1.2.1平面的基本性质
- 格式:doc
- 大小:98.00 KB
- 文档页数:2
1.2.1平面的基本性质(1)
前置学案
一、知识梳理
1.平面的描述性定义:_______________________________________________; 平面的特点: ①_____________________; ②_______________________. 2.平面的画法:
平面常用____________表示,当平面水平放置的时候,一般用水平放置的____________的直观图表示平面,必要时可以延展出去,根据需要也可以用其他图形(如三角形,梯形等)来表示平面. 3.平面的表示:
平面常用________________表示,也可用平行四边形的_______________表示,如平面α,平面AC 等; 4.在立体几何中只有被遮住部分的线段画成___________,否则画成实线,即使在解题过程中添置的辅助线,如不能被平面遮住,也画成_____________,这是与平面几何画图的不同之处. 5
6公理:公理是人们经过长时间的生产实践总结出来的真理,不用证明,要学好公理,关键是要认真理....解公理的条件和结论以及它的作用.................
7.点和直线的基本性质:①_____________________;②________________________. 二、新授内容:
三点共线.。
第1章立体几何初步1.2 点、线、面之间的位置关系1.2.1 平面的基本性质A组基础巩固1.下列有关平面的说法正确的是()A.平行四边形是一个平面B.任何一个平面图形都是一个平面C.安静的太平洋面就是一个平面D.圆和平行四边形都可以表示平面解析:我们用平行四边形表示平面,但不能说平行四边形就是一个平面,故A项不正确;平面图形和平面是两个概念,平面图形是有大小的,而平面无法度量,故B项不正确;太平洋面是有边界的,不是无限延展的,故C项不正确;在需要时,除用平行四边形表示平面外,还可用三角形、梯形、圆等来表示平面.答案:D2.如图所示,用符号语言可表示为()A.α∩β=m,n⊂α,m∩n=AB.α∩β=m,n∈a,m∩n=AC.α∩β=m,n⊂α,A⊂m,A⊂nD.α∩β=m,n∈a,A∈m,A∈n解析:α与β交于m,n在α内,m与n交于A.答案:A3.下列说法正确的是()A.经过三点确定一个平面B.两条直线确定一个平面C.四边形确定一个平面D.不共面的四点可以确定4个平面解析:对于A,若三点共线,则错误;对于B项,若两条直线既不平行,也不相交,则错误;对于C项,空间四边形就不只确定一个平面.答案:D4.一条直线和直线外的三点所确定的平面有()A.1个或3个B.1个或4个C.1个,3个或4个D.1个,2个或4个解析:若三点在同始终线上,且与已知直线平行或相交,或该直线在由该三点确定的平面内,则均确定1个平面;若三点有两点连线和已知直线平行时可确定3个平面;若三点不共线,且该直线在由该三点确定的平面外,则可确定4个平面.答案:C5.如图所示,平面α∩平面β=l,A,B∈α,C∈β,C∉l,直线AB∩l=D,过A,B,C三点确定的平面为γ,则平面γ,β的交线必过点________.解析:依据公理判定点C和点D既在平面β内又在平面γ内,故在β与γ的交线上.答案:C和D6.空间任意四点可以确定________个平面.解析:若四点共线,可确定很多个平面;若四点共面不共线,可确定一个平面;若四点不共面,可确定四个平面.答案:1个或4个或很多7.下列命题说法正确的是________(填序号).①空间中两两相交的三条直线确定一个平面;②一条直线和一个点能确定一个平面;③梯形肯定是平面图形.解析:依据三个公理及推论知①②均不正确.答案:③8.下列各图的正方体中,P,Q,R,S分别是所在棱的中点,则使这四个点共面的图形是________(把正确图形的序号都填上).解析:①中PS∥RQ,③中SR∥PQ,由推论3知四点共面.答案:①③9.点A在直线l上但不在平面α内,则l与α的公共点有__________个.答案:0或110.依据下列条件,画出图形:平面α∩平面β=AB,直线CD⊂α,CD∥AB,E∈CD,直线EF∩β=F,F∉AB.解:由题意画出图形如图所示.B级力量提升11.如图所示,在正方体ABCD-A1B1C1D1中,设A1C∩平面ABC1D1=E,则B,E,D1三点的关系是________________________.解析:连接AC、A1C1、AC1,(图略)则E为A1C与AC1的交点,故E为AC1的中点.又ABC1D1为平行四边形,所以B,E,D1三点共线.答案:共线12.下列叙述中,正确的是________(填序号).①若点P在直线l上,点P在直线m上,点P在直线n上,则l,m,n共面;②若点P在直线l上,点P在直线m上,则l,m共面;③若点P不在直线l上,点P不在直线m上,点P不在直线n上,则l,m,n不共面;④若点P不在直线l上,点P不在直线m上,则l,m不共面;⑤若点P在直线l上,点P不在直线m上,则l,m不共面.