2016-2017学年天津市和平区八年级(下)期末数学试卷
- 格式:pdf
- 大小:545.00 KB
- 文档页数:29
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,)1.如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.下列二次根式;5;;;;.其中是最简二次根式的有()A.2个B.3个C.4个D.5个3.计算的结果为()A.±3B.﹣3C.3D.94.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386S233 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上) 13.计算(4+)÷3的结果是 .14.在△ABC 中,∠C =90°,AB =10,其余两边长是两个相邻的偶数,则这个三角形的周长为 .15.每本书的厚度为0.62cm ,把这些书摞在一起总厚度h (单位:cm )随书的本数n 的变化而变化,请写出h 关于n 的函数解析式 .16.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4 5 6 8 户数5753则这组数据的中位数是 .17.已知一次函数y =mx +n (m ≠0,m ,n 为常数),x 与y 的对应值如下表:x ﹣2 ﹣1 0 1 2 3 y﹣11234那么,不等式mx +n <0的解集是 .10.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( ) A .AD =BC ,AD ∥BC B .AD ∥BC ,AB =DCC .AD =BC ,AB =DCD .AD ∥BC ,AB ∥DC11.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED 为( ) A .45° B .15°C .10°D .125°12.如图是甲、乙两个探测气球所在位置的海拔y (单位:m ),关于上升时间x (单位:min )的函数图象.有下列结论: ①当x =10时,两个探测气球位于同一高度;②当x >10时,乙气球位置高;③当0≤x <10时,甲气球位置高。
天津市部分区2016~2017学年度第二学期期末考试八年级数学评分标准一、单选题.(本题包括12小题,每小题3分,共36分)二、填空题.(本题包括6小题每题3分,共18分)13. 14. 4.8 15. > 16. 8 17. 2 18. 2或三、解答题.( 本题包括7小题,共46分)19. 计算:(每小题3分,共6分)(Ⅰ)解:原式/--------------------------3/(Ⅱ)解:原式//20. (本题6分)解:(Ⅰ)X 甲= 8 X 乙= 8 -----------------------2/ (Ⅱ)甲种麦苗长势较整齐 --------------------------4/因为S 2甲= 1.2,S 2乙= 1.6 -------------------------5/ 由于S 2甲<S 2乙 , 所以, 甲种麦苗长势较整齐 -------------------------6/2714321. (本题6分)解:在矩形A B C D 中,A D =4,D C =A B =8,∠ D 为直角 -------------------1/ ∵四边形A F C E 是菱形,AF=FC=CE=EA ------------------------2/设AE 的长为x,则EC=x, DE=8-x, ----------------------3/ 由勾股定理得,222AD DE AE +=∴ --------------------------4/ 解得x=5 -------------------------5/∴AE=5, 菱形A F C E 的周长为20 . --------------------------6/ 22. (本题6分)(Ⅰ)解:联立方程组 解得 ∴A(1,3)------------1'易得B(-2,0) C(4,0), BC=6------------2's △ABC= ----------3'(Ⅱ)解:由已知可得D(0,2),----------4'-----------------5'由(1)知∴s 四边形ADOC =s △ABC -s △BOD =9-2 = 7 ------------------6'2224(8)x x +-=24y x y x =+⎧⎨=-+⎩13x y =⎧⎨=⎩16392⨯⨯=12222BOD S ∆=⨯⨯=9ABC S ∆=23. (本题6分)解:(Ⅰ) 25 ; 28 ___________2/ (Ⅱ)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6 __________________________________4/∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21 _______________________________________5'∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18. ---------------------6/24. (本题8分)(Ⅰ)证明:在正方形ABCD 中,AC ⊥BD ,OA=OB又∵AM ⊥BE, AFO=BFM,∴FAO=EBO ________________________2'∴ △AFO ≌ △BEO (ASA) _______________________3'∴ OE=OF _______________________4'(2) 成立 _______________________5'同理可得AFO=BEO _______________________6'∠∠∠∠∠∠可得△AFO ≌△BEO (AAS) ------------------------7'得 OE=OF -------------------------8'25. (本题8分)解:(Ⅰ)表一:_______________________3' 表二:注:每空1分,列式对,没化简,不扣分!_______________________6'(Ⅱ)设总运费W元,由(Ⅰ)可知,总运费为:W=20x+15(200-x) + 25(240-x)+ 24(60+x)=4x+10440 ------------------------7' 其中,0≤x≤200 .∵ 4>0,∴W随x的增大而增大.∴当x=0时,W取得最小值10440.答:此时方案为:把甲仓库的物资(240吨)全部运往B港口,再从乙仓库运200吨往A港口,乙仓库余下的物资(60吨)全部运往B港口.-------------------------8' (说明:解答题用其他方法解,只要合理,请参照评分标准酌情给分)。
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,)1.如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.下列二次根式;5;;;;.其中是最简二次根式的有()A.2个B.3个C.4个D.5个3.计算的结果为()A.±3B.﹣3C.3D.94.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386 S233 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°10.如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°12.如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.计算(4+)÷3的结果是.14.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为.15.每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式.16.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是.17.已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:x﹣2﹣10123y﹣101234那么,不等式mx+n<0的解集是.18.如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N 分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.纸笔测试实践能力成长记录甲908395乙88909521.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表购买量/kg050100150200…付款金额/元0250700…(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.。
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
