stata常用命令
- 格式:pdf
- 大小:238.41 KB
- 文档页数:14
stata入门常用命令Stata是一种统计分析软件,在社会科学、医学等研究领域很常用。
以下是Stata入门常用命令:1.数据加载use "文件路径":加载Stata数据,文件路径为数据文件所在的路径。
describe:显示数据集的变量名、数据类型、缺失值和数据分布等。
2.变量处理generate 变量名=表达式:生成新变量(如指数变量),并可以使用算数、统计和逻辑运算。
replace 变量名=新值:替换某变量中的指定值(如缺失值)为新值。
drop 变量名:删除数据集中的变量。
rename 旧变量名 = 新变量名...:将变量改名。
recode 变量名(包含的值) = 新值:根据变量取值对其离散化。
3.数据子集sort 变量名...:按指定变量排序数据。
by 变量名:...:在一个或多个变量上划分数据集,然后对每个子集应用命令。
if (条件):指定一个条件,只选取满足条件的数据记录。
merge 命令:将两个或多个数据集根据指定变量进行合并。
4.数据汇总summarize:按变量计算数值统计(如平均值、标准差、中位数和四分位数)。
tabulate 变量名:对变量进行交叉分析,并产生表格输出。
5.数据可视化histogram 变量名:绘制直方图。
scatter 变量名1 变量名2:绘制散点图。
graph 命令:绘制多种类型的图表,例如线图和条形图。
6.线性回归regress 因变量自变量1 自变量2...:通过最小二乘法拟合多元线性回归模型。
test 命令:进行t检验、F检验、方差分析等统计检验。
predict 新变量名:计算回归模型的预测值或残差值,并存储在新的变量中。
7.度量方法计算correlate 命令:计算并存储所有变量的相关系数矩阵。
haase 命令:计算哈斯变换矩阵。
Inflate 命令:计算一个变量的方差膨胀因子和条件数。
8.模态分析(模拟)simulate 命令:用随机抽样模拟数据,计算一个或多个变量的特定函数或方程,并存储结果。
Stata常用命令大学期间觉得学的最有用的软件之一就是stata了,对stata基本是在血和泪的尝试中爬过,到了最后基本属于只要stata不出现红字错误命令就开心得不得了。
顺便整理一下常用的stata命令如下,应该对付计量方向第一学期的入门问题不大(求stata大神不虐..),所以就只写了一部分常用的,有时间后面再补充吧。
主要就是分为基本操作和回归统计两部分:1、基本操作import/use/insheet/merge:基本常用的导入文件就是这四个了,建议直接从stata的menu菜单中导入,导入xlsx和csv这种常见的格式时还有一些备用选项可以自己体验一下(比如string和把第一行视为变量名之类)。
merge需要单独说一下,因为是将两个数据库合并为一个,原理也比较简单,两个数据库中根据一些相同的变量把其他数据“加”到原来的数据库中,也是建议直接菜单操作,不要用命令。
在Data的Combine datasets的merge two datasets中,分为1:1、m:1、1:m各种形式,基本用两次就差不多能搞懂。
help:一定第一个学的是这个!啥不会就help一下,不知道函数了就help function,不知道回归细节就help regress,多读help文件!gen/egen:最常用的建立函数的命令,这两个不同之处在于gen一般是初等函数,egen的函数会复杂一些。
常用的函数包括数学函数和其他函数,比如count/tag之类,建议直接到菜单里Data下Create data的create new variable或create new variable(extended)直接生成函数,会方便的多。
mean/abs/sqrt/max/min/sum/sd:常用数学函数,分别是求均值、绝对值、方根、最大最小、求和、方差用的。
keep if/drop if:这两个也是最常用的,在数据需要进行筛选的时候,两个命令的区别也很明显,keep是留下哪些,drop是去掉哪些。
目录STATA 常用命令 (2)一、基本运算 (2)二、数据处理 (3)三、数据导入导出 (3)四、描述性统计 (4)五、相关系数 (4)六、t检验 (4)七、非参数检验Wilcoxon (4)八、多元线性回归 (4)九、面板数据多元回归 (4)十、Logit回归 (5)十一、主成分分析与因子分析 (5)十二、PSM(倾向性匹配) (5)十三、内生性检验 (6)十四、DID (双重差分模型) (6)十五、作图 (7)十六、错误修正 (7)十七、应用技巧 (7)STATA 常用命令一、基本运算2.新变量产生1至n(行数)的变量:gen z=_n新变量赋值:gen y=log(x) if x>0gen y=seq(x)gen y=rmean(x)gen y=x+zDummy 变量:gen d=1 if x>1replace d=0 if x<=1自动生成年度(year)的Dummy变量:tabulate year, gen(Dyear)替换变量中的数值:replace x=0 if x<0更换变量名称:rename var1 x字符型变量转换为数值型:destring x, replace force(手动操作:选定变量=>右键=>数据)提取年度:gen ymd=date(date,”YMD”)format %td ymdgen year=year(ymd)提取字符:gen code=substr(x,1,1)3.