线性代数行列式的性质山东财经大学线性代数
- 格式:ppt
- 大小:673.00 KB
- 文档页数:13
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)初等变换1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的(对换阵 倍乘阵 倍加阵) 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数行列式的性质与计算线性代数中的行列式是一种非常重要的数学工具,它在各个领域的数学和物理问题中都具有广泛的应用和重要性。
行列式是一个数,它与矩阵的元素有关,在许多情况下可以通过一些算法进行计算。
一、行列式的性质1.行列式有可加性:若A为n阶方阵,有两列完全相同,则行列式的值为0;若A为n阶方阵,交换两列,行列式的值变号。
2.行列式有因子约束:若A的其中一行或其中一列的元素是两个数之和,则A的行列式等于这两个数的和的行列式之和。
3.行列式有数乘的性质:若将A的其中一行或其中一列的元素都乘以k,则A的行列式等于k乘以这个行列式。
4.行列式对其中一行与另一行的代换变号,对其中一列与另一列的代换变号,换行、换列对行列式无影响。
5.方阵A与其转置矩阵A'行列式相等,即,A,=,A'。
6.若A为可逆的方阵,则,A,≠0;若A的其中一行全为0,则,A,=0。
二、行列式的计算1.二阶行列式的计算:设A为二阶方阵。
2.三阶行列式的计算:设A为三阶方阵a11a12a1A=,a21a22a23a31a32a33.高阶行列式的计算:a)拉普拉斯展开法:以行或列为基准进行展开,逐步减小行列式的阶数,直至计算到二阶行列式。
b)三角形矩阵法:若A为上(下)三角矩阵,则A的行列式等于对角元素的乘积。
c)伴随矩阵法:设A为n阶方阵,A的伴随矩阵的转置矩阵为A*,则,A,=,A*,=A*A^-1d)特征值法:设A的特征值为λ1,λ2,…,λn,则,A,=λ1λ2…λn.e)克拉默法则:若Ax=b为线性方程组,其中A为n阶方阵,且,A,≠0,则方程组有唯一解x=A^-1b.总之,行列式作为一种数学工具,在线性代数中具有重要的地位和作用。
它不仅可以帮助我们判断矩阵的可逆性,还可以求解线性方程组、计算矩阵的秩、判断矩阵的相似性等。
行列式的性质和计算方法可以帮助我们更好地理解和应用线性代数的相关知识。
行列式的性质及应用知识点总结行列式是线性代数中的一个重要概念,它在数学、物理、工程等领域都有着广泛的应用。
下面我们来详细总结一下行列式的性质及应用方面的知识点。
一、行列式的定义首先,我们来了解一下行列式的定义。
对于一个 n 阶方阵 A =(aij ),其行列式记为|A| 或 det(A) ,它的值是一个确定的数。
对于二阶行列式,有|A| =|a 11 a 12 ; a 21 a 22 |= a 11 a 22 a 12 a 21 。
对于三阶行列式,有|A| =|a 11 a 12 a 13 ; a 21 a 22 a 23 ; a31 a 32 a 33 |= a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a 32 。
对于n 阶行列式,其定义相对复杂,但可以通过递归的方式来理解。
二、行列式的性质1、行列式转置值不变若将行列式 A 的行与列互换得到的行列式称为 A 的转置行列式,记为 A T ,则有|A| =|A T |。
2、两行(列)互换,行列式的值变号例如,交换行列式 A 中的第 i 行和第 j 行,行列式的值变为|A| ;交换第 i 列和第 j 列,行列式的值也变为|A| 。
3、某行(列)乘以 k,行列式的值乘以 k若行列式 A 的某一行(列)的元素都乘以同一个数 k ,则行列式的值等于原来的行列式的值乘以 k 。
4、若某行(列)是两组数之和,则行列式可拆成两个行列式之和例如,若 A 的第 i 行元素为 b i + c i ,则|A| =|B| +|C| ,其中 B 是将 A 的第 i 行换成 b i 得到的行列式,C 是将 A 的第 i 行换成 c i 得到的行列式。
5、某行(列)乘以 k 加到另一行(列),行列式的值不变例如,将行列式 A 的第 j 行乘以 k 加到第 i 行,行列式的值不变;将第 j 列乘以 k 加到第 i 列,行列式的值也不变。
利用行列式的性质求解线性方程组在线性代数中,线性方程组是一组关于未知数的线性方程的集合。
求解线性方程组的传统方法包括高斯消元法、克拉默法则等。
而利用行列式的性质求解线性方程组则是一种更为简便和高效的方法。
本文将介绍利用行列式的性质来求解线性方程组的方法及其应用。
1. 行列式的定义及性质行列式是一个矩阵所固有的一个数值,用于描述线性变换对于面积(或体积)的影响。
行列式的定义如下:设A为一个n阶矩阵,其行列式记为det(A)或|A|,定义为:det(A) = a11a22...ann - a12a21...an1 + a13a21...an2 - ... + (-1)^(n+1)a1na2n...an(n-1)行列式具有以下性质:(1)行列式与其转置矩阵的值相等:det(A) = det(A^T)(2)如果A的某两行(或两列)元素对应相等,则行列式的值为0。
