肿瘤放射治疗学
- 格式:doc
- 大小:22.00 KB
- 文档页数:3
源皮距SSD:射线源沿射线中心轴到体模表面的距离。
源瘤距STD:射线源沿射线中心轴到肿瘤中心的距离。
源轴距SAD:射线源到机器等中心点的距离。
机器等中心点:机架的旋转中心、准直器的旋转中心及治疗床的旋转中心在空间的交点。
PDD:百分深度剂量:体模内射线中心轴上某一深度d处的吸收剂量Dd与参考深度d0处吸收剂量D0之比的百分数,是描述沿射线中心轴不同深度处相对剂量分布的物理量。
等效方野:如果使用的矩形野火不规则野在其照射野中心轴上的百分深度剂量与某一方形野的百分深度剂量相同时,该方形野叫做所使用的矩形或不规则照射野的等效方野。
MLC:多叶准直器:相邻叶片沿宽度方向平行排列,构成叶片组,两个相对叶片组组合在一起,构成MLC。
Bolus:等效组织填充物:包括石蜡、聚乙烯、薄膜塑料水袋、凡士林、纱布及其他组织等效材料。
在皮肤表面及组织欠缺的位置填入组织等效物,达到改善剂量分布的效果。
剂量建成效应:百分深度剂量在体模内存在吸收剂量最大值,这种现象称为剂量建成效应。
GTV:肿瘤区:是可以明显触诊或可以肉眼分辨和断定的恶性病变位置和范围。
'CTV:临床靶区:包括了可以断定的GTV和(或)显微镜下可见的亚临床恶性病变的组织体积,是必须去除的病变。
ITV:内靶区:包括CTV加上一个内边界范围构成的体积。
PTV:计划靶区:是一个几何概念:包括ITV边界(ICRU62号报告)、附加的摆位不确定度边界、机器的容许误差范围和治疗中的变化。
确定性效应:是指受照剂量超过一定阈值后必然发生的辐射效应。
随机效应:发生概率与受照射的剂量成正比,但其严重程度与剂量无关。
主要表现为有法远期效应,包括恶性肿瘤和遗传效应。
TD5/5:表示在标准治疗条件下治疗的肿瘤患者,在5年之后因放射线造成严重损伤的患者不超过5%。
TD50/5:表示在标准治疗条件下治疗的肿瘤患者,在5年之后因放射线造成严重损伤的患者不超过50%。
4Rs:是指,细胞放射损伤的修复;周期内细胞的再分布;氧效应及乏氧细胞的再氧合以及再群体化。
肿瘤放射治疗学试题及答案1、恶性肿瘤:是在人类正常细胞基础上,在多种致癌因素作用下,逐渐形成的、不断增殖的、个体形态变异或缺失的、具有迁徙和浸润行为的细胞群。
临床上常表现为一定体积的肿物。
2、我国目前肿瘤放疗事故(恶性肿瘤最新发病率)为:10万人口每年280例。
3、肿瘤放疗:放射治疗就是用射线杀灭肿瘤细胞的一种局部治疗技术。
4、放疗时常用的射线:射线分两大类:一类是光子射线,如X、γ线,是电磁波;一类是粒子,如电子、质子、中子。
5、放疗的四大支柱:放射物理学、放射生物学、放射技术和临床肿瘤学。
6、肿瘤细胞放射损伤关键靶点:DNA。
7、射线的直接作用:(另一种答案:破坏单键或双键)。
任何射线在被生物物质所吸收时,是直接和细胞的靶点起作用,启动一系列事件导致生物改变。
如:电离、光电、康普顿。
8、射线的间接作用:(另一种答案:电解水-OH,自由基破坏)。
射线在细胞内可能和另一个分子或原子作用产生自由基,它们扩散一定距离,达到一个关键的靶并产生损伤。
9、B-T定律:细胞的放射敏感性与它们的增殖能力成正比。
与它们的分化程度成反比。
10、影响肿瘤组织放射敏感性的因素:组织类型、分化程度、临床因素。
肿瘤自身敏感性:肿瘤负荷、肿瘤分型、分期;肿瘤来源和分化程度;肿瘤部位和血供;照射剂量;2、化学修饰与肿瘤放射效应:放射增敏剂:氧气、多种药物;放射保护剂:低氧、谷胱甘肽加温与放疗;430C加温自身即可杀灭肿瘤细胞;能使S期细胞、乏氧细胞变的敏感;热休克蛋白,42-4450C, 2/周;3、放疗与同步化疗:空间协作:放射控制原发,化疗控制转移;毒性依赖:必须注意两者叠加问题;互相增敏:联合应用,疗效1+1>2,机制不详;保护正常组织:缩小病灶,减少剂量;11、放射野设计四原则:1、靶区剂量均匀:治疗的肿瘤区域内吸收剂量要均匀,剂量梯度部超5%,90%剂量线包整个靶区。