变量处理一阶滞后变量:gen lag_x=L.x将所有变量的缺失值改为0:mvencode _all, mv(0) override去掉重复数值:duplicates drop x, force变量的标准化:egen x1=std(x)变量的缩尾处理:先安装:ssc install winsor, replacewinsor x , gen (x1) p(0.01)二、数据处理1.基本操作帮助:help ttestsearch ttest打开文件:use “ “查看:list x in 1/4展示数据集:describe (d)频率:tab x 或tab x y z命令窗口的执行命令:enter命令文件的执行命令:ctrl +D命令窗口换行:ctrl+enter清空内存(对新数据集开始检验时先清除原数据):clear点击历史窗口,可以将已执行的命令重新恢复为待执行的命令从小到大排列:sort x从大到小排列:gsort -x删除变量:drop x删除若干行:drop in 10/12删除前3行:drop in 1/3删除负数行:drop if x<0删除缺失值:drop if x==.删除不等于C的值:drop if x~=“C”保留变量x和y,删除其他变量:keep x y保留若干行,删除其他行:keep in 10/12保存:save “ 路径” , replace2.数据集合并横向合并:merge x y using “ “纵向合并:append using “ “按一个变量合并:merge 1:m code using "E:\Research\STATA\income.dta"drop _merge按两个变量合并:merge 1:1 code year using "E:\Research\STATA\income.dta"drop _merge3.三、数据导入导出1.Data=>data editor (改为数值型)=>将excel数据粘贴到data editor2.直接导入excel数据,并把第一行作为变量名称:import excel “路径”, firstrow clear3.导入stata 数据集:use “ ”4.导出: 安装asdoc: ssc intall asdoc, replace然后回归分析时:asdoc reg y x在结果窗口点击:Myfile.doc四、描述性统计1.summarize x2.su x3.su x if x>204.su 后不输入具体变量,则对全体变量进行描述性统计。
【命令1】:导入数据一般做实证分析使用的是excel中的数据,其后缀名为.xls,需要将其修改为.csvinsheet using name.csv, clear【命令2】:删除重复变量sort var1 var2duplicatesdrop var1 var2, force【命令3】:合并数据use data1, clearmerge m:m var1 var2 using data2drop if _merge==2drop if _merge==1drop _merge【命令4】:描述性统计分析tabstat var1var2, stat(n min mean median p25 p75 maxsd), if groupvar==0 or 1输出到word中:logout, save(name) word replace: tabstat var, stat(n min mean p50 max sd) col(stat)f(%9.2g)【命令5】:结果输出安装ssc install estout, replace单个回归reg y xesttab using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)多个回归一起reg y x1est store m1reg y x2est store m2esttab m1 m2 using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)【命令6】生成虚拟变量tab year, gen(year)tab industry, gen(industry)【命令7】数据缩尾处理findit winsor2之后安装winsor2 varname, replace cut(1 99)【命令8】异方差检验怀特检验ssc install whitetstreg y x1 x2estat imtest, white处理:“OLS+稳健标准差”reg y x1 x2 x3, robust【命令9】 DW检验gen id=_ntsset idestat dwatson【命令10】计算两个日期之间的间隔天数gen td=date(trading_date,'YMD')gen ed=date(eventdate,'YMD')form td ed %tdgen d=ed-td【命令11 】生成滞后、差分数据tsset code yeargen newvarname=l.varnamegen newvarname=d.varname【命令12】多重共线检验之方差膨胀因子reg y x1 x2 x3vif【命令13】多重共线修正之逐步回归stepwise, pe(0.1): reg y x【命令14】检验是否遗漏高次项reg y xestat ovtest或者estat ovtest, rhs【命令15】样本检验两样本均值T检验ttest var, by(groupvar)两样本中位数Z检验ranksum var, by(groupvar)。