(3)如果A的某行或某列的元素全为0,则行列式的值为0。
(4)若A的某行(或某列)的元素均乘以常数k,则行列式的值变为原来的k倍,即k * det(A)。
(5)若A的某行(或某列)的元素经过线性组合得到另一行(或另一列),则行列式的值不变。
2. 利用行列式求解线性方程组对于线性方程组Ax = b,其中A为系数矩阵,x为未知向量,b为常数向量,我们可以利用行列式的性质来求解。
设A为一个n阶方阵,b为n维向量。
当det(A)≠0时,方程组有唯一解,可以通过以下方法求解:x = A^(-1) * b其中A^(-1)为矩阵A的逆矩阵。
当det(A) = 0时,方程组可能有无穷多个解或无解。
我们可以进一步利用行列式的性质来判断具体的解的情况。
3. 判断线性方程组的解对于线性方程组Ax = b,当det(A) = 0时,可以通过计算方阵A的秩和增广矩阵[A|b]的秩来判断方程组的解的情况。
(1)当rank(A) = rank([A|b]) = n时,方程组无解。
行列式的性质及应用论文行列式是线性代数中的重要概念,它具有许多重要的性质和广泛的应用。
本文将从性质和应用两个方面来探讨行列式的相关内容。
首先,我们来讨论行列式的性质。
行列式是一个标量,它可以表示矩阵所围成的平行四边形的面积或者体积。
行列式的计算可以通过拉普拉斯展开定理、三角矩阵法和克拉默法则等方法来进行。
下面是行列式的一些重要性质:1. 行列式的性质一:行列式的值与行列式的转置值相等。
即,对于一个n阶方阵A,有det(A) = det(A^T)。
2. 行列式的性质二:行列式的值等于它的任意两行(或两列)互换后的值的相反数。
即,如果将矩阵A的第i行和第j行进行互换,那么有det(A) = -det(A'),其中A'是矩阵A进行行互换后的矩阵。
3. 行列式的性质三:如果矩阵A的某一行(或某一列)的元素全为零,则行列式的值为零。
即,如果A的某一行(或某一列)所有元素都为零,则有det(A) = 0。
4. 行列式的性质四:行列式的某一行(某一列)的元素都乘以一个常数k,等于用该行(该列)的元素乘以k的行列式的值。
即,如果将矩阵A的第i行的所有元素都乘以k,那么有det(A) = k * det(A'),其中A'是矩阵A进行行数乘k后的矩阵。
行列式的这些性质使得我们可以通过简单的操作来计算复杂矩阵的行列式,从而简化线性代数的运算。
接下来,我们来探讨行列式的应用。
行列式在数学和工程中有广泛的应用,下面举几个例子:1. 线性方程组的解:行列式可以用来求解线性方程组的解。
对于一个n阶方阵A和一个n维向量b,如果det(A)≠0,那么方程组有唯一解;如果det(A) = 0,那么方程组无解或有无穷多解。
2. 矩阵的逆:行列式可以用来判断一个矩阵是否可逆。
对于一个n阶方阵A,如果det(A)≠0,那么A是可逆的,且其逆矩阵的行列式为1/det(A)。
3. 平面和体积的计算:行列式可以用来计算平面和体积的面积或体积。
第二节 行列式的性质与计算 § 行列式的性质考虑111212122212nnn n nna a a a a a D a a a =L L L L L L L将它的行依次变为相应的列,得 112111222212n n Tnn nna a a a a a D a a a =L L L L L L L称T D 为D 的转置行列式 .性质1 行列式与它的转置行列式相等.(T D D =)事实上,若记111212122212nnT n n nnb b b b b b D b b b =LL L L L L L L L L 则(,1,2,,)ij ji b a i j n ==L1212()12(1)n n p p p T p p np D b b b τ∴=-∑LL 1212()12(1).n n p p p p p p n a a a D τ=-=∑L L说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行(i j r r ↔)或两列(i j c c ↔),行列式变号.例如 123123086351.351086=- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =.性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即111211112112121212n n i i in i i in n n nn n n nna a a a a a ka ka ka k a a a a a a a a a =L L L L L LL L L L L L L L L L L L L L L L推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) D 中某一行(列)所有元素为零,则0D =;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即11121112212n i i i i in in n n nn a a a a b a b a b a a a +++=LL L L L L L L L L L111211212n i i in n n nn a a a a a a a a a +LL L L L L L L L L L111211212n i i in n n nna a ab b b a a a L L L L L L L L L L L. 