(野对称性);2、准确的靶区和剂量:即CTV准确,考虑到肿瘤类型和生物学行为(不同胶质瘤外扩大不一样),剂量要认真计算和精确测量。
肿瘤放疗学(详细)一、介绍现代放疗技术在肿瘤治疗中发挥了重要的作用。
肿瘤放疗学是一门以放射线和其他能量源为主要手段,利用影响肿瘤细胞和其周围正常细胞的细胞生物学效应,从而达到治疗和控制肿瘤的学科。
二、肿瘤放疗的目标肿瘤放疗的目标是摧毁肿瘤细胞,同时尽可能地保护周围正常细胞。
通过放疗可以使肿瘤的活细胞死亡,达到治疗的目的。
但是,放疗会对周围正常细胞造成影响,因此需要精确地定位肿瘤,只照射到癌细胞所在的位置,最大程度地减少对身体的伤害。
三、放疗的类型1. 传统放疗传统放疗也叫外加速器放疗,用普通X线或高能电子线照射患病区域。
通过大剂量较长时间的放疗,摧毁癌细胞并保护周围正常细胞。
这一技术已经稳定应用于肺癌、前列腺癌、乳腺癌、胃癌等多种肿瘤的治疗。
2. 重粒子放射治疗重粒子放射治疗也被称为质子治疗、碳离子治疗等。
该技术利用粒子的物理性质可在短距离内释放出大量能量的特点,精确照射患病区域,并控制剂量,减少治疗极点。
可用于治疗深部肿瘤和神经系统肿瘤等。
四、放疗的副作用放疗会对周围正常细胞造成影响,产生不同程度的副作用。
放射性皮炎、口腔黏膜炎、休克、红斑、瘙痒、皮肤脱屑、颈动脉瘤等均为常见的治疗反应。
导致的不适影响患者的生活质量。
因此,在治疗中需要注意减轻患者的不适,采用不同的治疗方案和剂量控制方法,减轻副作用。
五、放疗的风险控制放疗治疗过程中,可能会出现人为的失误、放射性设备损坏、剂量错误等。
因此,为保障患者的安全,需要采取有效的放射检测措施和放疗工作人员的专业技能,并制定完善的放疗安全规范,避免不当的操作对患者带来风险。
六、总的来说,肿瘤放疗学是一门重要的学科,在现代肿瘤治疗中发挥着重要的作用。
放疗的技术含量不断提高,使得肿瘤治疗的效果得到进一步提高。
随着放射治疗技术的不断改进,我们相信放疗会变得越来越安全、有效。
1.放射治疗学:是通过电离辐射作用对良恶性肿瘤和其他一些疾病进行治疗的临床专业学科。
主要用于治疗恶性肿瘤,又称为放射肿瘤学。
放射肿瘤学与外科肿瘤学,内科肿瘤学共同组成了恶性肿瘤治疗的主要手段。
2.放疗原则:最大限度的将射线集中到肿瘤靶区内,杀死肿瘤细胞,是周围正常组织和器官少受或免受不必要的照射。
3.照射野:表示射线经准直器准直后,中心轴参考点处垂直的平面与射线锥的截面即为照射野的大小。
4.中心轴:表示射线束的中心对称线。
5.参考剂量点:剂量计算或测量的参考,一般情况下指体模表面下照射野中心轴上的一个规定点即最大剂量点。
6.校准剂量点:在照射野中心轴上指定的剂量测量点。
7.源皮距(SSD):射线源下表面中心到模体表面照射野中心的距离。
查PDD表8.源轴距(SAD):射线源到机架旋转轴的距离。
查TMR表9.模体内的剂量分布行为:模体内任一点A的计量由原发射线的剂量与散射线的剂量的贡献之和组成,剂量最大点深度:能量6mv 深度1.5cm;能量15mv 水下深度3cm 10.中心轴百分深度量(PDD):模体内照射野中心轴上任一深度的吸收剂量率Dd与该照射野中心轴上参考点吸收剂量Do的比的百分率:PDD=Dd/Do(100%)11.组织最大比(TMR):在射线束几何状态不变下,模体内照射野中心轴上任一点吸收剂量率Dd与空间同一点处于模体内最大剂量深度处吸收剂量率Dm之比12.直线加速器:利用微波电磁场加速电子,并使其具有直线轨道,直接输出电子或经转换为X射线,供放疗用。
