 世纪才真正认识微生物,其中主要克服了哪些重大障碍?答:①显微镜的发明,②灭菌技术的运用,③纯种分离技术,④培养技术.3.简述微生物生物学发展史上的5 个时期的特点和代表人物.答:史前期(约8000 年前—1676),各国劳动人民,①未见细菌等微生物的个体;②凭实践经验利用微生物是有益活进行酿酒、发面、制酱、娘醋、沤肥、轮作、治病等)初创期(1676-1861 年),列文虎克,①自制单式显微镜,观察到细菌等微生物的个体;②出于个人爱好对一些微生物进行形态描述;奠基期(1861—1897年),巴斯德,①微生物学开始建立;②创立了一整套独特的微生物学基本研究方法;③开始运用“实践--理论——实践”的思想方法开展研究;④建立了许多应用性分支学科;⑤进入寻找人类动物病原菌的黄金时期;发展期(1897—1953年),e。
buchner,①对无细胞酵母菌“酒化酶"进行生化研究;②发现微生物的代谢统一性;③普通微生物学开始形成;④开展广泛寻找微生物的有益代谢产物;⑤青霉素的发现推动了微生物工业化培养技术的猛进;成熟期(1953—至今)j.watson 和f.crick,①广泛运用分子生物学理论好现代研究方法,深刻揭示微生物的各种生命活动规律;②以基因工程为主导,把传统的工业发酵提高到发酵工程新水平;③大量理论性、交叉性、应用性和实验性分支学科飞速发展;④微生物学的基础理论和独特实验技术推动了生命科学个领域飞速发展;⑤微生物基因组的研究促进了生物信息学时代的到来。
4。
试述微生物与当代人类实践的重要关系。
5.微生物对生命科学基础理论的研究有和重大贡献?为什么能发挥这种作用?答:微生物由于其“五大共性"加上培养条件简便,因此是生命科学工作者在研究基础理论问题时最乐于选用的研究对象。
微生物学第二版参考答案微生物学第二版参考答案微生物学是研究微生物的科学,涉及到生物学、医学、环境科学等多个学科领域。
对于学习微生物学的学生来说,掌握正确的参考答案是提高学习效果的关键。
本文将为大家提供微生物学第二版参考答案,帮助大家更好地理解和掌握微生物学的知识。
第一章:微生物的概述1. 微生物的定义:微生物是一类不能用肉眼观察到的生物,包括细菌、真菌、病毒和原生动物等。
2. 微生物的分类:微生物可以根据其细胞结构、生活方式和遗传物质等特征进行分类。
3. 微生物的重要性:微生物在生态系统中起着重要的角色,如参与物质循环、维持生态平衡等。
第二章:微生物的结构和功能1. 细菌的结构:细菌包括细胞壁、细胞膜、细胞质、核糖体和核酸等结构。
2. 细菌的功能:细菌具有多样的功能,如合成蛋白质、分解有机物、产生抗生素等。
3. 真菌的结构:真菌包括菌丝、孢子、菌核和菌盖等结构。
4. 真菌的功能:真菌可以分解有机物、产生酶、参与土壤生态系统等。
第三章:微生物的生长和繁殖1. 微生物的生长:微生物的生长包括营养摄取、代谢、生长分裂等过程。
2. 微生物的繁殖:微生物可以通过二分裂、芽生、孢子形成等方式进行繁殖。
3. 微生物的生长曲线:微生物的生长曲线包括潜伏期、指数期、平台期和死亡期等阶段。
第四章:微生物的遗传与变异1. 微生物的遗传物质:微生物的遗传物质包括DNA和RNA,其中DNA是主要的遗传物质。
2. 微生物的遗传变异:微生物可以通过基因突变、基因重组等方式发生遗传变异。
3. 微生物的遗传传递:微生物的遗传信息可以通过垂直传递和水平传递进行传递。
第五章:微生物的代谢与生态1. 微生物的代谢类型:微生物的代谢包括光合作用、呼吸作用、发酵作用等多种类型。