证: 由行列式定义1212()12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑L L L12121212()()1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑L L L L L L性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i jr kr D D +=,即111211212i jn r kr i i in n n nn a a a a a a a a a +=L L L L L L L L L L L11121112212n i j i j in jn n n nna a a a ka a ka a ka a a a +++LL LL LL L L L L L计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式2324311112321311(1)(2)3234113104251113D --=-解: 211231231232123223240188(1)323408620425425r r r r r r D +↔-----=------=43324130858412321232018801880058620058621430303729r r r r r r -++------==143[1(1)58]28629=-⨯-⨯⨯=. 41212,3,4666611111111131113110200(2)66113111310020111311130002ii i r r r r i D=+-=∑===6(1222)48=⨯⨯⨯⨯=.此方法称为归边法. 例2: 计算n 阶行列式12111111(1)(2)111(0,1,2,,)n n ni a x a a a ax a D D a a a xa i n ++==+≠=LL L L L L L L L L L L LL L 解: (1)1112132,3,11111000000i r r n i nn a a a D a a a a -=+---=L L L L M M M M ML22111111100100010n na a a a a -=+-L L L L L L L L L L L L L L(箭形行列式) 11223122,3,,11110000iinc c i ia n i nna a a a a a a +==++∑=L LL L L L L L L2312122111(1)(1)nnn n n i i i ia a a a a a a a a a a ===++=+∑∑L L L(2) 注意到行列式各行元素之和等于(1)x n a +-,有12,3,,(1)(1)(1)i c c ni nx n aa a x n a x a D x n a ax+=+-+-+-=L L L L L L L L11[(1)]1a a x a x n a ax=+-L L L L L L L12,3,,100[(1)]i r r i na a x a x n a x a-=-+--=L L L L L L L L1[(1)]()n x n a x a -=+--. 例3: 设1111111111110,k k kk k n n nkn nna a a a D c cb bc c b b =L M M L L L M M M M LL11111,kk kka a D a a =L M M L11121,n n nnb b D b b =L M M L证明:12.D D D =证: 对1D 作行运算i j r kr +, 把1D 化为下三角形行列式:1111110;kk k kk p D p p p p ==M OL L对2D 作列运算i j c kc +, 把2D 化为下三角形行列式:1121110.nn n nk q D q q q p ==M OL L先对D 的前k k 行作行运算i j r kr +, 然后对D 的后n 列作列运算i j c kc +, 把D 化为下三角形行列式:11111111110,k kk k n nkn nnp p p D c c q c c q q =M O L L M M M O LL故, 111112.kk nn D p p q q D D =⋅=L L . 思考练习 1.计算行列式111222122512123714(1)(2)(2)5927124612n n n n a a a na a a nD D n a a a n+++-+++--==≥-+++-L L M M M M L2.证明1111111112222222222a bb c c a a b c a b b c c a a b c a b b c c a a b c ++++++=+++ 3. 