按其能量范围分低,中,高三类13.肿瘤倍增时间(Td):肿瘤体积增加一倍所需要的时间。
主要有三个因素决定:细胞周期时间,生长比例,细胞丢失速度。
14.潜在倍增时间:假设在没有细胞丢失的情况下,肿瘤体积增加一倍所需要的时间15.治疗比(治疗获得系数):TGF=某一措施对肿瘤的影响/某一措施对正常组织的影响,TGF>1时才有治疗效果16.多靶单击模型:假设一个细胞有N个靶,每个靶都相同,每个靶的失活只需要一次击中,只有当所有的靶都失活,细胞才死亡17.肿瘤致死量:使得绝大部分肿瘤细胞破坏死亡而达到局部治愈的放射线的剂量(TCD95)18.平均致死剂量(Do):指照射后还剩余37%细胞存余所需要的放射计量19.准阈剂量(Dq):从开始照射到细胞呈指数性死亡所浪费的剂量,反应细胞亚致死损伤修复能力的大小,Dq值越大,细胞亚致死损伤修复能力越强,放射越抗拒20.氧增强比(OER):在乏氧条件下引起一定效应所需的放射剂量与有氧条件下引起同样效应所需放射剂量的比值称氧增强比,该比值较小好21.相对生物效应(RBE):指引起相同类型,相同水平的生物效应时,参考辐射的吸收剂量与所研究辐射的吸收剂量的比例,比值越大,射线类型越好22.致死性损伤(LD):不可修复的细胞丧失增殖能力,最终不可逆的导致死亡23.亚致死性损伤(SLD):在正常情况下可在几小时(4~8h)内修复的损伤,如果在未修复时给予另一亚致死性损伤,可形成致死性损伤24.潜在致死性损伤(PLD):一种受照射后环境条件影响的损伤,细胞照射后如遇到合适的环境或条件,这种损伤可以修复,如得不到适当环境或条件,则转化为不可逆的损伤,细胞丧失分裂增殖能力25.常规分割:每天照射一次,每次D T量(肿瘤的吸收剂量)1.8~2.0Gy,每周照射5次26.最小耐受剂量(TD5/5):在标准治疗条件下治疗后5年内小于或等于5%病例发生严重放射损伤的剂量27.Lhermitte’s征:放射性脊髓早期反应,一般发生在放疗结束后2~4个月,主要表现为下肢末端在低头曲颈时电击样刺痛和感觉异常28.治疗比:正常组织耐受量和肿瘤致死量之比,>1时有治疗效果29.正常组织耐受量:最小的器官损伤剂量(TD5/5):标准治疗条件的肿瘤病人中,治疗后5年,因放射造成严重放射损伤的病人不超过5%,最大器官损伤剂量(TD50/5)标准治疗条件的肿瘤病人中,治疗后5年,因放射造成严重放射损伤的病人不超过50% 30.肿瘤区(GTV):指肿瘤的临床灶,为一般诊断手段,能够诊出的,可见的,具有一定形状和大小的恶性病变的范围包括转移淋巴结和其他转移病变可认为第二肿瘤区31.临床靶区(GTV):按一定的时间剂量模式给予一定剂量的肿瘤临床灶亚临床灶以及肿瘤可能侵犯的范围32.计划靶区(PTV):计划靶区包括:临床靶区(CTV)、照射中患者器官的移动(ITV),由于摆位、治疗中患者体位的重复性误差,靶位置和靶体积变化等因素引起的扩大照射的组织范围以确保CTV得到规定的治疗剂量,计划靶区决定了照射野的大小33.治疗区(GTV):对一定的照射技术及射野安排,某一条等剂量线所包括的范围。
肿瘤放射治疗学简介肿瘤放射治疗学(Radiation Oncology)是肿瘤学的重要分支学科,研究肿瘤患者利用放射线对癌细胞进行治疗的方法和原理。
它是治疗恶性肿瘤的三大主要手段之一,广泛应用于临床。
放射治疗放射治疗是利用高能射线破坏癌细胞的DNA分子,从而抑制癌细胞的增殖和分裂,达到治疗肿瘤的目的。
放射治疗主要可以分为外照射和内照射两种方式。
外照射外照射是指将放射线从体外照射进入患者体内,通过准确的定位和照射计划,将放射线聚焦在肿瘤组织上,最大限度减少对正常组织的伤害。
常见的外照射方式有3D-CRT、IMRT、VMAT等,其中IMRT是目前应用最广泛的技术之一。