2. 微生物的生态功能:微生物在生态系统中参与物质循环、能量转化等功能。
3. 微生物的微生态系统:微生物可以形成微生态系统,如肠道微生态系统、土壤微生态系统等。
第六章:微生物与人类1. 微生物与人类的关系:微生物与人类有着密切的关系,如参与人体免疫、引起疾病等。
微生物学补充习题第一章绪论复习题与扩展思考题1.微生物有哪些主要类群?有哪些特点?2.试述我国古代对微生物的认识和利用。
3.试述列文虎克、巴斯德和科赫在微生物学发展史上的杰出贡献。
4.试述微生物学在生命科学中的重要地位。
5.你认为现代微生物学的发展有哪些趋势?6.你认为微生物学的哪些方面可以继续研究以对生命科学作出贡献?7.试就微生物在工业、农业、医药、食品等方面的应用作一简要介绍。
第二章原核微生物复习题和扩展思考题1.试解释下列名词:肽聚糖,磷壁酸,溶酶菌,抗酸染色,间体,羧酶体,核区,质粒,附器,异形胞。
2.试比较以下各对名词:原核微生物与真核微生物、胞壁质与拟胞壁质、脂多糖与脂多糖层、原生质体与球形体、鞭毛丝与轴丝、聚?β?羟丁酸颗粒与多聚磷酸颗粒、荚膜与粘液层、芽孢与孢子。
3.试从化学组成和构造论述细菌细胞的结构与功能。
4.根据革兰氏阳性细菌与革兰氏阴性细菌细胞壁通透性来说明革兰氏染色的机制。
5.试述几种细菌细胞壁缺损型的名称及其应用价值。
6.放线菌与霉菌均呈菌丝壮生长,单为何认为放线菌更接近于细菌而不接近于霉菌?7.什么是芽孢?芽孢的形成及其调节方式?试述芽孢的抗逆性机制。
8.蓝细菌有哪些不同于细菌的结构与成分?它们的功能是什么?9.立克次氏体有哪些与专性活细胞内寄生有关的特性?它们有什么特殊的生活方式?10.衣原体与立克次氏体都为专性活细胞内寄生,两者有何差别?11.支原体有何特点?哪些特点是由于缺乏细胞壁而引起的?12.螺旋体和螺菌有何不同?13.细菌细胞中的哪些物质有抗原作用?这些物质存在于哪些结构中?14.试从细胞的形态结构分析细菌与放线菌的菌落特征。
15.试就作用靶物质、作用机制、作用结果和作用对象等方面比较溶霉菌与青霉素对细菌细胞壁的作用。
第三章真核微生物复习题与扩展题1.试解释下列名词:真菌,酵母菌,霉菌,真核生物,原核生物,真酵母,假酵母,酵母菌的芽殖,裂殖和芽裂殖。
2.试述酵母细胞的主要结构特征。
1微生物的代谢微生物代谢包含微生物物质代谢和能量代谢。
1.1 微生物物质代谢微生物物质代谢是指发生在微生物活细胞中的各样分解代谢与合成代谢的总和。
1.1.1 分解代谢分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。
—般可将分解代谢分为TP。
三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更加简单的乙酰辅酶 A 、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH 及 FADH2;第三阶段是经过三羧酸循环将第二阶段产物完好降解生成CO2,并产生ATP、NADH 及FADH2。
第二和第三阶段产生的ATP、NADH 及FADH2 经过电子传达链被氧化,可产生大批的 ATP。
1.1.1.1 大分子有机物的分解( 1)淀粉的分解淀粉是很多种微生物用作碳源的原料。
它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。