2017年八年级数学下册期末模拟测试题一、选择题:1.若式子在实数范围内有意义,则x的取值范围是()2.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.1253.如图,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(﹣4,1)C.(1,﹣1)D.(﹣3,1)4.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A. B. C. D.5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCEB.AF=ADC.AB=AFD.BE=AD﹣DF6.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°7.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4:1 B.5:1 C.6:1 D.7:18.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④9.已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限10.一次函数y=﹣3x+b和y=kx+1的图象如图,其交点为P(3,4),则不等式(3+k)x≥b﹣1的解集在数轴上表示正确的是()A. B.C. D.11.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5B.2.5C.2.25D.312.已知整数x满足﹣5≤x≤5,y=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是1()A.1 B.2 C.24 D.﹣9二、填空题:13.计算:﹣= .14.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图,如果小正方形的面积为3,直角三角形中较小的锐角为30°,那么大正方形的面积为.15..E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______16.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.17.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分形的对角线上.其中正确的结论的序号是________(把所有正确结论的序号都填在横线上).18.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,关于y与x的函数关系如图所示,则甲车的速度是米/秒.三、解答题:19.已知求代数式的值.20.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD面积.21.如图,在□ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N.求证:△ABN≌△CDM.22.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且AC=2DE,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.23.为迎接国庆六十周年,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所(1)求W与x的函数关系式及自变量x的取值范围;(2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元?24.如图,已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M.(1)求a的值及AM的长(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标.(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.参考答案1.C2.B3.B4.C5.B6.C7.B8.B9.C10.B11.B12.B13.答案为:.14.答案为:12+6.15.答案为:5116.答案为:AC⊥BD17.答案为:②④18.答案为:20;19.20.解:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=90°.在Rt△ACD中,AD=5,CD=12,AC=.∵BC=13,∴AC=BC.∵CE⊥AB,AB=10,∴AE=BE=AB=.在Rt△CAE中,CE=.∴S四边形ABCD=S△DAC+S△ABC=.21.试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F分别是AB、CD的中点,∴BE=DF,∵BE∥DF,∴四边形EBFD为平行四边形;(2)∵四边形EBFD为平行四边形,∴DE∥BF,∴∠CDM=∠CFN,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠ABN=∠CFN,∴∠ABN=∠CDM,在△ABN与△CDM中,∵∠BAN=∠DCM,AB=CD,∠ABN=∠CDM,∴△ABN≌△CDM (ASA).22.(1)证明:四边形ABCD是菱形,∴OA=OC=0.5AC,AD=CD,∵DE∥AC且DE=0.5AC,∴DE=OA=OC,∴四边形OADE、四边形OCED都是平行四边形,∴OE=AD,∴OE=CD;(2)解:∵AC⊥BD,∴四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED中,CE=OD=.∴在Rt△ACE中,AE==.23.24.。
天津市和平区2014-2015学年八年级数学下学期期末考试试题一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.在下列由线段a,b,c的长为三边的三角形中,能构成直角三角形的是()A.a=1.5,b=2,c=3 B.a=2,b=3,c=4C.a=4,b=5,c=6 D.a=5,b=12.c=132.若在实数范围内有意义,则x的取值范围是()A.x<B.x≤C.x≠D.x>3.一次函数y=x+2的图象不经过的象限是()A.一B.二C.三D.四4.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是()A.平行四边形B.矩形 C.菱形 D.正方形5.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是()A.79,85 B.80,79 C.85,80 D.85,856.某一段时间,小芳测得连续五天的日最高气温后,整理得出如表(有两个数据被遮盖).被遮盖的两个数据依次是()日期一二三四五方差日平均最高气温最高气温 1℃﹣2℃ 0℃ 4℃ 1℃A.2,2 B.2,4 C.4,2 D.4,47.化简的结果是()A. B. C.D.8.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<09.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t(小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B.C.D.10.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B. C.D.11.如图为等边三角形ABC与正方形DEFG的重叠情形,其中D,E两点分别在AB,BC上,且BD=BE.若AC=18,GF=6,则点F到AC的距离为()A.6﹣6 B.6﹣6 C.2 D.312.如图,在边长为6的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,过点C作EG的垂线CH,垂足为点H,连接BH,BH=8.有下列结论:①∠CBH=45°;②点H是EG的中点;③EG=4;④DG=2其中,正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)13.某班随机调查了10名学生,了解他们一周的体育锻炼时间,结果如表所示:时间(小时) 7 8 9人数 3 4 3则这10名学生在这一周的平均体育锻炼时间是小时.14.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AB=3.则矩形对角线的长等于.15.若a=1,b=1,c=﹣1,则的值等于.16.如图,直线y=﹣x+4与x轴、y轴分别交于点A,B,点C是线段AB上一点,四边形OADC是菱形,则OD的长= .17.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.18.图中的虚线网格是等边三角形网格,它的每一个小三角形都是边长为1的等边三角形.(1)边长为1的等边三角形的高= ;(2)图①中的▱ABCD的对角线AC的长= ;(3)图②中的四边形EFGH的面积= .三、解答题(共7小题,满分66分)19.计算:(1)﹣(2)(2﹣3)÷.20.在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?21.如图,直角三角形纸片OAB,∠AOB=90°,OA=1,OB=2,折叠该纸片,折痕与边OB交于点C,与边AB交于点D,折叠后点B与点A重合.