外照射治疗可以应用于几乎所有肿瘤类型,包括头颈部、胸部、腹部、骨骼和盆腔等部位的肿瘤。
内照射内照射是将放射源放置在肿瘤组织内或其附近,通过放射源释放的射线直接照射肿瘤组织。
常见的内照射方式有超声导向放射治疗(HDR-BT)和永久性种植物(LDR-BT)。
内照射常用于前列腺癌、宫颈癌等部位难以通过外照射完全照射到的肿瘤。
临床应用肿瘤放射治疗主要应用于以下几个方面:治愈治疗肿瘤放射治疗的主要目的是治愈患者。
通过放射线的照射,可以杀灭或抑制癌细胞的增殖,达到完全消灭肿瘤的目的。
这种治疗一般适用于早期肿瘤,或者是肿瘤无法手术切除的情况。
辅助治疗肿瘤放射治疗也可以作为手术治疗或者化学治疗的辅助手段。
在手术切除肿瘤之后,放射治疗可以消灭术后残留的癌细胞,预防局部复发。
而在化学治疗过程中,放射治疗可以增强化疗的效果,提高治愈率。
对于某些无法手术切除的肿瘤,放射治疗可以用于缓解症状和减轻患者的痛苦。
例如,对于晚期食管癌患者,放射治疗可以减轻症状并提高患者的生活质量。
治疗优势肿瘤放射治疗相比于手术治疗和化学治疗具有以下几个明显的优势:无创性治疗放射治疗是一种无创性治疗,不需要开刀切除肿瘤组织。
对患者来说,无需恢复手术创伤,恢复期较短,可以减少治疗的不适和痛苦。
肿瘤放射治疗学试题及答案名词解释1.立体定向放射治疗(1.2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。
2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。
3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。
4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修复。
5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的加速增殖现行,此现象被为称为加速再增殖。
6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射5d,总剂量60-70Gy,照射总时间6~7周的放疗方法。
7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素进行修正。
一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。
8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提高局控率的药物。
包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。
9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少放射对肿瘤的杀灭效应化学修饰剂。
10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。
11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤细胞群集,细胞数量级≤106,如根治术或化疗完全缓解后状态。
12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边缘病理未净。
肿瘤放射治疗学
肿瘤放射治疗学是一门研究使用放射线治疗肿瘤的学科。
它涵盖了放疗的各个方面,包括放射治疗的原理、技术、
设备、剂量计算和治疗计划等。
肿瘤放射治疗学旨在通过
使用高能量的电离辐射,如X射线或γ射线,来杀死或抑