一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。
直链淀粉为α一 l、 4 糖苷键构成的直链分子;支链淀粉不过在支点处由α—1、6糖苷键连结而成。
微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。
淀粉酶是一类水解淀粉糖苷键酶的总称。
它的种类好多,作用方式及产物也不尽同样,主要有液化型淀粉酶、糖化型淀粉酶(包含β—淀粉酶、糖化酶、异淀粉酶)。
以液化型淀粉酶为例,这种酶能够随意分解淀粉的。
α-l、4 糖苷键,而不可以分解α-1、 6 糖苷键。
淀粉经该酶作用此后,黏度很快降落,液化后变为糊精,最后产物为糊精、麦芽糖和少许葡萄糖。
因为这种酶能使淀粉表现为液化,淀粉黏度急速降落,故称液化淀粉酶;又因为生成的麦芽糖在光学上是α型,所以又称为“ α—淀粉酶。
( 2)纤维素的分解纤维素是葡萄糖由β— 1,4 糖苷键构成的大分子化合物。
它宽泛存在于自然界,是植物细胞壁的主要构成成分。
第六章微生物的代谢习题及参考答案一、名词解释1.发酵2.呼吸作用3.有氧呼吸4.无氧呼吸5.异型乳酸发酵6.生物固氮7.硝化细菌8.光合细菌9.生物氧化10.初级代谢产物:11.次级代谢产物:12.巴斯德效应:13.Stickland反应:14.氧化磷酸化二、填空题1.微生物的4种糖酵解途径中, 是存在于大多数生物体内的一条主流代谢途径; 是存在于某些缺乏完整EMP 途径的微生物中的一种替代途径,为微生物所特有; 是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途径。
2.同型乳酸发酵是指葡萄糖经 途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH 还原为乳酸。
异型乳酸发酵经 、 和 途径分解葡萄糖。
代谢终产物除乳酸外,还有 。
3.微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发酵、发酵和 发酵等。
丁二醇发酵的主要产物是 , 发酵的主要产物是乳酸、乙酸、甲酸、乙醇。
4.产能代谢中,微生物通过 磷酸化和 磷酸化将某种物质氧化而释放的能量储存在ATP 等高能分子中;光合微生物则通过 磷酸化将光能转变成为化学能储存在ATP 中。
磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。
5.呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物降解的中间产物,而是交给 系统,逐步释放出能量后再交给 。
6.巴斯德效应是发生在很多微生物中的现象,当微生物从 转换到 下,糖代谢速率 ,这是因为 比发酵作用更加有效地获得能量。
7.无氧呼吸的最终电子受体不是氧,而是外源电子受体,像22322423、CO O 、S、SO 、NO NO ----等无机化合物,或 等有机化合物。
8.化能自养微生物氧化而获得能量和还原力。
能量的产生是通过磷酸化形式,电子受体通常是O2。
电子供体是、、和,还原力的获得是逆呼吸链的方向进行传递,能量。
9.微生物将空气中的N2还原为NH3的过程称为。
第十四授课单元一、教学目的使学生了解呼吸与发酵作用,重点讲解微生物代谢的特殊性,联系在食品和发酵生产上的应用,注意体现微生物不同发酵类型及代谢的特点。