(1)AB的长= ;(2)求OC的长.22.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(1)如图①,求证:四边形AECF是平行四边形;(2)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.23.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水2800吨,水费是元;若用水3200吨,水费是元;(2)设该单位每月用水量为x吨,水费为y元,求y关于x的函数解析式;(3)若某月该单位缴纳水费1540元,求该单位这个月用水多少吨?24.(1)如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF 交于点O,∠AOF=90°.求证:BE=CF.(2)如图2,在正方形ABCD中,点E、H、F、G分别在边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.求GH的长.(3)已知点E、H、F、G分别在矩形ABCD的边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,则GH= ;②如图4,矩形ABCD由n个全等的正方形组成,则GH= (用n的代数式表示).25.如图,在平面直角坐标系中,O为原点,点A (0,﹣1),点B (4,﹣1),四边形ABCD是正方形,点C在第一象限.(1)直线AC的解析式为;(2)过点D且与直线AC平行的直线的解析式为;(3)与直线AC平行且到直线AC的距离为3的直线的解析式为;(4)已知点T是AB的中点,P,Q是直线AC上的两点,PQ=6,点M在直线AC下方,且点M在直线DT上,当∠PMQ=90°,且PM=QM时,求点M的坐标.2014-2015学年天津市和平区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.在下列由线段a,b,c的长为三边的三角形中,能构成直角三角形的是()A.a=1.5,b=2,c=3 B.a=2,b=3,c=4C.a=4,b=5,c=6 D.a=5,b=12.c=13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+22=5≠32,故不是直角三角形,故错误;B、22+32=13≠42,故不是直角三角形,故错误;C、42+52=41≠62,故不是直角三角形,故错误;D、52+122=169=132,故是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.若在实数范围内有意义,则x的取值范围是()A.x<B.x≤C.x≠D.x>【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,由被开方数大于等于0,分母不等于0列式计算即可.【解答】解:根据二次根式的意义,被开方数大于等于0,即2﹣3x≥0,根据分式有意义的条件,2﹣3x≠0,即2﹣3x>0,解得,x<,故选:A.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.3.一次函数y=x+2的图象不经过的象限是()A.一B.二C.三D.四【考点】一次函数图象与系数的关系.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.4.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】中点四边形.【分析】利用三角形中位线定理可得新四边形的对边平行且等于原四边形一条对角线的一半,那么根据一组对边平行且相等的四边形是平行四边形可判定所得的四边形一定是平行四边形.【解答】解:如图四边形ABCD,E、N、M、F分别是DA,AB,BC,DC中点,连接AC,DE,根据三角形中位线定理可得:EF平行且等于AC的一半,MN平行且等于AC的一半,根据平行四边形的判定,可知四边形为平行四边形.故选:A.【点评】此题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为题目提供了平行线,为利用平行线判定平行四边形奠定了基础.5.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是()A.79,85 B.80,79 C.85,80 D.85,85【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:70,75,80,85,85,数据85出现了两次最多为众数,80处在第3位为中位数.所以本题这组数据的中位数是80,众数是85.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.某一段时间,小芳测得连续五天的日最高气温后,整理得出如表(有两个数据被遮盖).被遮盖的两个数据依次是()日期一二三四五方差日平均最高气温最高气温1℃﹣2℃0℃4℃1℃A.2,2 B.2,4 C.4,2 D.4,4【考点】方差.【分析】首先根据平均气温求出第五天的温度,再根据方差公式求出方差即可.【解答】解:第二天的气温=1×5﹣(1+4﹣2+0)=2℃,方差= [(1﹣1)2+(1﹣2)2+(1+2)2+(1﹣0)2+(1﹣4)2]=20÷5=4.故选B.【点评】本题主要考查统计数据,属容易题,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.化简的结果是()A. B. C.D.【考点】二次根式的性质与化简.【分析】根据二次根式的性质进行化简,即可解答.【解答】解: =.故选:A.【点评】本题考查了二次根式的性质,解决本题的关键是熟记二次根式的性质.8.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0【考点】一次函数图象上点的坐标特征;正比例函数的图象.【分析】根据k<0,正比例函数的函数值y随x的增大而减小解答.【解答】解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.【点评】本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.9.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t(小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】应用题;压轴题.【分析】因为前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往,由此即可求出答案.【解答】解:根据题意:分为3个阶段:1、前进一段路程后,位移增大;2、部队通过短暂休整,位移不变;3、部队步行前进,位移增大,但变慢;故选A.【点评】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.10.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B. C.D.【考点】一次函数的图象.【专题】数形结合.【分析】对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求.【解答】解:A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;B、若经过第一、二、四象限的直线为y=ax+b,则a<0,b>0,所以直线y=bx+a经过第一、三、四象限,所以B选项错误;C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,所以直线y=bx+a经过第一、二、四象限,所以C选项正确;D、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以D选项错误;故选C.【点评】本题考查了一次函数图象:一次函数y=kx+b经过两点(0,b)、(﹣,0).注意:使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.11.如图为等边三角形ABC与正方形DEFG的重叠情形,其中D,E两点分别在AB,BC上,且BD=BE.若AC=18,GF=6,则点F到AC的距离为()A.6﹣6 B.6﹣6 C.2 D.3【考点】正方形的性质;等边三角形的性质.【分析】过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.【解答】解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6,故选B.【点评】本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.12.如图,在边长为6的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,过点C作EG的垂线CH,垂足为点H,连接BH,BH=8.有下列结论:①∠CBH=45°;②点H是EG的中点;③EG=4;④DG=2其中,正确结论的个数是()A.1 B.2 C.3 D.4【考点】四边形综合题.【分析】连接CG,作HF⊥BC于F,HO⊥AB于O,证明△CBE≌△CDG,得到△ECG是等腰直角三角形,证明∠GEC=45°,根据四点共圆证明①正确;根据等腰三角形三线合一证明②正确;根据等腰直角三角形的性质和勾股定理求出EG的长,得到③正确;求出BE的长,根据DG=BE,求出BE证明④正确.