第二章多级汽轮机
- 格式:ppt
- 大小:1.15 MB
- 文档页数:33
第二章+多级汽轮机第二章多级汽轮机第一节多级汽轮机的工作特点为了满足电力生产日益增长的需要,世界各国都在生产大功率、高效率的汽轮发电机组。
要想增大汽轮机的功率,则应增加汽轮机的理想焓降和蒸汽流量。
若仍设计成单级汽轮机,则理想焓降增加,将使喷嘴出口速度相应增大,为了保持汽轮机级在最佳速比范围内工作,就必须相应地增加级的圆周速度,而增大圆周速度要受到叶轮和叶片材料强度条件的限制,所以焓降不能无限制地增加;增加级的蒸汽流量,则要增加级通流面积,即增大级的平均直径或叶片高度,同样将受到材料强度的限制。
那么提高汽轮机蒸汽初参数和降低背压,既能提高机组循环热效率,又能增大汽轮机功率,但焓降的增加不能仅靠单级来完成,否则,喷嘴出口速度将非常大,为保证级在最佳速比附近工作,又将会出现材料强度所不允许的、极大的圆周速度。
因此要增大汽轮机功率、又要保证高效率唯一的途径,就是采用多级汽轮机,其中每一级只利用总焓降的一小部分。
多级汽轮机是由按工作压力高低顺序排列的若干级组成的,常见的多级汽轮机有两种,即多级冲动式汽轮机和多级反动式汽轮机。
图1-8(见文后插页)是东方汽轮机厂生产的300MW 冲动式多级汽轮机的纵剖面图。
由图可见,该机组高压缸内有10级(1个单列冲动级作调节级,其余9个为压力级);中压缸内有6级;低压缸内为对称分流,布置有6×2个压力级。
从结构上说,该机组共有28级,但由于蒸汽在低压缸内为对称分流,两部分的工作情况相同,故从热力过程的特点上说,该机组共有22级。
图1-9(见文后插页)为哈尔滨汽轮机厂制造的亚临界600MW 反动式汽轮机纵剖面图。
它由1个单列调节级、10个高压反动级、2×9个中压反动级和2×2×7个低压反动级组成,因此从结构上说它有57级,而从热力过程上看,它有27级。
蒸汽进入汽轮机后依次通过各级膨胀作功,压力逐级降低,比体积则不断增大,尤其当压力较低而又进入饱和区后,比体积增加得更快。
第一节 多级汽轮机的优越性及特点2.1.1 多级汽轮机的优越性和存在的问题(一)多级汽轮机的热效率大大提高1、多级汽轮机的循环热效率大大提高多级汽轮机的比焓降可比单级汽轮机增大很多,因而多级汽轮机的蒸汽初参数可大大提高,排汽压力可以降的很低,还可采用回热循环和中间再热循环,所以多级汽轮机的循环热效率大大高于单级汽轮机。
2、 多级汽轮机的相对内效率明显提高1)多级汽轮机在设计工况下每一级都在最佳速比附近工作,这就使它比单级汽轮机的相对内效率高。
2)在一定条件下,多级汽轮机的余速动能可以全部或部分地被下一级利用,而单级汽轮机的余速动能不可能被下一级利用。
对于多级汽轮机,只要相邻两级的部分进汽度相同,平均直径变化平滑,喷嘴进汽角与上一级的排汽角相近,级间的轴向间隙较小,两级的流量变化不大,那么上一级的余速动能可以全部或部分地被下一级利用。
除调节级及本汽缸地最末级外,多级汽轮机其他各级地余速动能一般可被下一级利用,因此整个汽轮机地内效率提高了。
3)多级汽轮机各级的比焓降比较小,速比一定时的圆周速度和平均直径m d 也都较小根据第一章中的连续方程111sin t n m n t Gv e d l c μπα=可知,在容积流量1t Gv 相同的条件下,由于m d 较小,喷口出口高n l 度增大,因而叶高损失减小,喷嘴流动效率较高。
4)多级汽轮机上面级的损失可以部分地被下面各级利用,使全机相对内效率提高,这种现象称为重热现象,这也是其效率比单级汽轮机高的一个原因。
综上所述,由于多级汽轮机的效率比单级汽轮机高得多,所以多级汽轮机的单位功率能耗大大低于单级汽轮机。
(二)多级汽轮机单位功率的投资大大减小多级汽轮机的单级功率可以远远大于单级汽轮机,因而使单位功率汽轮机组的造价、耗材和占地面积都比单级汽轮机大大减小,容量越大的机组减小得越多,这就使多级汽轮机单位功率得投资大大减小。
(三)多级汽轮机存在的问题1) 增加了一些附加损失,如隔板漏汽损失。
第五节多级汽轮机的轴向推力及其平衡2. 5.1 轴向推力在轴流式汽轮机中,通常是高压蒸汽由一端进入,低压蒸汽由另一端流出,从整体看,蒸汽对汽轮机转子施加了一个由高压端指向低压端的轴向力,使汽轮机转子有向低压端移动的趋势,这个力就称为转子的轴向推力。
(一)冲动式汽轮机的轴向推力整个转子上的轴向推力主要是各级轴向推力的总合。
作用在冲动级上的轴向推力是由作用在动叶上的轴向推力、作用在叶轮面上的轴向推力以及作用在轴的凸肩上的轴向推力三部分组成。
1.作用在动叶上的轴向推力如图2.5.1所示作用在动叶上的轴向推力是由动叶前后的静压差和汽流在动叶中轴向分速度改变所生成的。
(2.5.1)在冲动级中,一般轴向分速度都不大,加之动叶进口的轴向通流面积和蒸汽比容的改变都不大,因此汽流流经动叶时的轴向分速度的改变一般都很小。
由汽流轴向分速度的改变和产生的轴向推力一般都可忽略不计。
引入压力反动度的概念,压力反动度定义为(2.5.2)于是(2.5.3)则作用在动叶上的轴向推力可写成(2.5.4)对于速度级,应计算在两列动叶上所受静压差产生的推力之和,若是部分进汽级,则应乘以部分进汽度e。
由于h-s图上同一压差的等压线距离越向下越大,因此各级压力反动度都小于该级比焓降反动度,用代替所算得的轴向推力偏大,偏于安全,故可认为作用在动叶上的轴向推力正比于。
2.作用在叶轮面上的轴向推力根据图2.5.1的符号,作用在叶轮面上的轴向推力可写成(2.5.5)如果叶轮两侧的轮毂直径相同,即则有(2.5.5a)定义叶轮反动度,则又有(2.5.5b)由式2.5.5b可见,叶轮面上的轴向推力正比于。
3.作用在轴的凸肩上轴向推力在汽轮机轴的轴封套和隔板轴封内轴上的凸肩等处,都会承受轴向推力。
一般情况下,可先算出凸肩上的受压面积和各面积上所受的压力,在算出总的向前与向后的推力之差值,就得净轴向推力,一般的数值很小。
作用在一个级上的轴向推力即为上述三部分推力之和,可写成(2.5.17)对于有n个级的转子,其总轴向推力为:(2.5.18)(二)、反动式汽轮机的轴向推力在反动式汽轮机中,作用在流通部分转子上的轴向推力由下列三部分组成:1)作用在叶片上的轴向推力;2)作用在轮鼓锥形面上的轴向推力;3)作用在转子阶梯上的轴向推力。