二、教学内容(第六章微生物的新陈代谢第一节微生物的产能代谢)1. 代谢概论简单介绍新陈代谢的概念,同化作用和异化作用。
2. 微生物的产能代谢:重点介绍化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸,3. 介绍乙醇发酵(酵母菌的乙醇发酵途径和运动发酵单胞菌的乙醇发酵途径)、乳酸发酵(同型乳酸发酵和异型乳酸发酵)、甘油发酵、丙酮丁醇发酵、混合酸发酵及丁二醇发酵;三、教学重点、难点及处理方法重点:化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸,介绍乙醇发酵(酵母菌的乙醇发酵途径和运动发酵单胞菌的乙醇发酵途径)、乳酸发酵(同型乳酸发酵和异型乳酸发酵)、甘油发酵、丙酮丁醇发酵、混合酸发酵及丁二醇发酵;由于学生在生物化学课程中已经学过各种代谢途径,因此在微生物学中不再作为重点讲解。
本章内容主要使学生了解呼吸与发酵作用,重点讲解微生物代谢的特殊性,联系在食品和发酵生产上的应用,注意体现微生物不同发酵类型及代谢的特点。
难点: 化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸的区别。
尤其是发酵的概念, 学生只是在现实生活中知道这个名词, 但是不清楚其确切的生物学含义, 指在能量代谢或生物氧化中,在无氧条件下,底物(有机物)氧化释放的氢(或电子)不经呼吸链传递,而直接交给某种未完全氧化的中间产物的一类低效产能过程。
实质: 底物水平磷酸化产生ATP. 另外, 联系食品和发酵生产上应用的发酵类型及代谢特点更有助于学生理解发酵的概念实质及发酵的特点.有氧呼吸与无氧呼吸的概念, 并介绍无氧呼吸中硝酸根(反硝化作用)、硫酸根作为最终电子受体的呼吸特点,介绍不同呼吸类型的微生物。
介绍化能自养微生物的生物氧化特点,光能自养微生物的光合磷酸化途径(循环光合磷酸化、非循环光合磷酸化和嗜盐菌紫膜的光合作用)。
四、板书设计第六章微生物的新陈代谢第一节代谢概论能量代谢的中心任务,是生物体如何把外界环境中的多种形式的最初能源转换成对一切生命活动都能使用的通用能源------ATP。
这就是产能代谢。
有机物化能异养微生物最初能源还原态无机物化能自养微生物通用能源ATP日光: 光能营养微生物第二节糖的代谢一.生物氧化(biological生物氧化就是发生在活细胞内的一切产能性氧化反应的总称生物氧化的三种形式:与氧结合、脱氢或脱电子生物氧化的功能:产能(A TP)、产还原力[H]和产小分子中间代谢物二、化能异养微生物的生物氧化根据氧化还原反应中最终电子受体或氢受体的不同,可把生物氧化分为3种类型:发酵没有外源电子受体参与,通常以分解代谢产生的中间产物如丙酮酸作为电子受体。
化能异养微生物的产能方式有氧呼吸:呼吸无氧呼吸:1. 发酵(fermentation)广义的“发酵”,指利用微生物生产有用代谢产物的一种生产方式。
狭义的“发酵”,指在能量代谢或生物氧化中,在无氧条件下,底物(有机物)氧化释放的氢(或电子)不经呼吸链传递,而直接交给某种未完全氧化的中间产物的一类低效产能过程。
实质: 底物水平磷酸化产生A TP特点:底物氧化不彻底,产能水平低;积累各种中间代谢产物不可缺少的途径。
