多级汽轮机介绍
- 格式:pptx
- 大小:922.48 KB
- 文档页数:8
第二章+多级汽轮机第二章多级汽轮机第一节多级汽轮机的工作特点为了满足电力生产日益增长的需要,世界各国都在生产大功率、高效率的汽轮发电机组。
要想增大汽轮机的功率,则应增加汽轮机的理想焓降和蒸汽流量。
若仍设计成单级汽轮机,则理想焓降增加,将使喷嘴出口速度相应增大,为了保持汽轮机级在最佳速比范围内工作,就必须相应地增加级的圆周速度,而增大圆周速度要受到叶轮和叶片材料强度条件的限制,所以焓降不能无限制地增加;增加级的蒸汽流量,则要增加级通流面积,即增大级的平均直径或叶片高度,同样将受到材料强度的限制。
那么提高汽轮机蒸汽初参数和降低背压,既能提高机组循环热效率,又能增大汽轮机功率,但焓降的增加不能仅靠单级来完成,否则,喷嘴出口速度将非常大,为保证级在最佳速比附近工作,又将会出现材料强度所不允许的、极大的圆周速度。
因此要增大汽轮机功率、又要保证高效率唯一的途径,就是采用多级汽轮机,其中每一级只利用总焓降的一小部分。
多级汽轮机是由按工作压力高低顺序排列的若干级组成的,常见的多级汽轮机有两种,即多级冲动式汽轮机和多级反动式汽轮机。
图1-8(见文后插页)是东方汽轮机厂生产的300MW 冲动式多级汽轮机的纵剖面图。
由图可见,该机组高压缸内有10级(1个单列冲动级作调节级,其余9个为压力级);中压缸内有6级;低压缸内为对称分流,布置有6×2个压力级。
从结构上说,该机组共有28级,但由于蒸汽在低压缸内为对称分流,两部分的工作情况相同,故从热力过程的特点上说,该机组共有22级。
图1-9(见文后插页)为哈尔滨汽轮机厂制造的亚临界600MW 反动式汽轮机纵剖面图。
它由1个单列调节级、10个高压反动级、2×9个中压反动级和2×2×7个低压反动级组成,因此从结构上说它有57级,而从热力过程上看,它有27级。
蒸汽进入汽轮机后依次通过各级膨胀作功,压力逐级降低,比体积则不断增大,尤其当压力较低而又进入饱和区后,比体积增加得更快。
第一节 多级汽轮机的优越性及特点2.1.1 多级汽轮机的优越性和存在的问题(一)多级汽轮机的热效率大大提高1、多级汽轮机的循环热效率大大提高多级汽轮机的比焓降可比单级汽轮机增大很多,因而多级汽轮机的蒸汽初参数可大大提高,排汽压力可以降的很低,还可采用回热循环和中间再热循环,所以多级汽轮机的循环热效率大大高于单级汽轮机。
2、 多级汽轮机的相对内效率明显提高1)多级汽轮机在设计工况下每一级都在最佳速比附近工作,这就使它比单级汽轮机的相对内效率高。
2)在一定条件下,多级汽轮机的余速动能可以全部或部分地被下一级利用,而单级汽轮机的余速动能不可能被下一级利用。
对于多级汽轮机,只要相邻两级的部分进汽度相同,平均直径变化平滑,喷嘴进汽角与上一级的排汽角相近,级间的轴向间隙较小,两级的流量变化不大,那么上一级的余速动能可以全部或部分地被下一级利用。
除调节级及本汽缸地最末级外,多级汽轮机其他各级地余速动能一般可被下一级利用,因此整个汽轮机地内效率提高了。
3)多级汽轮机各级的比焓降比较小,速比一定时的圆周速度和平均直径m d 也都较小根据第一章中的连续方程111sin t n m n t Gv e d l c μπα=可知,在容积流量1t Gv 相同的条件下,由于m d 较小,喷口出口高n l 度增大,因而叶高损失减小,喷嘴流动效率较高。
4)多级汽轮机上面级的损失可以部分地被下面各级利用,使全机相对内效率提高,这种现象称为重热现象,这也是其效率比单级汽轮机高的一个原因。
综上所述,由于多级汽轮机的效率比单级汽轮机高得多,所以多级汽轮机的单位功率能耗大大低于单级汽轮机。
(二)多级汽轮机单位功率的投资大大减小多级汽轮机的单级功率可以远远大于单级汽轮机,因而使单位功率汽轮机组的造价、耗材和占地面积都比单级汽轮机大大减小,容量越大的机组减小得越多,这就使多级汽轮机单位功率得投资大大减小。
(三)多级汽轮机存在的问题1) 增加了一些附加损失,如隔板漏汽损失。
多级汽轮机♦多极汽轮机概述♦蒸汽在多级汽轮机内的能量转换♦多级汽轮机的结构♦汽轮机的轴封系统多级汽轮机的必要性♦F u=D(c1cosα1+c2cosα2)♦P u= u F u= Du(c1cosα1+c2cosα2)♦随D增大,要求叶片加长,离心力大,叶片根部拉断。
♦随压差增大,c1cos α1增大,F u增大,叶片折弯。