面板数据估计首先对面板数据进行声明:前面是截面单元,后面是时间标识:tsset company yeartsset industry year产生新的变量:gen newvar=human*lnrd产生滞后变量Gen fiscal(2)=L2.fiscal产生差分变量Gen fiscal(D)=D.fiscal描述性统计:xtdes :对Panel Data截面个数、时间跨度的整体描述Xtsum:分组内、组间和样本整体计算各个变量的基本统计量xttab 采用列表的方式显示某个变量的分布Stata中用于估计面板模型的主要命令:xtregxtreg depvar [varlist] [if exp] , model_type [level(#) ]Model type 模型be Between-effects estimatorfe Fixed-effects estimatorre GLS Random-effects estimatorpa GEE population-averaged estimatormle Maximum-likelihood Random-effects estimator主要估计方法:xtreg: Fixed-, between- and random-effects, and population-averaged linear modelsxtregar:Fixed- and random-effects linear models with an AR(1) disturbance xtpcse :OLS or Prais-Winsten models with panel-corrected standard errors xtrchh :Hildreth-Houck random coefficients modelsxtivreg :Instrumental variables and two-stage least squares for panel-data modelsxtabond:Arellano-Bond linear, dynamic panel data estimatorxttobit :Random-effects tobit modelsxtlogit : Fixed-effects, random-effects, population-averaged logit modelsxtprobit :Random-effects and population-averaged probit models xtfrontier :Stochastic frontier models for panel-dataxtrc gdp invest culture edu sci health social admin,betaxtreg命令的应用:声明面板数据类型:tsset sheng t描述性统计:xtsum gdp invest sci admin1.固定效应模型估计:xtreg gdp invest culture sci health admin techno,fe固定效应模型中个体效应和随机干扰项的方差估计值(分别为sigma u 和sigma e),二者之间的相关关系(rho)最后一行给出了检验固定效应是否显著的F 统计量和相应的P 值2.随机效应模型估计:xtreg gdp invest culture sci health admin techno,re检验随机效应模型是否优于混合OLS 模型:在进行随机效应回归之后,使用xttest0检验得到的P 值为0.0000,表明随机效应模型优于混合OLS 模型3. 最大似然估计Ml:xtreg gdp invest culture sci health admin techno,mleHausman检验Hausman检验究竟选择固定效应模型还是随机效应模型:第一步:估计固定效应模型,存储结果xtreg gdp invest culture sci health admin techno,feest store fe第二步:估计随机效应模型,存储结果xtreg gdp invest culture sci health admin techno,reest store re第三步:进行hausman检验hausman feHausman检验量为:H=(b-B)´[Var(b)-Var(B)]-1(b-B)~x2(k)Hausman统计量服从自由度为k的χ2分布。
stata 常用命令Stata是一个流行的统计分析软件,广泛应用于各个领域的数据分析和研究。
它提供了丰富的命令和功能,可帮助用户处理、分析和可视化数据。
在本文中,我将向您介绍一些常用的Stata命令,以及它们在数据分析中的应用。