制肿瘤细胞的生长和分裂。
肿瘤放射治疗学的主要目标是减少或完全消除肿瘤的体积,同时最大限度地保留正常组织和器官的功能。
放疗可以作
为单独的治疗方法,也可以与其他治疗方法,如手术和化疗,结合使用。
在肿瘤放射治疗学中,放疗计划师使用计算机和成像技术,如CT扫描和MRI,确定最佳的治疗计划。
他们将在肿瘤区域内投放辐射,并确保辐射药剂准确传递到肿瘤区域,同
时尽量减少对周围正常组织的伤害。
肿瘤放射治疗学的发展和进步使得放疗可以更加精确地定位和传递给肿瘤区域,减少了对正常组织的伤害。
同时,放疗也可以通过不同的方式进行,如传统的外照射和内照射技术,以最大程度地满足患者的需求和治疗效果。
总之,肿瘤放射治疗学是研究和应用放射线治疗肿瘤的学科,为治疗癌症患者提供了一种重要的治疗选择。
放射医学的肿瘤放射治疗放射医学的肿瘤放射治疗是一种常见的肿瘤治疗方法,通过使用高能射线或颗粒破坏肿瘤细胞的DNA,来阻止肿瘤的生长和扩散。
本文将对肿瘤放射治疗的定义、原理、分类和应用进行详细讨论。
一、定义肿瘤放射治疗是一种利用放射线照射治疗肿瘤的方法,可以通过杀死肿瘤细胞、减小肿瘤体积、缓解疼痛等途径,达到治疗肿瘤的效果。
二、原理肿瘤放射治疗的原理在于,放射线能够破坏肿瘤细胞的DNA,导致细胞死亡。
具体而言,放射线会在肿瘤组织中产生电离作用,释放大量能量,破坏肿瘤细胞的遗传物质,使其无法继续生长和分裂。
三、分类根据放射线的种类和来源,肿瘤放射治疗可以分为外部放射治疗和内部放射治疗两种类型。
1. 外部放射治疗外部放射治疗是指使用外部放射线源照射肿瘤部位。
常见的外部放射治疗包括:(1)常规放射治疗:使用线性加速器等设备产生的高能X射线或γ射线照射肿瘤。
(2)调强放射治疗(IMRT):通过多个束流和剂量分解,精确地照射肿瘤,最大限度地减少正常组织的损伤。
(3)调强质子治疗:使用质子束照射肿瘤,具有较好的剂量分布和较小的侧向散射。
2. 内部放射治疗内部放射治疗是指在肿瘤组织内放置放射性源,直接破坏肿瘤细胞。
常见的内部放射治疗包括:(1)近距放射源治疗:通过将放射源植入至肿瘤或近距离接触肿瘤,释放放射线破坏肿瘤细胞。
(2)系统放射治疗:通过口服或静脉注射放射性药物,使药物通过血液循环进入肿瘤组织,释放放射线破坏肿瘤细胞。
四、应用肿瘤放射治疗广泛应用于不同类型的癌症治疗中,包括但不限于以下几个方面:1. 局部治疗对于早期肿瘤,放射治疗可以用于局部控制肿瘤的生长和扩散。
它可以作为肿瘤治疗的主要手段,也可以与手术和化疗相结合。
2. 辅助治疗对于手术无法完全切除的肿瘤,放射治疗可以作为手术后的辅助治疗。
它可以杀死手术残留的肿瘤细胞,减少复发和转移的风险。
3. 术前放疗在手术之前进行放射治疗,可以使肿瘤缩小,方便手术操作,并减少手术风险。
肿瘤放射治疗技术学第一章绪论1、放射治疗概念及目的概念:是以放射物理学和放射生物学知识为基础,借助于放射线的电离辐射作用进行研究和探讨对恶性肿瘤进行治疗的一项技术。
目的:在给予肿瘤精确治疗的同时,尽可能减少对正常组织的损伤,这样既可以延长患者的生存时间,又可以保证患者的生存质量。
根本目的:(1)、最大限度地消灭肿瘤;(2)、最大限度地保护正常组织和器官地结构和功能:(3)、提高病患地长期生存率和改善生存质量。
2、近距离与远距离照射近距离照射:也称内照射,指放射源密闭后直接置入被治疗的组织内或放入人体的天然间隙内进行照射。
主要照射方式包括腔内照射、组织间照射、伏贴照射和放射性粒子植入治疗。
远距离照射:也叫做体外照射,就是放射源距离人体外一定的距离,集中照射人体某一部分。
根据放射源到治疗照射部位距离的不同,分为。
SSD—要求放射源到患者皮肤表面的距离为100cm。
SAD—要求放射源到患者肿瘤中心的距离为100cm。