【解答】解:连接CG,作HF⊥BC于F,HO⊥AB于O,在△CBE和△CDG中,,∴△CBE≌△CDG,∴EC=GC,∠GCD=∠ECB,∵∠BCD=90°,∴∠ECG=90°,∴△ECG是等腰直角三角形,∵∠ABC=90°,∠EHC=90°,∴E、B、C、H四点共圆,∴∠CBH=∠GEC=45°,①正确;∵CE=CG,CH⊥EG,∴点H是EG的中点,②正确;∵∠HBF=45°,BH=8,∴FH=FB=4,又BC=6,∴FC=2,∴CH==2,∴EG=2CH=4,③正确;∵CH=2,∠HEC=45°,∴EC=4,∴BE==2,∴DG=2,④正确,故选:D.【点评】本题考查的是正方形的性质、等腰直角三角形的性质、勾股定理的运用,根据正方形的性质和等腰直角三角形的性质证明三角形全等是解题的关键.二、填空题(共6小题,每小题3分,满分18分)13.某班随机调查了10名学生,了解他们一周的体育锻炼时间,结果如表所示:时间(小时) 7 8 9人数 3 4 3则这10名学生在这一周的平均体育锻炼时间是8 小时.【考点】加权平均数.【分析】根据样本的条形图可知,将所有人的体育锻炼时间进行求和,再除以总人数即可.【解答】解:70名学生平均的体育锻炼时间为: =8,即这70名学生这一天平均每人的体育锻炼时间为 8小时.故答案为:8.【点评】本题考查的是通过样本去估计总体,即用样本平均数估计总体平均数.同时要会读统计图是解答本题的关键.14.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AB=3.则矩形对角线的长等于 6 .【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,由已知条件证出△AOB是等边三角形,得出OA=AB=3,得出AC=BD=2OA即可.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=3,∴AC=BD=2OA=6;故答案为:6.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.15.若a=1,b=1,c=﹣1,则的值等于.【考点】二次根式的化简求值.【分析】首先用代入法得出b2﹣4ac,再代入即可.【解答】解:∵b2﹣4ac=1﹣4×1×(﹣1)=5,∴原式=,故答案为:.【点评】本题主要考查了代数式求值,直接代入是解答此题的关键.16.如图,直线y=﹣x+4与x轴、y轴分别交于点A,B,点C是线段AB上一点,四边形OADC是菱形,则OD的长= 4.8 .【考点】菱形的性质;一次函数图象上点的坐标特征.【分析】由直线的解析式可求出点B、A的坐标,进而可求出OA,OB的长,再利用勾股定理即可求出AB的长,由菱形的性质可得OE⊥AB,再根据△AOB的面积,可求出OE的长,进而可求出OD的长.【解答】解:∵直线y=﹣x+4与x轴、y轴分别交于点A,B,∴点A(3,0),点B(0,4),∴OA=3,OB=4,∴AB==5,∵四边形OADC是菱形,∴OE⊥AB,OE=DE,∴OA•OB=OE•AB,即3×4=5×OE,解得:OE=2.4,∴OD=2OE=4.8.故答案为:4.8.【点评】本题考查了菱形的性质以及一次函数与坐标轴的交点问题,题目设计新颖,是一道不错的中考题,解题的关键是求OD的长转化为求△AOB斜边上的高线OE的长.17.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200 米.【考点】一次函数的应用.【专题】数形结合.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.【点评】本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.18.图中的虚线网格是等边三角形网格,它的每一个小三角形都是边长为1的等边三角形.(1)边长为1的等边三角形的高= ;(2)图①中的▱ABCD的对角线AC的长= ;(3)图②中的四边形EFGH的面积= 8.【考点】平行四边形的性质.【分析】(1)根据等腰三角形的三线合一以及30°所对的直角边是斜边的一半,结合勾股定理,即可计算其高;(2)构造直角三角形,根据平行四边形的面积可得AK,根据勾股定理计算即可;(3)可构造平行四边形,比如以FG为对角线构造平行四边形FPGM,S FPGM=6S△,故S△FGM=3S单位正三角形,同理可得其他部分的面积,进而可求出四边形EFGH的面积.【解答】解:(1)边长为1的正三角形的高==,(2)过点A作AK⊥BC于K(如图1)在Rt△ACK中,AK=6÷4=,KC=,∴AC==;(3)如图2所示,将图形EFGH分割成五部分,以FG为对角线构造▱FPGM,∵▱FPGM含有6个单位正三角形,∴S△FGM=3S单位正三角形,同理可得S△DGH=4S单位正三角形,S△EFC=8S单位正三角形,S△EDH=8S单位正三角形,S四边形CMGD=9S 单位正三角形,∵正三角形的边长为1,∴正三角形面积=×=,∴S四边形EFGH=(3+4+8+9+8)×=8.故答案为:,,8.【点评】本题考查了平行四边形的性质、勾股定理的运用,熟知等边三角形的底边上的高和边长的关系:等边三角形的高是边长的倍;熟练运用勾股定理进行计算,不规则图形的面积要分割成规则图形后进行计算是解题关键.三、解答题(共7小题,满分66分)19.计算:(1)﹣(2)(2﹣3)÷.【考点】二次根式的加减法.【分析】(1)首先化简二次根式,进而合并求出即可;(2)首先化简二次根式,进而合并,利用二次根式除法运算法则求出即可.【解答】解:(1)﹣=3﹣2=;(2)(2﹣3)÷=(8﹣9)÷=﹣=﹣.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是20% ,其所在扇形统计图中的圆心角的度数是72°;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用1减去其它各组所占的比例即可求得喜欢B项目的人数百分比,利用百分比乘以360度即可求得扇形的圆心角的度数;(2)根据喜欢A的有44人,占44%即可求得调查的总人数,乘以对应的百分比即可求得喜欢B的人数,作出统计图;(3)总人数1000乘以喜欢乒乓球的人数所占的百分比即可求解.【解答】解:(1)1﹣44%﹣8%﹣28%=20%,所在扇形统计图中的圆心角的度数是:360×20%=72°;(2)调查的总人数是:44÷44%=100(人),则喜欢B的人数是:100×20%=20(人),;(3)全校喜欢乒乓球的人数是1000×44%=440(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,直角三角形纸片OAB,∠AOB=90°,OA=1,OB=2,折叠该纸片,折痕与边OB交于点C,与边AB交于点D,折叠后点B与点A重合.(1)AB的长= ;(2)求OC的长.【考点】翻折变换(折叠问题).【分析】(1)在△OAB中,由勾股定理可求得AB的长;(2)设OC为x,则BC=2﹣x,由翻折的性质可知;AC=BC=2﹣x,最后在△OAC中,由勾股定理列方程求解即可.【解答】解:(1)在Rt△OAB中,AB==;故答案为:.(2)由折叠的性质可知;BC=AC,设OC为x,则BC=AC=2﹣x.在Rt△AOC中,由勾股定理得:AC2=OA2+OC2.∴(2﹣x)2=x2+12.解得:x=.∴OC=.【点评】本题主要考查的是翻折变换、勾股定理,掌握翻折的性质是解题的关键.22.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(1)如图①,求证:四边形AECF是平行四边形;(2)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.【考点】平行四边形的判定与性质;菱形的性质.【分析】(1)根据平行四边形的性质得出AD∥BC,根据平行四边形的判定推出即可;(2)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形;(2)解:如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,∴∠2+∠3=90°∠1+∠B=90°,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【点评】本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.23.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水2800吨,水费是1400 元;若用水3200吨,水费是1660 元;(2)设该单位每月用水量为x吨,水费为y元,求y关于x的函数解析式;(3)若某月该单位缴纳水费1540元,求该单位这个月用水多少吨?【考点】一次函数的应用.【分析】(1)根据3000吨以内,用水每吨收费0.5元,超计划部分每吨按0.8元收费,即可求解;(2)根据收费标准,分x≤3000吨,和x>3000吨两种情况进行讨论,分两种情况写出解析式;(3)该单位缴纳水费1540元一定是超过3000元,根据超过3000吨的情况的水费标准即可得到一个关于用水量的方程,即可求解.