1. 数据导入与导出在使用Stata进行数据分析之前,我们需要将数据导入软件环境中。
Stata支持多种数据格式,如Excel、CSV、SPSS等。
对于Excel数据,我们可以使用命令"import excel"将数据导入到Stata中;对于CSV数据,可以使用"import delimited"命令。
Stata还提供了"export"命令,可将分析结果导出为Excel、CSV等格式,便于与其他软件进行交互。
2. 数据清洗与处理在数据分析过程中,数据清洗是一个重要的步骤。
Stata提供了一系列命令来处理和净化数据。
"drop"命令可以删除数据集中的变量或观察值;"replace"命令用于修改变量的取值;"gen"命令可以创建新的变量等。
"merge"命令可用于合并不同数据集,"sort"命令可用于排序数据等。
3. 描述性统计分析Stata提供了简单而强大的描述性统计分析命令,帮助用户了解数据的基本特征。
"summarize"命令可用于计算变量的均值、标准差等统计量;"tabulate"命令可用于制作交叉分类表;"histogram"命令可绘制变量的直方图等。
这些命令使我们能够更好地理解数据的分布和特征。
4. 统计模型估计Stata是一个强大的统计软件,支持各种常见的统计模型估计。
"regress"命令可用于进行线性回归分析;"logit"命令可用于二元逻辑回归分析;"heckman"命令可用于处理选择模型等。
statasave命令FileSave A s例1. 表1.为某一降压药临床试验数据,试从键盘输入S tata,并保存为S tata格式文件。
STATA数据库的维护排序SORT变量名1 变量名2……变量更名r ename 原变量名新变量名STAT A数据库的维护删除变量或记录drop x1 x2 /* 删除变量x1和x2d rop x1-x5/* 删除数据库中介于x1和x5间的所有变量(包括x1和x5)drop if x<0 /* 删去x1<0的所有记录drop in 10/12 /* 删去第10~12个记录drop if x==. /* 删去x为缺失值的所有记录drop if x==.|y==. /* 删去x或y之一为缺失值的所有记录dropif x==.&y==. /* 删去x和y同时为缺失值的所有记录drop _all /* 删掉数据库中所有变量和数据STATA的变量赋值用generat e产生新变量gen erate 新变量=表达式genera te bh=_n /* 将数据库的内部编号赋给变量bh。
gener ate group=int((_n-1)/5)+1 /* 按当前数据库的顺序,依次产生5个1,5个2,5个3……。
直到数据库结束。
generate block=mod(_n,6) /* 按当前数据库的顺序,依次产生1,2,3,4,5,0。
gener ate y=log(x) if x>0/* 产生新变量y,其值为所有x>0的对数值log(x),当x<=0时,用缺失值代替。
e gen产生新变量s et obs 12egen a=seq() /*产生1到N的自然数egenb=seq(),b(3) /*产生一个序列,每个元素重复#次egen c=seq(),to(4) /*产生多个序列,每个序列从1到#egen d=se q(),f(4)t(6) /*产生多个序列,每个序列从#1到#2encode字符变量名,gen(新数值变量名)作用:将字符型变量转化为数值变量。
STATA 常用命令大全调整变量格式:format x1 %10.3f ——将x1的列宽固定为10,小数点后取三位format x1 %10.3g ——将x1的列宽固定为10,有效数字取三位format x1 %10.3e ——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐合并数据:use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge using "C:\Documents and Settings\xks\桌面\1999.dta"——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort)建议采用第一种方法。
对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除sample 50,count在观测案例中随机选取50个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)edit x1 x2 if x3>3 (按所列变量与条件打开数据编辑器)数据合并(merge)与扩展(append)merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。
stata命令总结.docStata命令总结引言Stata是一款强大的统计分析软件,广泛应用于经济学、社会学、医学等领域。
Stata命令是进行数据处理、统计分析、图形展示等操作的基础。
本文将对Stata中常用的命令进行总结,以帮助用户更高效地使用Stata进行数据分析。