证明2222222222222222(1)(2)(3)(1)(2)(3)(1)4(2)0(1)(2)(3)(1)(2)(3)a a a a ab ac aeb b b b bd cdde abcdef c c c c bf cf efd d d d +++-+++-==+++-+++ 4.计算行列式2324323631063abcda ab a bc a b c dD a a b a b c a b c da ab a bc a b c d++++++=++++++++++++答案134152217341.(1)29571642c c D ↔------=3243422152215220113011311(3)39003000300333r r r r r r -++--⨯⨯-⨯---====112122,3,,111111,2(2)0,2111i c c ni nn a n a n a a n D n a n -=+-+--=⎧==⎨>⎩+-L LL M M M M L 2.左边=21111111111111222222222222c c a b b c c a a b c a c a a b b c c a a b c a c a a b b c c a a b c a c a -++++-++++=+-+++++-+ 32111111111122222222222222c c a b c a c a b c a c a b c a c a b c a c a b c a c a b c a c ++-+-=+-=+-+-+-2312121111111222222222c c c c c c a b a c b a c a b a c b a c a b a c b a c -+↔+--=+-=-=+--1112222a b c a b c a b c . 3. 证(1)左边111111111abcdef -=--213111102020r r r r abcdef ++-=23111020002r r abcdef ↔-=-4.abcdef = (2)左边12222,3,42214469214469214469214469i c c i a a a a b b b b cc c cd d d d -=++++++=++++++324222223221262126021262126c c c c a a b b c cd d --++==++=右边4. 解: 从第4行开始,后行减前行得,002320363a bcda ab a bc D a a b a b ca ab a bc +++=++++++4332r r r r -=-0002003a b c d a a b a b c a a b a a b +++++43r r -=0002000a b c da ab a bc a a b a++++4a =§ 行列式按行(列)展开对于三阶行列式,容易验证:111213212223313233a a a a a a a a a 222321232123111213323331333133a a a a a a a a a a a a a a a =-+可见一个三阶行列式可以转化成三个二阶行列式的计算.问题:一个n 阶行列式是否可以转化为若干个n -1阶行列式来计算一、余子式与代数余子式定义:在n 阶行列式111212122212nnn n nna a a a a a D a a a =L L L L L L L中,划去元素ij a 所在的第i 行和第j 列,余下的元素按原来的顺序构成的1n -阶行列式,称为元素ij a 的余子式,记作ij M ;而(1)i j ij ij A M +=-称为元素ij a 的代数余子式.例如 三阶行列式 111213212223313232a a a a a a a a a 中元素ij a 的余子式为1112233132a a M a a =元素23a 的代数余子式为23232323(1)A M M +=-=-四阶行列式11102511230301x ---中元素x 的代数余子式为3232111(1)0515001A +-=--=二、行列式按行(列)展开定理 n 阶行列式111212122212nnn n nna a a a a a D a a a =L L L L L L L等于它的任意一行(列)的各元素与其对应的代数余子式的乘积之和,即11221122(1,2,,)(1,2,,)i i i i in inj j j j nj nj D a A a A a A i n D a A a A a A j n =++==++=L L L L 或证 (1)元素11a 位于第一行、第一列,而该行其余元素均为零;此时 11212221200nn n nna a a a D a a a =L LL L L L L1212121211()()121211(1)(1)n n n n j j j j j j j j nj j j nj j j a a a a a a ττ=≠=-+-∑∑L LL L2223()112()(1)n n n j j j nj j j j a a a τ=-∑LL L 1111a M =而11111111(1)A M M +=-=,故1111D a A =;(2)1111100j n ij n nj nna a a a D a a a =L L M M M M ML LM M M M M L L 将D 中第i 行依次与前1i -行对调,调换1i -次后位于第一行;将D 中第j 列依次与前1j -列对调,调换1j -次后位于第一列; 经(1)(1)2i j i j -+-=+-次对调后,ij a 就位于第一行、第一列,即2(1)(1)i j i j ij ij ij ij ij ij D a M a M a A +-+=-=-=.