线段的垂直平分线的性质
- 格式:pdf
- 大小:222.13 KB
- 文档页数:3
初中数学垂直平分线有哪些全等性质垂直平分线是初中数学中的一个重要概念。
在本篇文章中,我们将探讨垂直平分线的全等性质,并且详细解释每个性质的几何意义。
让我们开始吧!首先,我们需要明确垂直平分线的定义。
垂直平分线是将一条线段分成两个相等的部分,并且与该线段垂直相交的线。
在这里,我们假设线段AB上有一条垂直平分线CD。
性质1:垂直平分线相互垂直首先,垂直平分线CD与线段AB相交于点E。
根据垂直平分线的定义,我们知道线段AE与线段BE是相等的。
而根据垂直线的性质,我们知道线段AE与线段BE是垂直的。
因此,垂直平分线CD与线段AB相互垂直。
几何意义:这个性质告诉我们,垂直平分线与线段相交后,将线段分成了两个相等的部分,并且这两个部分垂直于垂直平分线。
性质2:垂直平分线相互全等现在,我们考虑另一条垂直平分线EF,它也与线段AB相交于点G。
根据垂直平分线的定义,我们知道线段AG与线段BG是相等的。
同样,线段CG与线段DG也是相等的。
因此,根据ASA(对应边相等、对应角相等、对边相等)全等准则,三角形ACG与三角形BCG全等。
同样地,三角形ADG与三角形BDG也全等。
几何意义:这个性质告诉我们,两条垂直平分线相交于线段上的两个点,它们所形成的三角形与线段的两个端点所形成的三角形全等。
性质3:垂直平分线将角分成两个相等的角现在,我们关注线段AB上的点F,它是垂直平分线EF与线段AB的交点。
根据垂直平分线的定义,我们知道线段AF与线段BF是相等的。
因此,角DAF与角DBF也是相等的。
几何意义:这个性质告诉我们,垂直平分线将线段上的角分成了两个相等的角。
性质4:垂直平分线将线段分成两个相等的线段最后,我们考虑垂直平分线EF与线段AB的交点G。
根据垂直平分线的定义,我们知道线段AG与线段BG是相等的。
因此,线段CG与线段DG也是相等的。
几何意义:这个性质告诉我们,垂直平分线将线段分成了两个相等的线段。
通过以上的性质,我们可以看到垂直平分线在几何学中具有重要的作用。
线段的垂直平分线线段的垂直平分线是指一条垂直于给定线段,并且将该线段平分为两段长度相等的线。
在几何学中,垂直平分线是一种常见的概念,具有重要的应用价值。
本文将探讨线段的垂直平分线的性质、构造方法以及其在实际生活中的应用。
一、线段的垂直平分线的性质线段的垂直平分线有一些重要的性质。
首先,垂直平分线与线段相交于线段的中点。
这是由于垂直平分线平分了线段,所以垂直平分线必定与线段的中点相交。
其次,线段的两侧到垂直平分线的距离相等。
这是因为垂直平分线将线段平分为两等分,所以线段的两侧到垂直平分线的距离必定相等。
这些性质使得垂直平分线在几何学中具有重要的地位和应用。
二、线段的垂直平分线的构造方法线段的垂直平分线可以通过多种方法进行构造。
以下介绍两种常见的构造方法。
1. 使用尺规作图法通过使用尺规作图法,可以准确地构造出线段的垂直平分线。
具体步骤如下:(1)以线段的两个端点为圆心,作一对同心圆;(2)以同一半径,分别从线段的两个端点处画弧,将两个圆交于两点;(3)以这两个交点为圆心,作两个同心圆;(4)连接两个圆的交点和线段的两个端点,即可得到线段的垂直平分线。
2. 使用数学计算方法通过使用数学计算方法,也可以得到线段的垂直平分线。
具体步骤如下:(1)使用坐标系表示线段的两个端点;(2)根据两个端点的坐标,计算出线段的中点;(3)根据两个端点的坐标,计算出线段的斜率;(4)根据斜率的倒数,计算出线段的垂直平分线的斜率;(5)使用中点和垂直平分线的斜率,可以确定垂直平分线的方程。
三、线段的垂直平分线的应用线段的垂直平分线在实际生活中有广泛的应用。
例如,在建筑设计中,通过垂直平分线可以确定墙壁的位置,使得建筑物更加均衡美观。
在地图制作中,通过垂直平分线可以准确绘制出各个地理位置之间的距离和方位关系。
此外,垂直平分线还用于解决一些实际生活中的问题,如切割食物、划分地块等。
总结:线段的垂直平分线是几何学中的重要概念,具有重要的性质和应用。
垂直平分线的定义和性质
一、垂直平分线的定义和性质
1、定义:经过某一条线段的中点,并且垂直于这条线段的
直线,叫做这条线段的垂直平分线(中垂线)。
2、垂直平分线的性质
(1)线段垂直平分线上的点与这条线段两个端点的距离相等;
(2)与线段两个端点距离相等的点在这条线段的垂直平分
线上。
所以,中垂线可以看成到线段两个端点距离相等的点的集合,中垂线是线段的一条对称轴。
二、垂直平分线例题
到三角形三个顶点的距离相等的点是三角形()的交点。
A.三个内角平分线ㅤㅤ
B. 三边垂直平分线
C. 三条中线ㅤㅤ
D. 三条高
答案:B