其中旋转照射(ROT)为SAD的特例。
3、放射治疗的作用P4—将恶性肿瘤细胞的数目减少到可获得永久局部肿瘤控制的水平,患者可以长期生存。
—缓解症状,提高患者生活质量和一定程度的控制肿瘤。
—提高预防性放射性治疗的局部控制率。
4)、非恶性疾病的放射治疗—非恶性疾病或“良性”疾病可通过射线照射成功治疗。
第二章放射治疗设备1、X线模拟定位机功能结构及与治疗机的区别功能结构:由X线发生装置、成像系统、其他辅助装置构成。
结构上分为固定机座、旋转机架、机头、影像接触装置、治疗床、操作台等构成。
与治疗机的区别:X线模拟定位机可用于二维常规放疗定位2、CT模拟定位机结构及与诊断CT机的区别三大部分:CT扫描机、外置激光定位系统、模拟定位软件与诊断床的区别:扫描床是否为平板床补充:MR模拟定位机与诊断用定位机最大的区别在于扫描线圈3、医用直线加速器结构及功能结构加速系统:电子枪、加速管、微波功率源、微波传输系统、脉冲调制系统、真空系统、恒温水冷系统等束流系统:偏转磁铁、靶、初级准直器、均整器和散射箔、监测电离室、二级准直器等控制系统:运动控制系统、治疗床、其它附属系统等加速管为医用电子直线加速器的核心部分4、Co60半影问题几何半影,可通过减少源的尺寸和延长源到准直器的距离解决。
肿瘤放射治疗学Radiation Oncology
(一)放射治疗学简史:
a)1885. X 射线的发现
b)1902. 成功治疗一例患皮肤癌的女患者
c)1922. 报告一组喉癌患者的治疗结果,确立放射治疗在临床肿瘤学中的地位
d)1932. 在临床实践累积的基础上Coutard医生提出传统的时间-剂量分割照射方式
e)1951. 提出了立体定向放射手术概念
f)1968. 立体放射外科设备(γ刀)进入临床应用
g)1959. 建立三维适形放射治疗概念
h)1990 提出逆向计划设计概念
(二)肿瘤放疗的地位
a)应用:我国约70%的恶性肿瘤病人需放射治疗;
b)地位:1998年WHO统计:目前有45%的恶性肿瘤可以治愈(手术治愈22%,放疗治
愈18%,化疗治愈5%);
c)优势:副作用小,器官功能保存完整;
(三)放射治疗中的基本概念:
a)放射敏感性:组织细胞对射线程度不同的反映;
b)肿瘤控制概率&正常组织并发症概率:
i.控制肿瘤的同时不能给病人造成不可接受的放射损伤
ii.放射诱发的正常组织改变取决于放射治疗的单次剂量、总剂量、照射体积
c)正常组织耐受量:
i.放射最敏感组织(照射1000~2000CGy):生殖腺、晶体、胎儿、生长中的骨、
软骨等。
ii.中等敏感组织(照射2000~4500CGy):肾、肺、心脏、甲状腺、垂体、淋巴结等。
(四)辐射生物效应原理及放射肿瘤学基本原则
a)射线高能粒子在生物体穿射经迹上的能量沉积造成细胞关键靶的损伤效应
i.直接作用:射线粒子次级电子直接造成靶原子的电离或激发,导致生物学改
变。
ii.间接作用:射线粒子或次级电子与另一原子或分子相互作用,产生自由基,间接损伤一定扩散距离内的细胞靶,导致生物学改变。
b)细胞核DNA 双链断裂是辐射引起各种生物效应最基本的损伤;
i.DNA 双链断裂是辐射所致最关键的损伤
ii.细胞所发生且未能修复的DNA双链断裂均数与辐射生物效应的严重程度成正比
c)分次照射的生物学基础(4R)
i.细胞放射损伤的修复( Repair)
ii.周期时相的再分布( Redistribution)
iii.肿瘤乏氧细胞的再氧合( Reoxygenation )
iv.再增殖( Repopulation )
d)放疗的常规分割剂量:5d/1w 1次/d 2Gy/次连续5~7周;Gy是指放射剂量单位,
是电离辐射吸收剂量的标准单位,相当于焦耳每千克(1 J·kg -1)。
e)放射治疗的三大基础?