解析:由于P∈l,P∈m,所以l∩m=P.由推论2知,l,m共面.答案:②13.如图所示,在正方体ABCD-A1B1C1D1中,点M,N,E,F分别是棱CD,AB,DD1,AA1上的点,若MN与EF交于点Q,求证:D,A,Q三点共线.证明:由于MN∩EF=Q,所以Q∈直线MN,Q∈直线EF.又由于M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD,所以M,N⊂平面ABCD.所以MN⊂平面ABCD.所以Q∈平面ABCD.同理,可得EF⊂平面ADD1A1.所以Q∈平面ADD1A1.又由于平面ABCD∩平面ADD1A1=AD,所以Q∈直线AD,即D,A,Q三点共线.14.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是棱AA1,AB的中点,求证:D1E,CF,DA三线共点.证明:如图所示,连接EF,A1B,D1C,由于E,F为AA1,AB的中点,所以EF綊12A1B.又由于A1B綊D1C,所以EF綊12D1C.故直线D1E,CF在同一个平面内,且D1E,CF不平行,则D1E,CF必相交于一点,设该点为M.又由于M∈平面ABCD且M∈平面ADD1A1,所以M∈AD,即D1E、CF、DA三线共点.15.如图所示,在四周体ABCD中,E,G,H,F分别为BC,AB,AD,CD 上的点,EG∥HF,且HF<EG.求证:EF,GH,BD交于一点.证明:由于EG∥HF,所以E,F,H,G四点共面,又HF<EG,所以四边形EFHG是一个梯形.如图所示,延长GH和EF交于一点O,所以a,b,c,l四线共面.由于GH在平面ABD内,EF在平面BCD内,所以点O既在平面ABD内,又在平面BCD内.所以点O在这两个平面的交线上,而这两个平面的交线是BD,且交线只有这一条.所以点O在直线BD上.所以GH和EF的交点在BD上,即EF,GH,BD交于一点.16.已知:如图所示,a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:a,b,c,l四线共面.证明:由于a∥b,所以a,b确定一个平面α.由于A∈a,B∈b,所以A∈α,B∈α.所以AB⊂α,即l⊂α.同理,由b∥c,得b,c确定一个平面β,可证l⊂β.所以l,b⊂α,l,b⊂β.由于l∩b=B,所以l,b只能确定一个平面.所以α与β重合.故c在平面α内.。
人教版高中必修2(B版)1.2.1平面的基本性质与推论课程设计一、教材简介《人教版高中数学必修2(B版)》是由人民教育出版社编写的高中数学教材。
本教材较好地体现出了素质教育的理念,强调数学知识在实际生活和各学科中的应用和综合应用能力培养。
其中1.2.1节《平面的基本性质与推论》是初学平面几何的基础,是学好初中数学和高中数学重要的一环。
二、教学目标看完本节课后,学生应该能够:1.掌握平面几何中的各种基本概念;2.熟练掌握平面内直线、角的性质和各种基本定理;3.了解射线和线段的概念及其基本性质;4.在各种问题中熟练运用平面几何中的基本知识和定理。
三、教学内容(一)平面几何基本概念1.区分平面和空间;2.点、直线和角的概念;3.“相交”、“平行”概念及其性质。
(二)平面内的直线和角1.直线的分类及性质,包括垂直、平行、相交的直线性质;2.角的基本概念和性质,特别是对顶角、平行线夹角和同旁内角、反向角的研究;3.五线定理、角平分线定理、中垂线定理等基本定理的探究。
(三)线段和射线1.线段和射线的概念及相关性质,包括延长线及其相关性质、异面直线的关系等。
(四)平面几何的基本性质探究1.角的外延:定义、性质、本质;2.端点与线段的关系:交叉性、重叠性、并列性等;3.线段的中点;4.垂足点:定义、性质。
(五)平面几何的实际应用1.利用平面几何的知识解决一些测量问题;2.利用平面几何的知识理解衣服尺码的相关知识;3.平面几何在建筑、设计和美术中的应用。
四、教学重点1.掌握平面内直线、角的性质和各种基本定理;2.了解射线和线段的概念及其基本性质;3.在各种问题中熟练运用平面几何中的基本知识和定理。
五、教学建议1.建立直观感受:通过学生自身的经验,探究点、直线、角和平面以及它们之间的关系;2.图象教学法:在教学中使用动态图象或幻灯片,通过图象去描绘这些点、线段、射线、任意线和角的相互关系,从而加深学生的理解;3.创设问题:通过贴近实际的问题,让学生去运用所掌握的知识,培养学生的问题解决能力;4.课后扩展:提供丰富的课外资料,引导学生去了解平面几何知识在各个领域中的实际应用。