(3) 一般地111211212000000n i i in n n nn a a a D a a a a a a =+++++++++LL LL LL L L L L L L L L11121111211112112121212000000n n n i i in n n nn n n nn n n nna a a a a a a a a a a a a a a a a a a a a =+++L L LL L L L L L L L L L L L L L L L L L L L L L L L L L L L LLL1122i i i i in in a A a A a A =++L1122j j j j nj nj D a A a A a A =++L 同理有.推论 n 阶行列式111212122212nnn n nna a a a a a D a a a =L L L L L L L的任意一行(列)的各元素与另一行(列)对应的代数余子式的乘积之和为零,即112211220()0()i s i s in sn j t j t nj nt a A a A a A i s a A a A a A j t ++=≠++=≠L L 或证 考虑辅助行列式1111121222112j j n j j nn nj nj na a a a a a a a D a a a a i j =L L L L L L M M M M M M M L L L 列列1122).t j t j t nj nt a A a A a A j t =++≠L 按第列展(该行列式中有两列对应元素相等.而10D =,所以1122)0j t j t nj nt a A a A a A j t ++≠=L (.关于代数余子式的重要性质1,,0,;n ki kj ij k D i j a A D i j δ==⎧==⎨≠⎩∑ 1,,0,;nik jk ij k D i j a A D i j δ==⎧==⎨≠⎩∑1,0,.ij i j i j δ=⎧=⎨≠⎩,其中 在计算数字行列式时,直接应用行列式展开公式并不一定简化计算,因为把一个n 阶行列式换成n 个(n -1)阶行列式的计算并不减少计算量,只是在行列式中某一行或某一列含有较多的零时,应用展开定理才有意义.但展开定理在理论上是重要的.三、行列式的计算利用行列式按行按列展开定理,并结合行列式性质,可简化行列式计算:计算行列式时,可先用行列式的性质将某一行(列)化为仅含1个非零元素,再按此行(列)展开,变为低一阶的行列式,如此继续下去,直到化为三阶或二阶行列式.计算行列式常用方法:化零,展开.例4: 计算四阶行列式123410123110125D =---.解: 31412122210031461217c c c c D-------=()22122211146217+=⨯------按第行展()()122(1)111121146217r r ÷÷--⨯⨯---=1112146217=--21311002135239c c c c ----=()113521139+=⨯⨯---按第1行展3522439==---.例5 已知4阶行列式414243443402222,..075322ij ij D M M M M M a =+++--求的值其中为的余子式 解: (方法1) 直接计算4(1,2,3,4),.i A i =的值然后相加(略)(方法2) 利用行列式的按列展开定理,简化计算.414243441424344441424344111(1)1M M M M A A A A A A A A +++=-+++=-⋅+⋅+-⋅+⋅3040222207001111=---3407222111=--34014111002=342811=28=-.例6: 计算n 阶行列式00001000000020(1)(2)0000001000000n n x y x y D D x y n y x n ==-L L L L M M M M M M M M M M M L L L L解:11111212111(1)nn n D a A a A a A =++L 按第列展1110000000000000(1)(1)00000000000000n xy y x y x y x y x y y x x y++=-+-L L L L M M M M M M M M M M M M L L L L1(1)n n n x y +=+-.11111212111(2)nn n D a A a A a A =++L 按第列展1110000200(1)(1)!00200001n n n n n n ++=-=---LL M M M M M L L .