【解答】解:(1)某月该单位用水3200吨,水费是:3000×0.5+200×0.8=1660元;若用水2800吨,水费是:2800×0.5=1400元,故答案为:1400;1660;(2)根据题意,当≤x≤3000时,y=0.5x;当x>3000时,y=0.5×3000+0.8×(x﹣3000)=0.8x﹣900,所以y关于x的函数解析式为:,(3)因为缴纳水费1540元,所以用水量应超过3000吨,故令,设用水x吨.1500+0.8(x﹣3000)=1540x=3050即该月的用水量是3050吨.【点评】本题考查的是用一次函数解决实际问题,正确理解收费标准,列出函数解析式是关键,此类题是近年中考中的热点问题.24.(1)如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF 交于点O,∠AOF=90°.求证:BE=CF.(2)如图2,在正方形ABCD中,点E、H、F、G分别在边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.求GH的长.(3)已知点E、H、F、G分别在矩形ABCD的边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,则GH= ;②如图4,矩形ABCD由n个全等的正方形组成,则GH= (用n的代数式表示).【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题;证明题;压轴题.【分析】(1)关键是证出∠CBF=∠BAE,可利用同角的余角相等得出,从而结合已知条件,利用SAS 可证△ABE≌△BCF,于是BE=CF;(2)过A作AM∥GH,交BC于M,过B作BN∥EF,交CD于N,AMBN交于点O′,利用平行四边形的判定,可知四边形AMHG和四边形BNFE是▱,那么AM=GH,BN=EF,由于∠EOH=90°,结合平行线的性质,可知∠AO′N=90°,那么此题就转化成(1),求△BCN≌△ABM即可;(3)①若是两个正方形,则GH=2EF=8;②若是n个正方形,那么GH=n•4=4n.【解答】(1)证明:如图,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°,∴∠EAB=∠FBC,∴△ABE≌△BCF,∴BE=CF;(2)解:方法1:如图,过点A作AM∥GH交BC于M,过点B作BN∥EF交CD于N,AM与BN交于点O′,则四边形AMHG和四边形BNFE均为平行四边形,∴EF=BN,GH=AM,∵∠FOH=90°,AM∥GH,EF∥BN,∴∠NO′A=90°,故由(1)得,△ABM≌△BCN,∴AM=BN,∴GH=EF=4;方法2:过点F作FM⊥AB于M,过点G作GN⊥BC于N,得FM=GN,由(1)得,∠HGN=∠EFM,得△FME≌△GNH,得FE=GH=4.(3)①∵是两个正方形,则GH=2EF=8,②4n.【点评】本题利用了正方形的性质、平行四边形的判定、平行线的性质、全等三角形的判定和性质等知识,关键是作辅助线,构造全等三角形.25.如图,在平面直角坐标系中,O为原点,点A (0,﹣1),点B (4,﹣1),四边形ABCD是正方形,点C在第一象限.(1)直线AC的解析式为y=x﹣1 ;(2)过点D且与直线AC平行的直线的解析式为y=x+3 ;(3)与直线AC平行且到直线AC的距离为3的直线的解析式为y=x+5或y=x﹣7 ;(4)已知点T是AB的中点,P,Q是直线AC上的两点,PQ=6,点M在直线AC下方,且点M在直线DT上,当∠PMQ=90°,且PM=QM时,求点M的坐标.【考点】一次函数综合题.【分析】(1)首先求出正方形ABCD的边长以及点C的坐标是多少;然后应用待定系数法,求出直线AC的解析式是多少即可.(2)首先根据四边形ABCD是正方形,求出点D的坐标是多少;然后应用待定系数法,求出过点D 且与直线AC平行的直线的解析式是多少即可.(3)首先设与直线AC平行且到直线AC的距离为3的直线的解析式为y=x+d,然后根据点A(0,﹣1)到直线y=x+d的距离为3,求出d的值是多少即可.(4)首先作MG⊥PQ于点G,求出点E的坐标,再应用待定系数法,求出直线l的解析式;然后求出点T的坐标,再应用待定系数法,求出直线DT的解析式;最后求出直线l和直线DT的交点即可.【解答】解:(1)∵点A (0,﹣1),点B (4,﹣1),∴AB=4,∵四边形ABCD是正方形,∴BC=AB=4,∴点C的坐标是(4,3),设直线AC的解析式为y=kx+b,。
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中)1.(3分)如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.(3分)下列二次根式;5;;;;.其中,是最简二次根式的有()A.2个B.3个C.4个D.5个3.(3分)计算的结果为()A.±3B.﹣3C.3D.94.(3分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.(3分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.(3分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.(3分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.(3分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°10.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC11.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°12.(3分)如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)计算(4+)÷3的结果是.14.(3分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为.15.(3分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式.16.(3分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:则这组数据的中位数是.17.(3分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:那么,不等式mx+n<0的解集是.18.(3分)如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.21.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.2017-2018学年天津市部分区八年级(下)期末数学试卷参考答案与试题解析一、选择题.(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中)1.(3分)如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a【解答】解:根据题意得:3a+5≥0,解得a≥.故选:C.2.(3分)下列二次根式;5;;;;.其中,是最简二次根式的有()A.2个B.3个C.4个D.5个【解答】解:=,=,=2∴5、、是最简二次根式,故选:B.3.(3分)计算的结果为()A.±3B.﹣3C.3D.9【解答】解:=3,故选:C.4.(3分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,6【解答】解:∵()2+()2=5、()2=5,∴()2+()2=()2,∴能组成直角三角形的一组数是、、,故选:C.5.(3分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个【解答】解:①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有:①y=5x;②y=﹣2x﹣1;④y=x﹣6共3个.故选:C.6.(3分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)【解答】解:令y=0,则﹣2x+5=0,解得x=,故此直线与x轴的交点的坐标为(,0);令x=0,则y=5,故此直线与y轴的交点的坐标为(0,5);故选:A.7.(3分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x1<x2时,y1>y2,∴y随x的增大而减小,函数图象从左往右下降,∴m﹣1<0,∴m<1,∴2﹣m>0,即函数图象与y轴交于正半轴,∴这个函数的图象不经过第三象限.故选:C.8.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁【解答】解:从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进,故选:B.9.(3分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠C=32°,∴∠A=32°,故选:D.10.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC【解答】解:A、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:B.11.