Stata基础命令1. 数据管理导入数据:import excel, import delimited导出数据:export excel, export delimited数据集保存:save, saveold2. 变量管理创建变量:generate, egen修改变量:replace删除变量:drop3. 数据清洗数据类型转换:destring, encode, format缺失值处理:mvdecode, drop if missing()异常值检测:tabulate, summarize描述性统计分析1. 基本统计量描述性统计:summarize频率统计:tabulate相关系数:correlate2. 分组统计分组描述:bysort, xtsum 分组汇总:collapse3. 数据转换数据长格式:reshape long 数据宽格式:reshape wide 推断性统计分析1. 假设检验t检验:ttest方差分析:anova卡方检验:tabulate, chi2 2. 回归分析线性回归:regress逻辑回归:logit泊松回归:poisson3. 时间序列分析时间序列描述:tsreport自回归模型:arima高级统计分析1. 面板数据分析面板数据描述:xtset, xtsum固定效应模型:xtreg fe随机效应模型:xtreg re2. 多层次模型多层次线性模型:xtmelogit3. 结构方程模型结构方程模型:sem绘图与可视化1. 基本图形散点图:scatter线图:line柱状图:bar2. 高级图形箱线图:boxplot直方图:histogram核密度估计图:kdensity3. 交互式图形交互式图形:twoway, graph edit编程与自动化1. 循环与条件语句循环:foreach, forvalues条件语句:if, else2. 脚本与批处理脚本编写:do-file批处理:batch3. 宏与用户定义命令宏:macro用户定义命令:program define结语Stata命令的掌握是进行高效数据分析的前提。
stata常用命令资料Stata是一种广泛使用的统计分析软件,它提供了丰富的数据处理、统计计算和图形绘制功能。
下面是一些常用的Stata命令及其用法,以帮助您更好地使用Stata进行数据分析。
1. 数据导入与导出- `import excel:从Excel文件中导入数据。
- `import delimited:从文本文件中导入数据。
- `save:保存当前数据集。
- `use:加载已保存的数据集。
- `export excel:将数据导出到Excel文件。
2. 数据处理与清洗- `drop:删除变量或观察。
- `keep:保留指定变量或观察。
- `rename:重命名变量。
- `egen:生成新变量,如求和、平均值等。
- `egen group:按照指定的变量进行分组。
3. 描述统计- `summarize:计算变量的描述统计量,如均值、标准差等。
- `tabulate:制表统计,用于计算分类变量的频数和百分比。
- `histogram:绘制直方图。
- `correlate:计算变量之间的相关系数。
- `egen:生成新的汇总统计量,如总和、均值等。
4. 统计模型- `regress:线性回归分析。
- `logit:二项逻辑回归分析。
- `probit:概率回归模型。
- `ttest:单样本或双样本t检验。
- `anova:方差分析。
5. 数据可视化- `scatter:绘制散点图。
- `line:绘制折线图。
- `bar:绘制柱状图。
- `histogram:绘制直方图。
- `graph combine:将多个图形合并为一个图形。
6. 数据管理- `sort:对数据进行排序。
- `merge:合并两个数据集。
- `reshape:改变数据集的结构。
- `append:将多个数据集追加到一个数据集中。
- `collapse:将数据按照指定的变量进行折叠。
7. 循环与条件语句- `foreach:循环变量的值。
Stata常用命令100条数据管理设置工作路径:cd导入间隔符为制表符或逗号等格式的文本文件:insheet 导入固定列格式的文件:infix导入自由格式的文本文件:infile导入XML格式文件:xmluse更改变量的存储格式:recast建立新变量:generate或egen重命名变量rename变量排序:order删除变量或观测值:drop生成分类变量:recode字符串与数值变量间转换:destring或encode升序或降序排列:gsort升序排列:sort检查数据是否存在重复观测值:isid报告、标记或删除重复观测值:duplicates长数据与宽数据间转换:reshape生成变量的统计指标数据:collapse横向合并数据:merge纵向添加数据:append根据组内配对合并变量:joinby标量:scalar随机抽样:sample有放回的抽样:bsample从多元正态分布随机变量中抽样:drawnorm 