(1)乙醇发酵多种微生物(如酵母菌,根霉,曲霉,某些细菌)能通过称为乙醇发酵的过程,将糖转变成乙醇和CO21)酵母菌进行的乙醇发酵2)细菌进行的酒精发酵(运动发酵单胞菌)ED途径3)甘油发酵(酵母菌)4)丙酮、丁醇发酵5)乳酸发酵由于菌体内酶系不同,乳酸菌的代谢途径分三种类型:•同型乳酸发酵途径:产物只有乳酸(德氏乳杆菌,植物乳杆菌)•异型乳酸发酵途径:产物除了乳酸,还有乙醇(或乙酸)等产物•双歧途径:双歧杆菌6)混合酸发酵(大肠杆菌)甲基红反应(M.R)阳性7)丁二醇发酵丁二醇发酵的中间产物3-羟基丁酮是V.P试验的物质基础8)氨基酸的发酵产能——Stickland反应2. 呼吸作用与发酵作用的根本区别:电子载体不是将电子直接传递给底物降解的中间产物,而是交给电子传递系统,逐步释放出能量后再交给最终电子受体呼吸作用的实质:•最终电子受体是外源物质(氧气或氧化型化合物);•产能方式是氧化磷酸化;A. 电子传递链:由一系列按氧化还原电位由低到高顺序排列起来的氢(电子)传递体组成。
两个功能:1)传递氢或电子;2)储存氢或电子传递过程释放的能量,用于合成ATP;B. 氧化磷酸化:指呼吸链在传递氢(电子)过程中释放的能量与ADP磷酸化偶联产生ATP的过程。
化学渗透假说(生化中学过, 此处复习)3. 呼吸作用(1) 有氧呼吸由于葡萄糖在有氧呼吸中产生的能量要高于发酵中产生的能量,即微生物在有氧呼吸过程中,利用较少的糖而能获得厌氧条件下相同量的ATP。
酿酒酵母等既可利用发酵产能,又可利用呼吸产能的兼性厌氧微生物,在有氧条件下终止厌氧发酵而转向有氧呼吸,这种呼吸抑制发酵(或氧抑制糖酵解)的现象称为巴斯德效应(Pasteur effect)。
由此降低了葡萄糖的消耗,并抑制了乙醇的产生。
1)定义呼吸链末端的电子受体是O2的一种生物氧化2)微生物:大多数细菌,几乎所有的放线菌和真菌3)特点:–好氧和兼性厌氧微生物在有氧条件下进行的产能代谢;–通过电子传递链传递电子,通过氧化磷酸化产能;–底物(氧化基质)是有机物,最终电子受体是O2 ;–底物氧化彻底,产能效率高。
(2)无氧呼吸1)定义:呼吸链末端的氢或电子受体是外源无机氧化物(少数为有机氧化物)的生物氧化。
•无机物:NO3-、NO2-、SO42-、S2O32-、S、CO2•有机物:延胡索酸(fumarate),罕见2)类型根据末端氢(电子)受体的不同,无氧呼吸分为多种类型:•硝酸盐呼吸•硫酸盐呼吸•硫呼吸•铁呼吸•碳酸盐呼吸•延胡索酸呼吸等反硝化作用:指NO3-被还原成NO2-,再逐步还原成NO、N2O和N2的过程,能进行硝酸盐呼吸的细菌被称为硝酸盐还原细菌(又称反硝化细菌),主要生活在土壤和水环境中,如地衣芽孢杆菌、铜绿假单胞菌、依氏螺菌、脱氮副球菌、脱氮硫杆菌和生丝微菌属中的一些成员等。
大肠杆菌也是一种反硝化细菌,但它只能将NO3-还原成NO2- 。
三.自养微生物的生物氧化( 自学)1. 化能自养型从对无机物的生物氧化过程中获得生长所需要能量的微生物一般都是化能自养型微生物。
(1)氨的氧化亚硝化细菌(亚硝化假单胞菌属,硝化螺菌属):硝化细菌(硝化杆菌属,硝化球菌属)(2)硫的氧化(3)铁的氧化(4)氢的氧化2.光能自养微生物(1)环式光合磷酸化(2)非环式光合磷酸化(3)嗜盐菌紫膜的光合作用思考题:1.“M”是一种硝酸盐还原菌(反硝化细菌),在无氧、有NO3-的环境中生长,试回答:(1)何为碳源物质?(2)何为能源物质?(3)以何种方式产生ATP?(4)NO3-的生理功能是什么?2.试述不同条件下各营养类型微生物产ATP和NAD (P)H 的方式。