f)正常组织和肿瘤组织在电离辐射后反应过程有哪些不同
i.肿瘤细胞群体受到的损伤较正常组织为严重,修复机制残缺;
ii.正常组织自稳调控系统启动的增殖加速快于肿瘤组织;
iii.正常组织照射后细胞增殖周期的恢复较肿瘤组织为快。
g)贯穿于肿瘤放射治疗学科研和临床治疗的两项基本原则
i.最大限度地提高肿瘤局部控制剂量,消灭肿瘤细胞
ii.最大限度地保护周围正常组织和邻近重要器官
(五)放射治疗设备及治疗方式:
a)放射线:
i.低LET射线:LET 小于100 KeV / μm
包括:普通X 线、Co60 γ线、高能X 线、高能电子束
ii.高LET射线:LET > 100 KeV / μm
b)放射设备:
i.X 线治疗机
ii.Co60治疗机
iii.加速器
a)电子感应加速器(涡旋电场加速)
b)电子直线加速器(微波电场加速,目前主流)
c)电子回旋加速器(微波激励的超高频电场加速)
iv.X (γ) 射线立体定向放射治疗设备
v.近距离放射治疗设备
vi.三维适形/调强放射治疗设备
c)放射治疗的方式:体外远距离照射、近距离放射治疗、开放性同位素治疗;
(六)放射肿瘤学在现代综合治疗中的地位和作用;放疗的作用和意义
1)综合治疗整体中的放射治疗:单纯放疗、放疗和综合治疗;
2)合理序贯的综合治疗是现代肿瘤治疗学的大趋势:
a)术前放疗
使不能手术的病人有可能重获手术切除的机会;
使肿瘤缩小,局部情况改善,术手范围趋于缩小;
消灭微小癌巢及亚临床病灶;
降低肿瘤细胞活力,减少局部种植和远地转移几率;
更好保存术后功能,并不增加手术困难及术后并发症;
提示肿瘤化疗的敏感性。
b)术中放疗
手术野直视下,残存部位、瘤床及淋巴引流解剖清楚;
某些器官可推移至照射野外加以屏蔽;
适宜能量电子束的照射,最大限度减少了正常组织剂量。
只限于单次高量照射,不能给予根治性治疗。
c)术后放疗
普遍用于易于手术种植/术后复发,对照射有一定敏感性的病种;
作为姑息手术或局部残存、局部控制的重要补充治疗手段;
与手术间隔不宜过长,局部结构及血运情况改变为其不利因素。
3)放射治疗在保持形体完整和功能维持方面的重要作用
(七)放射治疗可以根治的肿瘤:鼻咽癌,早期声门型喉癌,早期霍奇金淋巴瘤,和早期大
肠癌等其他早期肿瘤。
(八)放射治疗流程和注意事项:
a)诊断:采集病史——全面获取肿瘤信息,明确诊断分期——制定治疗方案;
b)选择适应症,采取最优治疗方案;
c)定位:充分暴露照射部位、调整舒适可重复的体位、确定摆位中心、采集患者影像
资料;
d)靶区勾画:保证靶区均匀剂量避开重要脏器;
e)放疗计划设计:
i.临床剂量学原则:
1.肿瘤剂量要求准确
2.治疗区的剂量要求分布均匀
3.射野设计保证治疗区剂量,降低照射区正常组织受量
4.保护肿瘤周围重要器官免受照射
f)校位:验证体位重复性,将摆位中心挪至治疗中心;
g)治疗;
h)验证:定期检查仪器。