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°【解答】解:∵△ADE是等边三角形,∴∠DAE=60°,AD=AE=DE,∵四边形ABCD是正方形,∴∠EAB=90°,AD=AB∴∠BAE=90°+60°=150°,AE=AB∴∠AEB=30°÷2=15°,∴∠BED=60°﹣15°=45°,故选:A.12.(3分)如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个【解答】解:①当x=10时,两个探测气球位于同一高度,正确;②当x>10时,乙气球位置高,正确;③当0≤x<10时,甲气球位置高,正确;故选:A.二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)计算(4+)÷3的结果是2.【解答】解:原式=(4+2)÷3=6÷3=2.故答案为2.14.(3分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为24.【解答】解:设其余两边长分别为n、n+2,由勾股定理得,n2+(n+2)2=102,整理得,n2+2n﹣48=0,解得,n1=﹣8(舍去),n2=6,则其余两边长分别为6、8,则这个三角形的周长=6+8+10=24,故答案为:24.15.(3分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式h=0.62n.【解答】解:∵每本书的厚度为0.62cm,∴这些书摞在一起总厚度h(cm)与书的本数n的函数解析式为h=0.62n,故答案为:h=0.62n16.(3分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:则这组数据的中位数是5吨.【解答】解:表中数据为从小到大排列,5吨处在第10位、第11位,为中位数.故这组数据的中位数是5吨.故答案为:5吨.17.(3分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:那么,不等式mx+n<0的解集是x<﹣1.【解答】解:当x=﹣1时,y=0,根据表可以知道函数值y随x的增大而增大,故不等式mx+n<0的解集是x<﹣1.故答案为:x<﹣118.(3分)如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为4.【解答】解:如图1,当点M与点A重合时,根据翻折对称性可得AH=AD=5,如图2,当点N与点C重合时,根据翻折对称性可得CD=HC=13,在Rt△HCB中,HC2=BC2+HB2,即132=(13﹣AH)2+52,解得:AH=1,所以点H在AB上可移动的最大距离为5﹣1=4.故答案为:4.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)【解答】解:(Ⅰ)原式=(3)2﹣(2)2=45﹣12=33;(Ⅱ)原式=5﹣2﹣3+1=6﹣5.20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.【解答】解:甲学生的学期总评成绩为=90.1,乙学生的学期总评成绩为=90.5,所以乙学生将被评为优秀的学生.21.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=CD,AM=AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.【解答】解(Ⅰ)∵四边形ABCD为菱形,∴AB=BC,∵A(3,0),B(0,4),∴AB==5,∴BC=5,∴OC=1,∴点C的坐标为(0,﹣1);(Ⅱ)∵四边形ABCD为菱形,∴AD=AB=5,AD∥CB,∴点D的坐标为(3,﹣5),设经过点C,D两点的一次函数的解析式为y=kx+b,把(0,﹣1),(3,﹣5)代入得:,解得:,∴经过点C,D两点的一次函数的解析式为y=﹣x﹣1.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为40;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.【解答】解:(Ⅰ)由图表可得苹果100kg时,付款金额为500元,苹果200kg时,付款金额为500+100×5×0.8=900元;(Ⅱ)设购买量为xkg,付款金额为y元,当0≤x≤100时,y=5x;当x>100时,y=100×5+(x﹣100)×5×0.8=4x+100;(Ⅲ)把y=2100代入y=4x+100得:2100=4x+100,解得:x=500,答:如果某人付款2100元,其购买苹果的数量为500kg.故答案为:500;900.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.【解答】(I)证明:在图(1)中,连接AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD,CA平分∠BCD.∵∠B=60°,∴△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.∵AB∥CD,∴∠ACD=∠BAC=60°,∴∠B=∠ACD=60°.∵∠EAF=60°,∴∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠CEF+∠AEB=120°.∵∠BAE+∠AEB=120°,∴∠BAE=∠CEF.(II)解:∠BAE=∠CEF.在图(2)中,连接AC,由(I)知:∠ABC=∠ACD=60°,∠EAF=∠BAC=60°,AB =AC,∴∠ABE=∠ACF=120°,∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°.∵∠AEB+∠BAE=∠ABC=60°,∴∠BAE=∠CEF.。
2017-2018学年天津市和平区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知ABC V 的三边分别是6,8,10,则ABC V 的面积是( ) A .24 B .30C .40D .482.(3分)在实数范围内有意义,则x 的取值范围是() A .0x ≥ B .1x ≥C .1x >D .0x ≥且1x ≠3.(3分)()A B .253nC .53n D D 4.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,225.(3分)下列命题正确的是( ) A .有一个角是直角的四边形是矩形 B .有三个角是直角的四边形是矩形 C .对角线相等的四边形是矩形 D .对角线互相平分的四边形是矩形6.(3分)不论实数k 取何值,一次函数y=kx -3的图象必过的点坐标为( ) A .(0.-3) B .(0,3)C .3(,0)2D .3(,2-0)7.(3分)如图所示,菱形ABCD 中,对角线AC BD 、相交于点,O H 为AD 边的中点,菱形ABCD 的周长为36,则OH 的长等于( )A .4.5B .5C .6D .98.(3分)当3x =时,函数y x k =-和函数1y kx =+的函数值相等,则k 的值为( ) A .2B .12C .12-D .-29.(3分)关于函数21y x =-+,下列结论正确的是( ) A .图象与直线21y x =+平行 B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当12x >时,0y < 10.(3分)如图是甲、乙两射击运动员的10次射击训练成绩的折线统计图,则下列说法正确的是( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定11.(3分)如图,OB AB 、分别表示两名同学沿着同一路线运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快。
天津2016-2017年八年级下数学考试试题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共36分)1.下列二次根式中,的取值范围是3x ≥的是( )2.(2015•山东淄博中考)已知x =,y =,则x 2+xy +y 2的值为( )A .2B .4C .5D .73.下列二次根式中,是最简二次根式的是( )A.xy 2B.2ab C.214.12a =-,则( ) A .<12B.≤12C.>12 D. ≥125.下列二次根式,不能与12合并的是( )A.48B.18C.311 D.75- 6.已知k ,m ,n 为三个整数,若=k,=15,=6,则k ,m ,n 的大小关系是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n7.能够合并,那么a 的值为( ) A.2 B.3 C.4 D.5 8.已知, 则2xy 的值为( ) A .15- B .15 C .152- D.1529.下列各式计算正确的是( ) A. B. C.D.10.=)A.1x >B.1x <-C.≥D.≤11.下列运算正确的是( ) A.235=- B.312914==D.()52522-=-12.n 的最小值是( )A.4B.5C.6D.2二、填空题(每小题3分,共30分)13.(2015·四川攀枝花中考)若y =++2,则=_____________.14..15.