第十五授课单元一、教学目的1.理解微生物调节代谢流的两种主要方式及其特点2.掌握反馈抑制的类型及特点3.理解酶合成调节的两种方式4.了解乳糖操纵子的结构及其调节方式5.理解代谢调控在发酵工业中的一些应用二、教学内容二、糖的合成代谢第三节氨基酸和蛋白质代谢一、蛋白质的分解二、氨基酸的分解三、氨基酸的合成第四节脂类代谢第五节微生物代谢调控与发酵生产一、酶活力的调节二、酶合成的调节三、代谢调控在发酵工业中应用三、教学重点、难点及处理重点:1.微生物调节代谢流的两种主要方式:微生物细胞的代谢调节方式很多,其中酶的调节是代谢最本质的调节。
在酶的调节中又以调节代谢流的方式最为重要,它包括两个方面,一是“粗调”,即调节酶分子的合成或降解以改变酶分子的含量,二是“细调”,即通过激活或抑制以改变细胞内已有酶分子的催化活力,两者往往密切配合和协调,以达到最佳的调节效果。
酶活性的调节:非常迅速的调节机制酶化学水平上发生变构调节(分子构象改变)修饰调节(分子结构改变)包括酶的激活酶的抑制酶量的调节:比较慢的调节机制遗传水平上发生(原核生物的基因调控主要发生在转录水平)包括酶合成的诱导酶合成的阻遏机制2. 反馈抑制的类型每个代谢途径都至少有一个定步酶,催化代谢途径中的限速反应,一般是代谢途径中第一步反应的催化酶。
代谢途径的终产物常抑制第一步反应的可调控酶的活性,此调控称为反馈抑制。
反馈抑制这种调节方式可以分为直线式代谢途径中的反馈抑制和分支代谢途径中的反馈抑制两大类。
2.1 直线式代谢途径中的反馈抑制这是一种最简单的反馈抑制类型。
例如E.coli在合成异亮氨酸时。
因合成产物过多可抑制途径中的第一个酶——苏氨酸脱氨酶的活性,从而使α-酮丁酸及其后一系列中间代谢物都无法合成,最终导致异亮氨酸合成的停止。
2.2.分支代谢途径的反馈抑制:(1)同功酶调节分支途径中的第一个酶有几种同工酶,每一种代谢终产物只对一种同工酶具有反馈抑制作用,只有当几种终产物同时过量时,才能完全阻止反应的进行。
例:大肠杆菌天冬氨酸族氨基酸的合成(有3个天冬氨酸激酶催化途径的第一个反应,分别受赖氨酸、苏氨酸及甲硫氨酸的调节)(2)协同反馈抑制,或称“多价反馈抑制”只有当几个末端产物同时过量,才对途径中的第一个酶具有抑制作用。
例:谷氨酸棒杆菌、黄色短杆菌、多粘芽孢杆菌合成赖氨酸、苏氨酸及甲硫氨酸途径中,关键酶天冬氨酸激酶不是同工酶,而是单一的。
该酶在赖氨酸、苏氨酸、甲硫氨酸或异亮氨酸等任何一种单独存在时,不受抑制,只是赖氨酸和苏氨酸同时过量时才对天冬氨酸激酶发生协同反馈抑制。
(3)合作反馈抑制,又称“增效反馈抑制”当任何一个末端产物单独过剩时,只部分反馈抑制第一个酶的活性,而当二个末端产物同时过剩时,对第一个酶产生强烈抑制,其抑制程度大于各自单独抑制效果之和。
(4)累积反馈抑制在分支代谢途径中,任何一种末端产物过量时都对共同途径的第一个酶起部分的抑制作用,且各末端产物的抑制作用互不干扰。
当末端产物同时过量时,它们的抑制作用是累积的。
例:大肠杆菌的谷氨酰胺合成酶受8个最终产物的积累反馈抑制。
(5)顺序反馈抑制例:枯草芽孢杆菌合成芳香族氨基酸的代谢途径3. 酶合成的调节酶合成的调节是一种通过调节酶的合成量进而调节代谢速率的调节机制,这是一种基因水平上的代谢调节。
由代谢终产物抑制酶合成的负反馈作用称为反馈阻遏(repression)。
反之,代谢终产物促进酶生物合成的现象,称为诱导作用(induction)。
与上述调节酶活性的反馈抑制等相比,调节酶的合成(即产酶量)而实现代谢调节的方式是一类较间接而缓慢的调节方式。