1.2.1 平面的基本性质与推论自主学习学习目标1.掌握平面的基本性质和三个推论,会用三种语言表述性质与推论.2.了解异面直线的概念,能用符号语言描述点、直线、平面之间的相互位置关系.自学导引1.平面的基本性质(1)基本性质1:如果一条直线上的______点在一个平面内,那么这条直线上的________点都在这个平面内,这时我们说直线在平面内或________________.(2)基本性质2:经过________________________的三点,有且只有一个平面.也可简单说成,______________的三点确定一个平面.(3)基本性质3:如果不重合的两个平面有________公共点,那么它们有且只有________过这个点的公共直线.如果两个平面有一条公共直线,则称这两个平面________.这条公共直线叫做两个平面的________.2.平面基本性质的推论(1)推论1 经过________________________有且只有一个平面.(2)推论2 经过________________有且只有一个平面.(3)推论3 经过________________有且只有一个平面.3.共面和异面直线如果两直线共面,那么它们________或者________,否则称它们为______________.对点讲练知识点一多线共面例1已知直线a∥b,直线l与a、b都相交,求证:过a、b、l有且只有一个平面.点评证明多线共面的一种方法是先由推论3确定一个平面,再利用基本性质1依次证明其余各线也在这个平面内.另一种方法是先由一部分线确定一个平面,由另一部分线确定另一个平面,再让这两个面重合.变式训练1 两两相交且不过同一个点的三条直线必在同一平面内.知识点二证明多点共线问题例2已知△ABC在平面α外,AB∩α=P,AC∩α=R,BC∩α=Q,如图所示.求证:P、Q、R三点共线.点评证明多点共线的方法是利用基本性质3,只需说明这些点都是两个平面的公共点,则必在这两个面的交线上.本题也可先确定点P、R在同一条直线上,Q也在这条直线上,这也是证明共点、共线、共面问题的常用方法.变式训练2如图所示,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R.求证:P,Q,R三点共线.知识点三证明线共点问题例3在四面体ABCD中,E,G分别为BC,AB的中点,F在CD 上,H在AD上,且有DF∶FC=DH∶HA=2∶3,求证:EF,GH,BD交于一点.点评证明若干条线共点,一般可先证其中两条相交于一点,再证其他线也过该点即可,本题在解答中应用了两个相交平面的公共点必然在它们的交线上这一结论.变式训练3如图所示,在正方体ABCD—A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE、D1F、DA三线交于一点.1.三个基本性质的作用:基本性质1——判定直线在平面内的依据;基本性质2——判定点共面、线共面的依据;基本性质3——判定点共线、线共点的依据.2.注意事项(1)应用基本性质2时,要注意条件“三个不共线的点”.事实上,共线的三点是不能确定一个平面的.(2)在立体几何中,符号“∈”与的用法与读法不要混淆.(3)解决立体几何问题时注意数学符号、文字语言、图形语言间的相互转化.课时作业一、选择题1.下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 m,宽是20 m;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为( )A.1 B.2 C.3 D.42.点A在直线l上,而直线l在平面α内,用符号表示为( ) A.A∈l,l∈αB.A∈l,αC.,l∈αD.,α3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条4.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是( )A.A∈a,A∈β,B∈a,B∈ββB.M∈α,M∈β,N∈α,N∈βα∩β=MNC.A∈α,A∈βα∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线α、β重合5.平面α∩平面β=l,点A∈α,B∈α,C∈β,且,AB∩l=R,过A、B、C三点确定平面γ,则β∩γ等于( ) A.直线AC B.直线BCC.直线CR D.以上都不对二、填空题6.下列命题中,正确的是________.(填序号)①若两个平面有一个公共点,则它们有无数个公共点;②若已知四个点不共面,则其中任意三点不共线;③若点A既在平面α内,又在平面β内,则α与β相交于直线l,且A在l上;④两条直线不能确定一个平面.7.读图①②,用符号语言表示下列图形中元素的位置关系.(1)图①可以用符号语言表示为_______________________________________________________ _________________;(2)图②可以用符号语言表示为_______________________________________________________ _________________.8.