(2015•四川自贡中考)若两个连续整数x y ,满足1x y <<,则x y +的值是 .16.已知一个正数的两个平方根分别是22-a 和4-a ,则a 的值是 .17.计算:________;.18.已知a ,b 为两个连续的整数,且a b <<,则a b += .19.若直角三角形的两条直角边长分别为 ,,则这个直角三角形的斜边长为________,面积为________.20.若实数y x ,2(0y =,则xy 的值为 .21. 已知实数x ,y 满足|x -4|+ =0,则以x ,y 的值为两边长的等腰三角形的周长是 .22.已知a ,b 为有理数,m,n 分别表示521amn bn +=,则2a b += .三、解答题(共34分)23.(6分)(2015·山东临沂中考)计算:1). 24.(6分)先化简,再求值:÷(2+1),其中=2-1.25.(8分)已知22x y ==,求下列代数式的值: (1)222x xy y ++ ;(2)22x y -.26.(6分)已知,a b 为等腰三角形的两条边长,且,a b 满足4b ,求此三角形的周长.27.(8分)一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形的周长.第十六章 二次根式检测题参考答案1.C 解析:∵ 二次根式的被开方数为非负数,∴ 选项A 中x 的取值范围满足3-x ≥0,即x ≤3,选项B 中x 的取值范围满足6+2x ≥0,即x ≥3,选项C 中x 的取值范围满足2x -6≥0,即x ≥3,选项D 中x 的取值范围满足x -3>0,即x >3.2.B 解析:原式=(x +y )2xy =(+)2×=()2=51=4.3.A 解析:最简二次根式的被开方数不含分母且不含开得尽方的因数.选项B ,C 的被开方数中都含分母,选项D 的被开方数,含有能开方的因数,故选项B ,C ,D 都不是最简二次根式.4.B 12a -,知≥,所以≤12.5.B 解析:因为,所以只有不能与合并.6.D 解析: ∵ =3 , =15 , =6,又k ,m ,n 为三个整数,且 =k,=15,=6,则k =3,m =2,n =5,∴ m <k<n .7.D 能够合并,知,所以8.A 解析:由题意知≥≥,所以9.C 解析:不相同,不能合并,选项B不正确;选项C 正确;选项D 不正确. 10.C 解析:由题意知≥≥,所以≥11.C 解析:选项A 中与不能合并,选项B 中,选项C 中,选项D 中.故选C .12.C 解析:∵ ,且是整数,∴ 正整数n 的最小值是6.13.9 解析:∵ y =++2有意义, ∴ x -3≥0,3-x ≥0,∴ x ≥3, x ≤3,∴ x =3. 当x =3时,y =++2=2,∴==9.14.-6 解析:=-6.15.7 1的值是在哪两个连续整数之间.∵23<,∴314<,∴3,4x y ==,∴347x y +=+=. 16.2 解析:由一个正数的两个平方根互为相反数,知,所以17 解析:,.18.11 解析:∵ 25<28<36,∴ ,即.又∵, ∴ a =5,b =6.∴ a +b =11.19.解析:在直角三角形中,两直角边长的平方和等于斜边长的平方;直角三角形的面积等于两直角边长乘积的一半.20. 解析:∵ 若两个非负数之和为0,则每一个非负数为0,∴,,∴,,∴.21.20 解析:由二次根式的非负性知 ≥0,又|x -4|≥0,|x -4|+=0,∴|x -4|=0,=0 ,解得x =4,y =8.∵ x ,y 的值为等腰三角形的两边长,根据三角形的三边关系定理知:4<等腰三角形的第三边长<12,∴ 等腰三角形的第三边长为8.∴ 等腰三角形的周长为4+8+8=20.22.2.5解析:因为所以,,即.又a ,b 为有理数,所以,,所以,所以.23.解:11)1)][1)]=221)-3(21)=--321=-+=24.解:原式=1112122+⋅++-a a a =111122+⋅++a a a =11+a . 当=2-1时,原式=21=22.25.解:(1)222222()(2(2416x xy y x y ⎡⎤++=+=++==⎣⎦.(2)22()()(2224(x y x y x y -=+-==⨯-=-26.解:由题意可得即所以3a =,4b =4=.当腰长为3时,三角形的三边长为,周长为10; 当腰长为4时,三角形的三边长为,周长为11.27.解:(1)周长54==.(2)当20x =时,周长25==.(答案不唯一,符合题意即可)。
2016-2017学年天津市和平区八年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)如图,是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()A.B.C.D.2.(3分)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.6,8,16 D.5,6,103.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②∠B=∠E,BC=EF,∠C=∠F;③AB=DE,∠B=∠E,AC=DF.其中,能使△ABC≌△DEF的条件共有()A.0组 B.1组 C.2组 D.3组4.(3分)将0.000000567用科学记数法表示为()A.5.67×10﹣10B.5.67×10﹣7C.567×10﹣7D.567×10﹣95.(3分)李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS6.(3分)下列等式从左到右的变形一定正确的是()A.=B.=C.=D.=﹣7.(3分)下列计算正确的是()A.(a2)3=a5B.(15x2y﹣10xy2)÷5xy=3x﹣2yC.10ab3÷(﹣5ab)=﹣2ab2D.a﹣2b3•(a2b﹣1)﹣2=8.(3分)根据图①的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b29.(3分)以x为未知数的方程=(s>0,v>0)的解为()A.x=B.x=C.x=D.x=10.(3分)已知a=2017x+2016,b=2017x+2017,c=2017x+2018,那么a2+b2+c2﹣ab﹣bc﹣ca的值为()A.1 B.C.2 D.311.(3分)一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a 千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能12.(3分)有一张长方形纸片ABCD,按下面步骤进行折叠:第一步:如图①,点E在边BC上,沿AE折叠,点B落在点B′处;第二步:如图②,沿EB′折叠,使点A落在BC延长线上的点A′处,折痕为EF.有下列结论:①△AEF是等边三角形;②EF垂直平分AA′;③CA′=FD.()A.只有②正确B.只有①②正确C.只有①③正确D.①②③都正确二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)当时,分式有意义.14.(3分)已知等腰三角形的一个底角为70°,则它的顶角为度.15.(3分)已知一个多边形的内角和与它的外角和的比是9:2,则这个多边形是边形.16.(3分)已知a1、a2、a3、a4是彼此不相等的负数,且M=(a1+a2+a3)(a2+a3+a4),N=(a1+a2+a3+a4)(a2+a3),那么M与N的大小关系是M N.(填“>”,“<”或“=”)17.(3分)如图,△ABC和△CDE都是等边三角形,且∠EBD=70°,则∠AEB=.18.(3分)如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DC;③∠DBC=∠DAC;④△ABD是正三角形.请写出正确结论的序号(请你认为正确结论的序号都填上)三、解答题:本大题共7小题,共46分,解答应写出文字说明、演算步骤或推理过程.19.(5分)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.20.(5分)如图,△ABC中,点O在边BC上,OD垂直平分BC,AD平分∠BAC,过点D分别作DM⊥AB于点M,DN⊥AC于点N.求证:BM=CN.21.(8分)计算:(1)(2y+1)2﹣(y﹣1)(y+5);(2)(ab2)3÷(﹣ab)2.22.(8分)计算:(1)÷;(2)(m+2+)•.23.(6分)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?24.(8分)因式分解:(1)x2﹣2x﹣8=;(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).25.(6分)如图,△ABC中,∠ABC=45°,P为BC边长一点,且PC=2PB,∠APC=60°.(1)求∠BAP的大小;(2)求∠ACB的大小.2016-2017学年天津市和平区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)如图,是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()A.B.C.D.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故选C.2.