解析:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,故选B。
垂直平分线知识点
垂直平分线是经过某一条线段的中点,并且垂直于这条线段的直线。
以下是垂直平分线的一些知识点:
1.性质:垂直平分线上的任意一点到这条线段两个端点的距离相等,即线段垂直平分线上的点到线段两个端点的距离相等。
2.判定:如果直线过线段中点,并且垂直于这条线段,那么这条直线就是这条线段的垂直平分线。
3.三角形中的垂直平分线:三角形三条边的垂直平分线相交于一点,这一点叫做三角形的外心,并且这一点到三角形三个顶点的距离相等。
4.与对称轴的关系:如果一个图形关于某一直线对称,那么这个直线就是对应点连线的垂直平分线。
总之,垂直平分线是数学中的一个重要概念,它具有一些独特的性质和判定方法,并且在三角形等图形问题中有着广泛的应用。
几何专题1:线段垂直平分线的性质定理和判定定理一、知识点(抄一遍):1.线段垂直平分线的定义:垂直并且平分一条线段的直线.2.线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.3.线段垂直平分线的判定定理:到线段两端距离相等的点在线段的垂直平分线上.二、专题检测题1.证明线段垂直平分线的性质定理.(注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.)2.证明线段垂直平分线的判定定理.3.定理的几何语言表示(1)线段垂直平分线的性质定理:∵,∴ .(2)线段垂直平分线的判定定理:∵,∴ .4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.几何专题1:线段的垂直平分线答案1. 证明线段垂直平分线的性质定理.已知:如图,直线l 是线段AB 的垂直平分线,垂足为M ,P 为直线l 上的任意一点,连接PA ,PB.求证:PA=PB.证明:①当P 点不与M 点重合时,∵直线l 垂直平分AB ,∴∠PMA=∠PMB=90°,AM=MB.在△APM 和△BPM 中,AM=BM∠PMA=∠PMBPM=PM∴ △APM ≌△BPM (SAS ).∴ PA=PB. ②当P 点与M 点重合时, ∵AM=MB , ∴PA=PB. 由①②可知,该命题成立.2. 证明线段垂直平分线的判定定理.已知:如图,线段AB ,P 为平面内一点,且PA=PB.求证:点P 在线段AB 的垂直平分线上.证明: ①当P 点不在线段AB 所在的直线上时, 过点P 作PC ⊥AB ,垂足为C.∵PA=PB,∴△PAB 是等腰三角形.∵PC ⊥AB,∴AC=BC.∴点P 在线段AB 的垂直平分线上. ②当P 点在线段AB 所在的直线上时, ∵PA=PB, ∴点P 是线段AB 的中点. ∴点P 在线段AB 的垂直平分线上. 由①②可知,该命题成立. 3. 定理的几何语言表示(1)线段垂直平分线的性质定理:∵直线l 垂直平分AB ,∴AP=BP.(2)线段垂直平分线的判定定理:∵PA=PB,∴点P在线段AB的垂直平分线上.4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.证明:∵CD垂直平分线段AB,∴AC=BC,∴∠CAB=∠B.∵AB平分∠CAD,∴∠CAB=∠DAB,∴∠B=∠DAB,∴AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.证明:连接AE.∵AD是BC边上的高,BD=DE∴AD垂直平分BE,∴AB=AE.∵点E在AC的垂直平分线上,∴AE=CE,∴AB=CE,∴AB+BD=CE+DE,即AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.证明:连接AP,BP,CP.∵点P在AB的垂直平分线上,∴AP=BP同理可证:BP=CP∴AP=CP∴点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.证明:∵∠1=∠2,∴BE=CE.∴点E在线段BC的垂直平分线上.同理可证:点A在线段BC的垂直平分线上∴AE垂直平分BC.即AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.证明:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠FEC=∠FEB=90°,∴∠B+∠BDE=90°,∠C+∠F=90°.∴∠BDE=∠F.∵∠BDE=∠FDA,∴∠F=∠FDA.∴AF=AD,∴点A在DF的垂直平分线上.。
线段的垂直平分线(一)知识要点1.定义:垂直平分一条线段的直线叫做这条线段的垂直平分线。