如图所示,ABCD—A1B1C1D1是长方体,O是B1D1的中点,直线A1C 交平面AB1D1于点M,则下列结论错误的是________(填序号).①A、M、O三点共线;②A、M、O、A1四点共面;③A、O、C、M四点共面;④B、B1、O、M四点共面.三、解答题9.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC 所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.10.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且α,β.求证:AB ,CD ,l 共点(相交于一点).【答案解析】 自学导引1.(1)两 所有 平面经过直线 (2)不在同一条直线上 不共线 (3)一个 一条 相交 交线2.(1)一条直线和直线外一点 (2)两条相交直线 (3)两条平行直线3.平行 相交 异面直线 对点讲练例1 证明 方法一⎭⎪⎬⎪⎫直线过a ,b 有且只有一个平面,设为αl∩a=l∩b=⎭⎪⎬⎪⎫α,B∈α A∈l,B∈l α,b ,l 共面.方法二 ∵a∥b, ∴a,b 确定一个平面α.a∩l=A ,直线a ,l 确定一个平面β. 又∵B∈α,B∈β,α,β,∴平面α与β重合.故直线a,b,l共面.变式训练1已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证明方法一(同一法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l 2α,∴B∈α.同理可证C∈α.又∵B∈l 3,C∈l3,∴l3α.∴直线l1、l2、l3在同一平面内.方法二(重合法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l 2,l2α,∴A∈α.∵A∈l 2,l2β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.例2证明方法一∵AB∩α=P,∴P∈AB,P∈平面α.又平面ABC ,∴P∈平面ABC.由基本性质3可知:点P 在平面ABC 与平面α的交线上, 同理可证Q 、R 也在平面ABC 与平面α的交线上. ∴P、Q 、R 三点共线. 方法二 ∵AP∩AR=A ,∴直线AP 与直线AR 确定平面APR.又∵AB∩α=P ,AC∩α=R ,∴平面APR∩平面α=PR. ∵B∈面APR ,C∈面APR ,面APR.∵Q∈BC,∴Q∈面APR ,又Q∈α,∴Q∈PR, ∴P、Q 、R 三点共线.变式训练2 证明 ∵AB∩α=P ,CD∩α=P , ∴AB∩CD=P.∴AB,CD 可确定一个平面,设为β. ∵A∈AB,C∈CD,B∈AB,D∈CD, ∴A∈β,C∈β,B∈β,D∈β. ∴Aβ,β,平面α,β相交.∵AB∩α=P ,AC∩α=Q ,BD∩α=R , ∴P,Q ,R 三点是平面α与平面β的公共点.∴P,Q ,R 都在α与β的交线上,故P ,Q ,R 三点共线. 例3 证明 因为E 、G 分别为BC 、AB 的中点, 所以GE∥AC.又因为DF∶FC=DH∶HA=2∶3,所以FH∥AC 且HF =25AC ,从而FH∥GE.故E ,F ,H ,G 四点共面.所以四边形EFHG 是一个梯形,GH 和EF 交于一点O. 因为O 在平面ABD 内,又在平面BCD 内, 所以O 在这两个平面的交线上.而这两个平面的交线是BD ,且交线只有这一条,所以点O 在直线BD 上.这就证明了GH 和EF 的交点也在BD 上,所以EF ,GH ,BD 交于一点.变式训练3证明 连接EF ,D 1C ,A 1B. ∵E 为AB 的中点, F 为AA 1的中点, ∴EF 12A 1B.又∵A 1B∥D 1C ,∴EF∥D 1C ,∴E,F ,D 1,C 四点共面,且EF =12D 1C ,∴D 1F 与CE 相交于点P. 又D 1平面A 1D 1DA ,平面ABCD.∴P为平面A1D1DA与平面ABCD的公共点.又平面A1D1DA∩平面ABCD=DA,根据基本性质3,可得P∈DA,即CE、D1F、DA相交于一点.课时作业1.A [由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确,故选A.]2.B 3.D4.C [∵A∈α,A∈β,∴A∈α∩β.由基本性质可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.]5.C [∵AB∩l=R,∴R∈l,R∈AB.又α∩β=l,β,∴R∈β,R∈γ,又C∈β,C∈γ,∴β∩γ=CR.]6.①②③7.(1)α∩β=l,α,β,l∩n=P,m∥l(2)α∩β=l,m∩α=A,m∩β=B8.