生成特定相关结构的变量:corr2data统计制图直方图:histogram一般绘图命令:graph或twoway对称图:symplot分位数图:quantile正态分布分位数图:qmormQQ分位数图:qqplot标准化正态概率图:pnorm卡方概率图:pchi37条外部命令:传送门描述统计数据概要描述:summarize或describe生成汇总统计表:tabstat或tabulate相关性:correlate或pwcorr假设检验t检验:ttest方差检验:sdtest比率检验:prtest二项概率检验:bitestK-S检验:ksmirnov符号检验:signtestWilcoxon符号秩检验:signrankWilcoxon秩和检验:ranksumKruskal-Wallis:H检验:kwallis方差分析方差分析:anova单因素方差分析:oneway多元统计分析主成分分析:pca主成分散点图:loadingplot因子分析:factor因子旋转:rotate模型适切度检验:estat smc及estat anti及estat kmo 计算主成分得分或因子得分:predict碎石图:screeplot聚类分析:cluster典型相关分析:canon回归分析OLS线性回归:regress受约束的线性回归:cnsreg非线性最小二乘估计:nl多变量回归:mvreg似不相关回归:suregProbit回归:probitLogistic回归:logit定序probit模型:oprobit定序logit模型:ologit归并模型:cnregTobit模型:tobit多层线性模型:mixed泊松回归:poisson负二项回归:nbreg时间序列分析定义时间序列:tssetARIMA,ARMAX和其它动态回归模型:arima 自相关:ac偏自相关:pac预测:predict时间序列图:tsline蒙特卡罗模拟:simulateADF单位根检验:dfullerPP单位根检验pperronDF-GLS单位根检验:dfgls跨相关图:xcorr结构向量自回归模型:svar自回归条件异方差模型:arch门限回归:threg状态空间模型:sspace面板数据分析定义面板:xtset面板数据结构:xtdescribe面板OLS模型:xtreg面板GLS模型:xtgls面板GEE模型:xtgee面板probit模型:xtprobit面板logit模型:xtlogit差分GMM模型:xtabond系统GMM模型:xtdpdsysHausman检验:hausman似然比检验:lrtest空间计量从截面数据到空间面板:传送门。
stata常用命令总结Stata是一种统计分析软件,常用于数据处理、数据分析和统计建模等领域。
以下是一些常用的Stata命令的总结:1. 数据加载与保存:- `use`:加载Stata数据文件。
- `import`:导入其他文件格式的数据。
- `save`:保存当前数据文件。
- `export`:将数据导出到其他文件格式。
2. 数据处理与变量操作:- `generate`:创建新变量。
- `replace`:替换变量值。
- `drop`:删除变量或观测。
- `rename`:重命名变量。
- `sort`:对数据进行排序。
- `merge`:合并数据集。
3. 描述性统计与数据分析:- `summarize`:计算变量的描述性统计量。
- `tabulate`:制表统计。
- `regress`:进行线性回归分析。
- `logit`:进行Logistic回归分析。
- `anova`:进行方差分析。
- `ttest`:进行双样本t检验。
4. 绘图与可视化:- `histogram`:绘制直方图。
- `scatter`:绘制散点图。
- `line`:绘制折线图。
- `boxplot`:绘制箱线图。
- `graph combine`:组合多个图形。
5. 循环与条件语句:- `forvalues`:进行循环操作。
- `if`:根据条件进行数据筛选。
- `foreach`:对变量进行循环操作。
这只是一些常用的Stata命令的总结,Stata还有很多其他强大的功能和命令。
你可以参考Stata官方文档或其他相关资源,深入了解更多命令和用法。
stata常用命令总结Stata是一款广泛应用于数据分析与统计建模的统计软件,具有强大的功能和广泛的应用领域。
在Stata中,我们可以通过命令来完成数据的读取、整理、分析和可视化等任务。
本文将对一些常用的Stata命令进行总结和介绍,以帮助读者更好地理解和应用Stata软件。
一、数据的读取与整理1. 读取数据文件:- use 文件名:读取已经存在的Stata数据文件。
- import delimited 文件名:读取以逗号、制表符或其他分隔符分隔的文本文件。
2. 显示数据:- describe:显示数据文件的基本信息,包括变量名、数据类型、有效观测数等。
- browse:以表格形式显示数据文件的部分观测值。
3. 数据整理:- generate 新变量名=计算公式:创建新的变量,并根据指定公式进行计算。
- egen 新变量名=计算函数:根据指定的计算函数对现有变量进行计算,并创建新的变量。
二、数据的统计分析与建模1. 描述性统计:- summarize 变量名:对指定变量进行描述性统计,包括均值、标准差、最小值、最大值等。
- tabulate 变量名:生成指定变量的频数表和百分比表。
2. 数据筛选与子集选择:- keep 如果条件:保留符合条件的观测值,删除不满足条件的观测值。
- drop 如果条件:删除符合条件的观测值,保留不满足条件的观测值。