2.定理(性质):线段垂直平分线上的点和线段两个端点的距离相等。
3.逆定理(判定):和一条线段两个端点距离相等的点在这条线段的垂直平分线上。
4.用集合定义:线段的垂直平分线可以看作是和线段的两个端点距离相等的所有点的集合。
5.结论(1):三角形三边中垂线的交点到三个顶点的距离相等,这个交点叫三角形的外心。
结论(2):三角形三个内角角平分线的交点到三边距离相等,这个交点叫三角形的内心。
6.轴对称(位置与形状)和轴对称图形。
(见书P22-P28)(二)练习1.如图,△ABC中,∠ABC=45°,AD平分∠BAC,EF垂直平分AD,交BC的延长线于F,则∠CAF=____度。
2.如图,△ABC的两边AB、AC的垂直平分线分别交BC于D、E,∠BAC+∠DAE=150°,则∠BAC=___度。
3.在△ABC中,∠BAC=144°,EF、MN分别是AB、AC中垂线,则∠EAM=___度。
4.如图,已知O是△ABC的边AB、AC中垂线交点,M是∠ABC、∠ACB的平分线的交点,且∠M+∠BOC=180°,则∠BAC=____度。
(练习册P1712)5.在等腰△ABC中,过腰AB的中点D作它的垂线(点A、C在垂线的异侧),交另一腰AC于点E,连结BE,AD+AC=24,BD+BC=20,则△EBC周长为____。
6.M是△ABC三边垂直平分线的交点,则∠BAC+∠MBC=_____度。
7.在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于D,∠CAD:∠DAB=1:2,则∠B=_______度。
8.已知△ABC的周长为36cm,AB=AC,AD⊥BC于D,△ABD的周为30cm,则AD=___。
9.一个三角形两边垂直平分线的交点在第三边上,则这个三角形是_________。
线段垂直平分线和角平分线的性质
和判定
线段垂直平分线:
它是在一条线段上的两个端点之间画出的一条垂直于该线段的线段,其中两段等长。
性质:
1.线段垂直平分线是一条垂直于给定线段的线段;
2.它将给定线段分成两段等长的线段;
3.它的端点位于给定线段的端点。
判定:
可以使用叉乘或者勾股定理来判断线段垂直平分线,如果a×b=0,则a线段垂直于b线段;如果|a–
b|=|a+b|,则a线段和b线段等长;如果a和b都满足上述条件,则a线段就是给定线段的垂直平分线。
角平分线:
它是在一个角的两边画出的一条线段,其中两段之间的夹角是该角的一半。
性质:
1.角平分线是一条穿过角的线段;
2.它将角分割成两个等分的角;
3.它的端点位于角的两条边上。
判定:
可以使用叉乘法判断角平分线,如果a×b=0,则a线段和b线段垂直;如果|a+b|= 2*|a|,则a和b之间的夹角是180°的一半;如果a和b都满足上述条件,则a线段就是角的平分线。
线段的垂直平分线线段是数学中基本的几何概念之一,而垂直平分线是与线段有密切关系的重要概念。
在本文中,我们将探讨线段的垂直平分线的定义、性质以及如何构造和应用。
一、线段的垂直平分线的定义线段的垂直平分线是指将给定线段垂直平分成两个等长线段的直线。
具体而言,对于线段AB,其垂直平分线将线段AB分成两个等长线段AC和CB。
垂直平分线上的任意一点都与线段AB的两个端点A和B的距离相等,并且与线段AB的中点M重合。
二、线段的垂直平分线的性质垂直平分线具有以下重要性质:1. 垂直性:垂直平分线与线段AB垂直相交。
这意味着垂直平分线上的两条相邻线段是垂直的。
2. 位置唯一性:线段的垂直平分线只有一条。
这意味着对于任意给定的线段,只有一条垂直平分线与其相交。
3. 等分性:垂直平分线将线段AB分成两个等长线段。
4. 对称性:线段AB关于垂直平分线具有对称性。
即相对于垂直平分线,点A和点B互为镜像。
三、线段的垂直平分线的构造方法下面介绍两种构造线段垂直平分线的方法:1. 利用圆的性质:首先,以线段AB的中点M为圆心,以线段AB 的一半长度为半径作圆。
然后,将圆与线段AB分别交于两个点C和D,连接线段CD。
线段CD即为线段AB的垂直平分线。
2. 利用作图方法:首先,以点A为中心,以线段AB的长度为半径作圆。
然后,以点B为中心,同样以线段AB的长度为半径作圆。
假设两个圆分别与线段AB交于两个点C和D,连接线段CD。
线段CD 即为线段AB的垂直平分线。
四、线段的垂直平分线的应用线段的垂直平分线不仅仅在几何学中有着重要的应用,还在实际生活中有许多应用。
以下是几个常见的应用示例:1. 建筑设计:在建筑设计中,垂直平分线常用于确定建筑物的中心线,以便建筑师能够对称地布局。
2. 切割材料:在木工或金属加工等行业中,垂直平分线可用于准确定位和切割材料。
3. 路径规划:在地图导航系统中,垂直平分线可用于确定最短路径或最佳路线,以便节省时间和距离。