例7: 计算四阶行列式4000000a ba b a b a b D a b a b a ba b+-+-=-+-+.解: 按第1行展开,有1114400()(1)0()(1)000a b a ba b a b D a b a b a ba b a b a b a ba b +++-+-=+--++---++-,对等式右端的两个3阶行列式都按第3行展开,得 22[()()]a b a bD a b a b a b a b +-=+---+4222a b =.例8: 证明范得蒙行列式(Vandermonde )12111112111()(2)n n i j j i n n n n n x x x D x x n x x x ≤<≤---==-≥∏L L LL L L L , 其中1()i j j i n x x ≤<≤-∏表示所有可能的())i j x x j i -<(的乘积. 证: (用数学归纳法)2n =时,2211211,D x x x x ==-结论正确; 假设对n -11n -范得蒙行列式结论成立,以下考虑n 阶情形.21311222221331111121222133111111000n n n n n n n n n n n n x x x x x x D x x x x x x x x x x x x x x x x x x ---------=------L L L M MM M M L 2131122133112222213311111100()()()0()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------=------L L L M M M M ML112()n i i x x ==-∏按第列展提取公因子 2322223111n n n n n x x x x x x ---L L L L L L L 1()i j j i nx x ≤<≤=-∏. 例9 用范德蒙行列式计算4阶行列式 1111437516949256427343125D -=- 解 :对照范德蒙行列式,此处12344,3,7,5x x x x ====-所以有14()i j j i D x x ≤<≤=-∏213141324243()()()()()()x x x x x x x x x x x x =---⋅--⋅-(34)(74)(54)(73)(53)(57)10368=----⋅---⋅--=.第三环节:课堂练习练习:已知4阶行列式1424344411713180,..21435125ij ij D A A A A A a -=+++-求的值其中为的代数余子式 解: (方法1) 直接计算4(1,2,3,4),.i A i =的值然后相加(略)(方法2) 利用行列式的按列展开定理,简化计算. 14243444142434441111A A A A A A A A +++=⋅+⋅+⋅+⋅ 它是D 中第2列元素与第4列元素的代数余子式的乘积之和,故有 142434440.A A A A +++=。
行列式知识点汇总在数学中,行列式是一个重要的概念,用于描述线性代数中的一些性质和运算。
它在各个领域中都有广泛应用,如线性方程组的求解、矩阵的特征值和特征向量的计算等。
本文将对行列式的相关知识点进行汇总介绍,帮助读者更好地理解和应用行列式。
1. 行列式的定义行列式是一个用来对方阵进行运算的函数。
对于n阶方阵A,它的行列式记作det(A)或|A|,其中n表示方阵的阶数。
行列式的计算通常通过对方阵进行按行展开或按列展开的方式来进行,根据展开的元素进行递归计算。
2. 行列式的性质行列式具有以下性质:- 性质1:互换行(列)会改变行列式的符号,即det(A) = -det(A'),其中A'表示通过互换A的两行(两列)得到的新方阵。
- 性质2:如果行(列)中有零元素,则行列式的值为0。
- 性质3:行(列)成比例,则行列式的值为0。
- 性质4:行列式的某一行(列)的所有元素都乘以k,等价于行列式乘以k。
- 性质5:若A的某一行(列)元素都是两数之和,则行列式可以分解为两个行列式的和。
- 性质6:若A的某一行(列)元素都是两数之差,则行列式可以分解为两个行列式的差。
3. 行列式的计算方法行列式的计算可以根据方阵的阶数和具体性质来选择不同的方法,主要有以下几种方法:- 按行(列)展开法:通过按行(列)展开元素,并对展开的结果进行递归计算。
- 初等行变换法:通过初等行变换将矩阵转化为上(下)三角矩阵,再利用三角矩阵行列式的计算公式求解。
- 对角线法则:将方阵按对角线划分为若干小方阵,利用小方阵行列式的性质求解。
4. 行列式的重要应用行列式在线性代数中有广泛的应用,下面介绍几个重要的应用:- 线性方程组的求解:利用行列式可以判断线性方程组是否有唯一解、无解或无穷解,并可以通过克拉默法则求解方程组。
- 矩阵的逆:若方阵A的行列式不为0,则A可逆,且可以通过行列式求解矩阵的逆。
- 特征值和特征向量:方阵A的特征值为使得det(A-λI)=0成立的λ值,其中I为单位矩阵。