- qui keep 如果条件:以无输出方式保留符合条件的观测值并生成新数据集。
- qui drop 如果条件:以无输出方式删除符合条件的观测值并生成新数据集。
3. 参数估计与假设检验:- regress 因变量自变量1 自变量2 ...:进行普通最小二乘回归分析。
- ttest 变量名, by(分组变量):进行两组样本均值差异的t检验。
4. 数据可视化:- scatter 变量1 变量2:绘制散点图。
- histogram 变量名:绘制直方图。
- graph twoway line 变量1 变量2:绘制折线图。
Stata常用命令大学期间觉得学的最有用的软件之一就是stata了,对stata基本是在血和泪的尝试中爬过,到了最后基本属于只要stata不出现红字错误命令就开心得不得了。
顺便整理一下常用的stata命令如下,应该对付计量方向第一学期的入门问题不大(求stata大神不虐..),所以就只写了一部分常用的,有时间后面再补充吧。
主要就是分为基本操作和回归统计两部分:1、基本操作import/use/insheet/merge:基本常用的导入文件就是这四个了,建议直接从stata的menu菜单中导入,导入xlsx和csv这种常见的格式时还有一些备用选项可以自己体验一下(比如string和把第一行视为变量名之类)。
merge需要单独说一下,因为是将两个数据库合并为一个,原理也比较简单,两个数据库中根据一些相同的变量把其他数据“加”到原来的数据库中,也是建议直接菜单操作,不要用命令。
在Data的Combine datasets的merge two datasets中,分为1:1、m:1、1:m各种形式,基本用两次就差不多能搞懂。
help:一定第一个学的是这个!啥不会就help一下,不知道函数了就help function,不知道回归细节就help regress,多读help文件!gen/egen:最常用的建立函数的命令,这两个不同之处在于gen一般是初等函数,egen的函数会复杂一些。
常用的函数包括数学函数和其他函数,比如count/tag之类,建议直接到菜单里Data下Create data的create new variable或create new variable(extended)直接生成函数,会方便的多。
mean/abs/sqrt/max/min/sum/sd:常用数学函数,分别是求均值、绝对值、方根、最大最小、求和、方差用的。
keep if/drop if:这两个也是最常用的,在数据需要进行筛选的时候,两个命令的区别也很明显,keep是留下哪些,drop是去掉哪些。
stata 常用命令Stata是一款经济学和统计学分析软件,它拥有一个广泛的命令库,可用于数据分析、统计建模、可视化等。
在Stata中,我们可以使用很多命令来完成各种任务。
以下是一些常用的Stata命令:1. import 命令import 命令用于导入数据到Stata中。
我们可以使用 import 命令来导入各种文件格式,如 Excel、CSV、SPSS 等。
如果我们想要导入Excel 文件,我们可以使用以下命令:import excel "data.xlsx", sheet("Sheet1") firstrow clear该命令将导入 data.xlsx 文件中的 Sheet1 中的数据到 Stata 中。
指定的 firstrow 参数将告诉 Stata 该文件中的第一行是变量名,因此我们可以让 Stata 自动读取变量名称。
2. summarize 命令summarize 命令用于计算一个或多个变量的描述性统计量,如均值、标准差、最小/最大值等。
该命令的语法如下:summarize variable1 variable2 variable3…例如,要计算变量 x 的均值、标准差和最大值,我们可以使用以下命令:summarize x, detail3. sort 命令sort 命令用于按一个或多个变量对数据进行排序。
该命令的语法如下:sort variable1 variable2 variable3…例如,要按变量 x 排序数据集,我们可以使用以下命令:sort x4. tabulate 命令tabulate 命令用于计算一个或多个变量的频率分布表(也称为列联表)。
该命令的语法如下:tabulate varia ble1 [variable2] [variable3]…例如,要计算变量 x 和 y 的频率分布表,我们可以使用以下命令:tabulate x y5. regress 命令regress 命令用于估计回归模型。
stata常用命令statasave命令FileSave As例1. 表1.为某一降压药临床试验数据,试从键盘输入Stata,并保存为Stata格式文件。
STATA数据库的维护排序SORT 变量名1 变量名2 ……变量更名rename 原变量名新变量名STATA数据库的维护删除变量或记录drop x1 x2 /* 删除变量x1和x2drop x1-x5 /* 删除数据库中介于x1和x5间的所有变量(包括x1和x5)drop if x<0 /* 删去x1<0的所有记录drop in 10/12 /* 删去第10~12个记录drop if x==. /* 删去x为缺失值的所有记录drop if x==.|y==. /* 删去x或y之一为缺失值的所有记录drop if x==.&y==. /* 删去x和y同时为缺失值的所有记录drop _all /* 删掉数据库中所有变量和数据STATA的变量赋值用generate产生新变量generate 新变量=表达式generate bh=_n /* 将数据库的内部编号赋给变量bh。
