离散型随机变量的分布(一)
- 格式:ppt
- 大小:364.50 KB
- 文档页数:19
离散型随机变量的分布离散型随机变量在概率论中扮演着重要的角色。
它们描述了一系列可能的取值以及各个取值的概率分布。
本文将介绍离散型随机变量的概念、分布以及如何计算相关的概率。
一、离散型随机变量的定义离散型随机变量是指在有限或可数的取值范围内取值的随机变量。
其取值集合可以是离散的整数或者某种离散的事物。
例如,掷骰子的点数、抛硬币的结果等都属于离散型随机变量。
二、离散型随机变量的分布离散型随机变量的分布通过概率质量函数(Probability Mass Function,简称PMF)来描述。
概率质量函数是一个函数,它计算每个可能取值的概率。
以掷一颗均匀骰子为例,假设随机变量X表示掷骰子的点数。
由于骰子的点数是1到6之间的整数,我们可以定义X的取值集合为S={1, 2, 3, 4, 5, 6}。
对于每个可能的点数,我们可以计算出其概率。
X的概率质量函数可以写成如下形式:P(X=1) = 1/6P(X=2) = 1/6P(X=3) = 1/6P(X=4) = 1/6P(X=5) = 1/6P(X=6) = 1/6其中,P(X=x)表示随机变量X取值为x的概率。
三、计算离散型随机变量的概率在已知离散型随机变量的概率质量函数的情况下,我们可以计算出各种事件的概率。
以随机变量X为例,假设我们想计算X小于等于3的概率。
我们可以使用概率质量函数中相关取值的概率相加来计算:P(X<=3) = P(X=1) + P(X=2) + P(X=3) = 1/6 + 1/6 + 1/6 = 1/2同样地,我们可以计算出其他事件的概率。
四、常见的离散型随机变量分布除了均匀分布之外,还有一些常见的离散型随机变量分布,包括二项分布、泊松分布、几何分布等。
1. 二项分布二项分布描述了在n次独立重复试验中成功的次数的概率分布。
每次试验都有两个可能的结果,成功和失败。
例如,抛硬币n次,成功可以定义为正面朝上的次数。
二项分布的概率质量函数可以写为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,C(n, k)表示组合数,p表示每次试验成功的概率,k表示成功的次数。
新乡医学院教案首页单位:计算机教研室课程名称医药数理统计方法授课题目 2.1 常见离散型随机变量的分布授课对象05级药学专业时间分配超几何分布15分钟二项分布35分钟泊松分布30分钟课时目标理解掌握常见离散型随机变量的分布函数掌握两点分布、二项分布、泊松分布之间的联系与区别授课重点伯努利试验、二项分布、泊松分布授课难点两点分布、二项分布、泊松分布之间的联系与区别授课形式小班理论课授课方法启发讲解参考文献医药数理统计方法刘定远主编人民卫生出版社概率论与数理统计刘卫江主编清华大学出版社北京交通大学出版社高等数学(第五版)同济大学编高等教育出版社思考题二项分布和超几何分布有何联系?教研室主任及课程负责人签字教研室主任(签字)课程负责人(签字)年月日年月日基 本 内 容 备 注 常见离散型随机变量的分布一、超几何分布例1 带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只作实验,表示X 放出的蜂中工蜂的只数,求X 的分布列。
解X12345P 052010530C C C 142010530C C C 232010530C C C 322010530C C C 412010530C C C 502010530C C C 定义 1 若随机变量X 的概率函数为{} 0,1,2,,k n kM N MnNC C P X k k l C --⋅===其中N≥M>0,n≤N -M,l=min(M,n),则称X 服从参数为N,M,n 的超几何分布,记作X~H(N,M,n).超几何分布的分布函数为()k n kM N Mnk x NC C F x C --≤⋅=∑ 二、二项分布1. Bernoulli 试验只有两个可能结果的试验称为Bernoulli 试验。
例2 已知某药有效率为0.7,今用该药试治某病3例,X 表示治疗无效的人数,求X 的分布列。
解:X 可取0,1,2,3。
用A i表示事件“第i 例治疗无效”,i=1,2,3.则()0.7i P A p ==P{X=0}=33123123()()()()(1)0.343P A A A P A P A P A p q ==-==P{X=1}=231312123()P A A A A A A A A A ++2231312123()()()30.441P A A A P A A A P A A A pq =++==P{X=2}=321121323()P A A A A A A A A A ++2321121323()()()30.189P A A A P A A A P A A A p q =++==基 本 内 容备 注 P{X=3}=3123()0.027P A A A p ==所以X 的分布列为X 0 1 2 3 P0.3430.4410.1890.027定义:设试验E只有两种结果:A与A ,且(),()1 (01).P A p P A p p ==-<<将试验E 独立重复地进行n 次,称这样的试验为n 重贝努利试验。
离散型随机变量的分布列1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n的概率分布列,简称为的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X p=P(X=1)为成功概率.(2)超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,即X 01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.(1)超几何分布的模型是不放回抽样.(2)超几何分布中的参数是M,N,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( )(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( )(4)超几何分布的模型是放回抽样.( )答案:(1)×(2)×(3)√(4)×下列表中能成为随机变量ξ的分布列的是( )A.ξ-10 1P 0.30.40.4B.ξ12 3P 0.40.7-0.1C.ξ-10 1P 0.30.40.3D.ξ12 3P 0.30.10.4答案:C若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y=-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y为整数,则ξ=0;若x y 为小于1的分数,则ξ=-1;若xy为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使xy为整数的有以下8种:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710). 【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115. (2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=c k (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为1.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为2.[变条件]3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( ) A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p .依题意知,p=2(1-p),解得p=23 .故P(ξ=0)=1-p=13 .2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为( )A.1220 B.2755C.27220D.2125解析:选C.X=4表示取出的3个球为2个旧球1个新球,故P(X=4)=C23C19C312=27220.3.随机变量η的分布列如下则x=________,P解析:由分布列的性质得0.2+x+0.35+0.1+0.15+0.2=1,解得x=0.故P(η≤3)=P(η=1)+P(η=2)+P(η=3)=0.2+0.35=0.55.答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P(ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P(ξ=0)=C04C33C37=135,P(ξ=1)=C14C23C37=1235,P(ξ=2)=C24C13C37=1835,P(ξ=3)=C34C03C37=435.所以随机变量ξ的分布列为P(ξ<2)=P(ξ=0)+P(ξ=1)=35+35=35.知识结构 深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.[A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10 D .25 解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14 C.16 D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C. 3.设随机变量X 的概率分布列为X 1 2 3 4 P13m1416则P (|X -3|=1)=A.712B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B. 4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2 D .1≤x <2 解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )A.528B.17C.1556D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.答案:168.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m=1,所以m=0.3.列表为:(1)2X+1的分布列为:(2)|X-1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;(2)记所取出的非空子集的元素个数为X,求X的分布列.解:(1)记“所取出的非空子集满足性质r”为事件A.基本事件总数n=C15+C25+C35+C45+C55=31.事件A包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A包含的基本事件数m=3.所以P(A)=mn=331.(2)依题意,X的所有可能值为1,2,3,4,5.又P(X=1)=C1531=531,P(X=2)=C2531=1031,P(X=3)=C3531=1031,P(X=4)=C4531=531,P (X =5)=C 5531=131.故X 的分布列为X 1 2 3 4 5 P5311031103153113111.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3] D .[0,1] 解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1, 故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列.解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为14.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求: (1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为2 15+310=1330.则P(C)=P(X=3)+P(X=4)=。