1
1
A.9
B.6
1
1
C.3
D.4
答案:C
4.从装有3个红球、2个白球的袋中随机取出2 个球,设其中有ξ个红球,则随机变量ξ的概率 分布为
ξ 012 P
答案:0.1 0.6 0.3
5.若 ξ~B(4,13),则 P(ξ≥1)=________. 答案:6851
考点探究·挑战高考
考点突破 分布列的性质
故 X~B(6,13), 所以 P(X=k)=Ck6(13)k·(23)6-k, k=0,1,2,3,4,5,6.
所以 X 的分布列为:
(2)EX=np=6×13=2, Dξ=np(1-p)=6×13×23=43,
即遇到红灯的次数的期望为 2,方差为43.
【思维总结】 对于 ξ~B(n,p),P(ξ=k)= Cknpk(1-p)n-k 也是分布列的一种形式:通项公 式形式.
例4 (2010 年高考北京卷)某同学参加 3 门课 程的考试.假设该同学第一门课程取得优秀成
绩的概率为45,第二、第三门课程取得优秀成绩 的概率分别为 p 、q(p>q),且不同课程是否取 得优秀成绩相互独立.记 ξ 为该生取得优秀成 绩的课程数,其分布列为
(1)求该生至少有1门课程取得优秀成绩的概率; (2)求p,q的值; (3)求数学期望Eξ. 【思路分析】 (1)利用对立事件“ξ=0”. (2)利用ξ=0与ξ=1的概率建立p,q方程组. (3)求出:P(ξ=1).
分布列中随机变量取值的概率都在[0,1],同时 所有概率和一定等于1.
例1 设随机变量 ξ 的分布列 P(ξ=k5)=ak(k= 1,2,3,4,5).求:(1)常数 a 的值;
(2)P(ξ≥35);(3)P(110<ξ<170). 【思路分析】 将分布列简写成一个通项型 表达式,只是为了叙述方便,而表格形式更 能直观反映每种试验可能的分布,两种形式 实质内容是一致的.