④解析连接AO,AO是平面AB1D1和平面BB1D1D的交线,∵M∈A1C,A1面AA1C1C,∴M∈面AA1C1C,又M∈面AB1D1∴M∈AO,即A、M、O三点共线,因此①②③均正确.只有④不正确.9.解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线.10.证明∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰,∴AB,CD必定相交于一点,设AB∩CD=M.又α,β,∴M∈α,且M∈β,∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.。
1.2.1平面的基本性质与推论 背景知识激趣 世界上最早的几何学论著 墨翟生活在孔子之后孟子之前的春秋战国之交的时代,他一方面从事生产劳动,另一方面,他刻苦学习,勤于思考,在当时的社会上享有很高的学术威望. 墨翟与当时一些志同道合者以及他的学生组成了墨子学派,他成为墨子学派的代表人物。因此,墨翟也被称为墨子,墨子学派在当时发表了许多学术观点,这些观点都用竹简记录下来,成为墨子学派的代表作———《墨经》。 《墨经》成书的时代比著名的欧几里德《原本》早,其中记录了许多有关几何的论述,可以说,《墨经》是世界上最早的几何学论著。让我们来看看《墨经》中有关几何的例子,通过这些例子,可以看出《墨经》中对几何学的见解是多么高明与精辟! 《经上》“平,同高也”,用现在的话说,就是“所谓平行线(或面),是两条(个)在每一处距离(高)都相等的直线(或平面)”,平面几何中有“平行线间的距离处处相等”就是所谓的“同高”。 《经上》“直,参也”,用现在的话说,就是“直线,通过三点”,古字参通叁,换句话说就是“三点在同一条直线上”。 《经上》“圜,一中同长也”,用现在的话说,就是“圆(或球),有一个中心,且每一点到这个中心的距离相等”。 《经上》“中,同长也”,用现在的话说,就是“线段的中点到线段两端的距离相等”。 以上仅举数例,可以看出《墨经》中的有关几何论述几乎同现代几何学观点一样。
课程学习目标 [课程目标] 目标重点:平面的基本性质与推论以及他们的应用. 目标难点:文字语言、数学图形语言和符号语言间的相互转化与应用.
[学法关键] 本节的学习要注意正确地作图,恰当地作图有利于培养同学们的空间想象能力,在平面几何中,辅助线一般要画成虚线. 而立体几何中则不同,一般是将看不见的线画成虚线,与它是否是辅助线无关"
研习教材重难点 研习点1.平面的基本性质: 1.公理1: ①文字语言:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内; ②图形语言: ③符号语言:A∈l;B∈l,A∈α,B∈α,ABα. 公理1的作用有两个:(1)作为判断和证明直线是否在平面内的依据,在学习公理1之前,判断直线是否在平面内,要看直线上所有的点是否在平面内,公理1则简化了判断证明过程,只需要看是否有两个点在平面内就可以了; (2)公理1可以用来检验某一个面是否为平面,检验的方法为:把一条直线在面内旋转,固定两个点在面内后,如果其他点也在面内,则该面为平面。
1.2.1节平面的基本性质(一)
学习目标:
初步了解平面的概念;了解平面的基本性质(公理3
1 );能正确使用集合符号表示有关点、线、面的位置关系;能运用平面的基本性质解决一些简单的问题.
重点难点:
正确使用集合符号表示点、线、面的位置关系,平面的基本性质.
一、课前预习
1.
直线的特征:______,________,_________ 直线的画法:
直线的表示方法:平面的特征:______,________,________ 平面的画法
平面的表示方法:
2.用数学符号来表示点、线、面之间的位置关系:点与直线的位置关系:
点与平面的位置关系:
直线与平面的位置关系:
3.平面的基本性质:
公理1:文字语言描述为:
图形语言表示为:
符号语言表示为:
公理2:文字语言描述为:
图形语言表示为:
符号语言表示为:
公理3:文字语言描述为:
图形语言表示为:
符号语言表示为:
二、课堂研讨
例1. 按照给出的要求,完成两个相交平面作图,线段AB 是两个平面的交线
例2.正方体的各顶点如图所示,正方体的三个面所在平面
A 1C 1,A 1
B 1,B 1
C 1,分别记作γβα,,,试用适当的符号填空.
111____,___)4(BB B A ==γββα
γβα________,______,_____)5(11111B A BB B A
例3.已知:Q BC R AC P AB ABC =⋂=⋂=⋂∆αααα,,外,在平面 求证:P,Q,R 三点共线。
,_______)1(1αA α_______1B ,_______)2(1γB γ_______1C ,_______)3(1βA β_______1D P A B C
R Q
α。