generate group=int((_n-1)/5)+1 /* 按当前数据库的顺序,依次产生5个1,5个2,5个3……。
直到数据库结束。
generate block=mod(_n,6) /* 按当前数据库的顺序,依次产生1,2,3,4,5,0。
generate y=log(x) if x>0 /* 产生新变量y,其值为所有x>0的对数值log(x),当x<=0时,用缺失值代替。
egen产生新变量set obs 12egen a=seq() /*产生1到N的自然数egen b=seq(),b(3) /*产生一个序列,每个元素重复#次egen c=seq(),to(4) /*产生多个序列,每个序列从1到#egen d=seq(),f(4)t(6) /*产生多个序列,每个序列从#1到#2encode 字符变量名,gen(新数值变量名)作用:将字符型变量转化为数值变量。
STATA常用命令总结(34个含使用示例)1. sum:计算变量的简要统计信息,如均值、标准差等。
示例:sum variable2. tabulate:生成变量的频数表。
示例:tabulate variable3. describe:显示数据集的基本信息,如变量名和数据类型。
示例:describe dataset4. drop:删除数据集中的变量。
示例:drop variable5. keep:保留数据集中的变量,删除其他变量。
示例:keep variable6. rename:重命名变量。
示例:rename variable newname7. gen:根据已有变量生成新的变量。
示例:gen newvar = expression8. egen:根据已有变量生成新的变量,可以使用更复杂的函数和运算符。
示例:egen newvar = function(variable)9. recode:对变量的取值进行重新编码。
示例:recode variable (oldvalues= newvalues) 10. dropif:根据条件删除观测。
示例:dropif condition11. keepif:根据条件保留观测。
示例:keepif condition12. sort:对数据集按指定变量进行排序。
示例:sort variable13. merge:将两个数据集按照共享变量合并。
示例:merge 1:1 variable using dataset214. reshape:将数据从宽格式转换为长格式或反之。
示例:reshape long var, i(id) j(year)15. regress:进行线性回归分析。
示例:regress dependent_var independent_vars 16. logistic:进行逻辑回归分析。
示例:logistic dependent_var independent_vars 17. probit:进行Probit回归分析。
STATA常用命令总结(34个含使用示例)1. clear:清空当前工作空间中的数据。
示例:clear2. use:加载数据文件。
示例:use "data.dta"3. describe:查看数据文件的基本信息。
示例:describe4. summarize:统计数据的描述性统计量。
示例:summarize var1 var2 var35. tabulate:制作数据的列联表。
示例:tabulate var1 var26. scatter:绘制散点图。
示例:scatter x_var y_var7. histogram:绘制直方图。
示例:histogram var8. boxplot:绘制箱线图。
示例:boxplot var1 var29. ttest:进行单样本或双样本t检验。
示例:ttest var, by(group_var)10. regress:进行最小二乘法线性回归分析。
示例:regress dependent_var independent_var1 independent_var211. logistic:进行逻辑斯蒂回归分析。
示例:logistic dependent_var independent_var1 independent_var212. anova:进行方差分析。
示例:anova dependent_var independent_var13. chi2:进行卡方检验。
示例:chi2 var1 var214. correlate:计算变量之间的相关系数。
示例:correlate var1 var2 var315. replace:替换数据中的一些值。
示例:replace var = new_value if condition16. drop:删除变量或观察。
示例:drop var17. rename:重命名变量。
示例:rename old_var new_var18. generate:生成新变量。