东方汽轮机厂生产的双缸双排汽300 MW汽轮机纵剖面东汽超超临界1000MW汽轮机蒸汽在多级汽轮机内的能量转换♦一、能量转换过程1p2p3p4p5phsΔhmactΔh t’1Δh t’2Δh t’3Δh t’4Δh t,2Δh t,3Δh t,4Δh i,1Δh i,2Δh i,3Δh i,4Δhmac i二. 多级汽轮机的特点(一)多级汽轮机的效率大大提高z在设计工况下每一级都在最佳工况附近工作z余速动能可以全部或部分的被下一级利用z在容积流量相同的条件下由于直径较小因而叶高损失减小,喷嘴流动效率较高z蒸汽初参数可大大提高,排汽压力降低,采用回热循环和中间再热循环,所以多级汽轮机的循环热效率高(二)多级汽轮机单位功率的投资大大减小z单机功率大。
单位功率汽轮机组的造价、材料消耗和占地面积减小。
(三)多级汽轮机存在的问题z增加了一些附加损失,如隔板漏汽损失;z增加了机组的长度和质量;z对零件的金属材料要求提高;z级数增加,结构更加复杂。
¾总体上讲:多级汽轮机远优于单级汽轮机。
多级汽轮机由于具有效率高、功率大、投资小等突出优点而得到广泛应用。
三、多级汽轮机内的损失♦进汽节流损失–由于节流作用引起的焓降损失–与管道长短、阀门型线、蒸汽室形状及气流速度等有关–包括两个汽缸之间♦排汽节流损失–由于排气管压力损失引起的焓降损失–取决于排气管中气流速度大小、排气管结构型式和它的型线三、多级汽轮机内的损失♦轴封漏汽损失–间隙、压差、漏出(入)、降低效率–正压轴封与负压轴封♦机械损失–克服支持轴承和推力轴承的摩擦阻力等–与转速有关四、汽轮机的功率和效率♦1 汽轮机的内功率–多级汽轮机内功率P i等于各级内功率之和♦2汽轮机的轴端功率–汽轮机的输出静功称为轴端功率P a=P i-ΔP m♦3 机械效率–轴端功率与内功率的比值η= P a/ P im四、汽轮机的功率和效率♦4 汽轮机的内效率–汽轮机的内功率与单位时间汽轮机中消耗的理想能量之比–反映蒸汽热能转换为机械功的相应关系–不直接反映汽轮机性能的优劣四、汽轮机的功率和效率♦5 汽轮机的相对内效率–汽轮机的有效焓降与理想焓降的比–反映汽轮机通流部分的完善程度,取决于汽轮机内各项节流损失和级内损失的大小,与轴封漏汽无关(78~90%)–若无回热抽汽,相对内效率=内效率汽轮机的相对内效率五余速利用和重热现象♦余速利用–上一级的余速可部分被本级利用–两级间轴向间隙小–平均直径相近–全周进汽♦重热现象♦级内的各项损失最终因摩擦转变为热量,被蒸汽吸收,提高蒸汽的做功能力,这种现象称为重热现象21P0P1p2Δhstδhnh2tΔhs Δhδhbδhc六.多级汽轮机的轴向推力及其平衡1. 轴向推力♦汽轮机在运行时,转子需要承受很大的轴向推力。
多级汽轮机的工作原理解析多级汽轮机通常由高压汽缸、中压汽缸和低压汽缸组成,每个汽缸又包括一个转子和一个定子。
转子是旋转部件,由叶片组成;而定子则是固定部件,也由叶片构成。
这些转子和定子通过轴连接在一起,形成一个整体。
蒸汽则通过多级汽缸进行流动,每个级别都从前一个级别的出口进入,从后一个级别的进口流出。
首先,从锅炉中产生的高温高压蒸汽通过汽轮机的进口进入第一级高压汽缸。
在这个过程中,需要控制蒸汽流量和背压,以保证蒸汽的流量和质量在一定范围内。
接下来,高温高压蒸汽进入高压汽缸,与高压汽轮机转子上的高压叶片接触,通过热交换的方式,将蒸汽的高温高压能量转移到高压叶片上。
在这个过程中,蒸汽的能量被转化为旋转转子的动能,并带动转子旋转。
而后,蒸汽从高压汽缸的出口流出,进入中压汽缸。
在中压汽缸中,蒸汽再次与中压叶片接触,继续将其能量传递给中压叶片。
最后,蒸汽从中压汽缸出口进入低压汽缸。
在低压汽缸中,蒸汽再次与低压叶片接触,将其剩余能量转移到低压叶片上。
随着蒸汽从高压汽缸到低压汽缸的流动,蒸汽的压力和温度逐级降低,同时叶片的尺寸也逐级增大。
这是为了充分利用蒸汽的能量,提高汽轮机的能量转换效率。
整个过程中,每个级别的转子都被蒸汽的动能推动旋转。
同时,由于转子与定子之间存在差速,叶片上的蒸汽将承受一个向前方推动的力,这使得转子能够对流体进行机械能转换。
最后,经过多级汽缸的作用,蒸汽从低压汽缸出口排出,进入冷凝器进行冷凝,然后重新回到锅炉中进行循环。
多级汽轮机相对于单级汽轮机具有一些优点。
首先,多级汽轮机可以提高汽轮机的能量转换效率,减少能源的浪费。
其次,多级汽轮机可以更好地适应不同条件下的工作需求,提高汽轮机的运行稳定性和可靠性。
此外,多级汽轮机还可以降低风险,当一个级别发生故障时,其他级别仍然可以正常工作。
总结多级汽轮机是一种利用高温高压蒸汽驱动的动力装置,它通过多个级别的转子和定子进行工作。
蒸汽从高压汽缸到低压汽缸的过程中,逐级降低压力和温度,同时通过热交换和机械能转换,将蒸汽的能量转化为旋转转子的动能。