(3分)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.6,8,16 D.5,6,10【解答】解:根据三角形任意两边的和大于第三边,得A、3+4=7<8,不能组成三角形,故本选项错误;B、5+6=11,不能组成三角形,故本选项错误;C、6+8<16=3,不能够组成三角形,故本选项错误;D、5+6=11>10,能组成三角形,故本选项错正确;故选D.3.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②∠B=∠E,BC=EF,∠C=∠F;③AB=DE,∠B=∠E,AC=DF.其中,能使△ABC≌△DEF的条件共有()A.0组 B.1组 C.2组 D.3组【解答】解:①AB=DE,BC=EF,AC=DF,满足SSS,可证明△ABC≌△DEF;②∠B=∠E,BC=EF,∠C=∠F,满足ASA,可证明△ABC≌△DEF;③AB=DE,∠B=∠E,AC=DF,满足SSA,不能证明△ABC≌△DEF,故选C.4.(3分)将0.000000567用科学记数法表示为()A.5.67×10﹣10B.5.67×10﹣7C.567×10﹣7D.567×10﹣9【解答】解:0.000000567用科学记数法表示为5.67×10﹣7,故选:B.5.(3分)李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【解答】解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,∵,∴△EOC≌△DOC(SSS).故选A.6.(3分)下列等式从左到右的变形一定正确的是()A.=B.=C.=D.=﹣【解答】解:(A),故A错误;(C)≠,故C错误;(D)=,故D错误;故选(B)7.(3分)下列计算正确的是()A.(a2)3=a5B.(15x2y﹣10xy2)÷5xy=3x﹣2yC.10ab3÷(﹣5ab)=﹣2ab2D.a﹣2b3•(a2b﹣1)﹣2=【解答】解:A、(a2)3=a6,故A错误;B、(15x2y﹣10xy2)÷5xy=3x﹣2y,故B正确;C、10ab3÷(﹣5ab)=﹣2b2,故C错误;D、a﹣2b3•(a2b﹣1)﹣2=,故D错误;故选B.8.(3分)根据图①的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b2【解答】解:根据图②的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选A9.(3分)以x为未知数的方程=(s>0,v>0)的解为()A.x=B.x=C.x=D.x=【解答】解:=(s>0,v>0)去分母,得sx+sv=sx+40x,解得:x=,经检验:x=是原分式方程的解,故选A.10.(3分)已知a=2017x+2016,b=2017x+2017,c=2017x+2018,那么a2+b2+c2﹣ab﹣bc﹣ca的值为()A.1 B.C.2 D.3【解答】解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+1+1]=.故选B.11.(3分)一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a 千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能【解答】解:设两次航行的路程都为S,静水速度设为v,第一次所用时间为:+=第二次所用时间为:+=∵b>a,∴b2>a2,∴v2﹣b2<v2﹣a2∴>∴第一次的时间要短些.故选A.12.(3分)有一张长方形纸片ABCD,按下面步骤进行折叠:第一步:如图①,点E在边BC上,沿AE折叠,点B落在点B′处;第二步:如图②,沿EB′折叠,使点A落在BC延长线上的点A′处,折痕为EF.有下列结论:①△AEF是等边三角形;②EF垂直平分AA′;③CA′=FD.()A.只有②正确B.只有①②正确C.只有①③正确D.①②③都正确【解答】解:∵∠BEA=∠AEF=∠A′EF,又∠BEA+∠AEF+∠A′EF=180°,∴∠BEA=∠AEF=∠A′EF=60°,∵BC∥AD,∴∠BEA=∠EAF=60°,∴∠AEF=∠EAF=∠EFA=60°,∴△AEF是等边三角形,故①正确,∴△EFA′是等边三角形,∴AE=EA′=A′F=AF,∴四边形AEA′F是菱形,∴EF垂直平分AA′,故②正确,由于AB、BC的长度不确定,所以AC不一定等于DF,故③错误,故选B.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)当x≠1时,分式有意义.【解答】解:根据题意得:x﹣1≠0,即x≠1.14.(3分)已知等腰三角形的一个底角为70°,则它的顶角为40度.【解答】解:∵等腰三角形的一个底角为70°∴顶角=180°﹣70°×2=40°.故答案为:40.15.(3分)已知一个多边形的内角和与它的外角和的比是9:2,则这个多边形是十一边形.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°:360°=9:2,解得n=11.故答案为:十一.16.(3分)已知a1、a2、a3、a4是彼此不相等的负数,且M=(a1+a2+a3)(a2+a3+a4),N=(a1+a2+a3+a4)(a2+a3),那么M与N的大小关系是M>N.(填“>”,“<”或“=”)【解答】解:∵M=(a1+a2+a3)(a2+a3+a4),N=(a1+a2+a3+a4)(a2+a3),∴M﹣N=(a1+a2+a3)(a2+a3+a4)﹣(a1+a2+a3+a4)(a2+a3)=(a1+a2+a3)(a2+a3)+(a1+a2+a3)•a4﹣(a1+a2+a3)(a2+a3)﹣a4(a2+a3)=(a1+a2+a3)•a4﹣a4(a2+a3)=a1•a4>0,∴M﹣N>0,∴M>N,故答案为:>.17.(3分)如图,△ABC和△CDE都是等边三角形,且∠EBD=70°,则∠AEB= 130°.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,∴∠ACB﹣∠ECB=∠ECD﹣∠ECB,∴∠ACE=∠BCD,在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠EBD=70°,∴70°﹣∠EBC=60°﹣∠BAE,∴70°﹣(60°﹣∠ABE)=60°﹣∠BAE,∴∠ABE+∠BAE=50°,∴∠AEB=180°﹣(∠ABE+∠BAE)=130°.故答案为:130°.18.(3分)如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DC;③∠DBC=∠DAC;④△ABD是正三角形.请写出正确结论的序号①②③(请你认为正确结论的序号都填上)【解答】解:∵AB=AC,AC=AD,∴AB=AD,∵AC平分∠DAB,∴AC⊥BD,BE=DE,故①正确;∴AC是BD的垂直平分线,∴BC=DC,故②正确;∵AB=AC,AC=AD,∴B,C,D都在以A为圆心,AB为半径的圆上,∴∠DBC=∠DAC,故③正确;∵∠BAD不一定等于60°,∴△ABD不一定是正三角形.∴正确结论有①②③.故答案为:①②③.三、解答题:本大题共7小题,共46分,解答应写出文字说明、演算步骤或推理过程.19.(5分)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.【解答】证明:如图,∵AB∥ED,∴∠ABC=∠CED.∵在△ABC与△CED中,,∴△ABC≌△CED(SAS),∴AC=CD.20.(5分)如图,△ABC中,点O在边BC上,OD垂直平分BC,AD平分∠BAC,过点D分别作DM⊥AB于点M,DN⊥AC于点N.求证:BM=CN.【解答】证明:连接BD,CD,如图,∵O是BC的中点,DO⊥BC,∴OD是BC的垂直平分线,∴BD=CD,∵AD是∠BAC的平分线,DM⊥AB,DN⊥AC,∴DM=DN,在Rt△BMD和Rt△CND中,,∴Rt△BMD≌Rt△CND(HL),∴BM=CN.21.(8分)计算:(1)(2y+1)2﹣(y﹣1)(y+5);(2)(ab2)3÷(﹣ab)2.【解答】解:(1)原式=4y2+4y+1﹣y2﹣4y+5=3y2+6;(2)原式=a3b6÷a2b2=ab4.22.(8分)计算:(1)÷;(2)(m+2+)•.【解答】解:(1)÷==;(2)(m+2+)•===3+m.23.(6分)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?【解答】解:设小王用自驾车方式上班平均每小时行驶x千米,∵小王家距上班地点18千米,∴小王从家到上班地点所需时间t=小时;∵他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,∴他乘公交车从家到上班地点所需时间t=,∵乘公交车方式所用时间是自驾车方式所用时间的,∴=×,解得x=27经检验x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.24.(8分)因式分解:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)25.(6分)如图,△ABC中,∠ABC=45°,P为BC边长一点,且PC=2PB,∠APC=60°.(1)求∠BAP的大小;(2)求∠ACB的大小.【解答】解:(1)∵∠ABC=45°,∠APC=60°,∴∠BAP=∠APC﹣∠ABC=15°;(2)过C作AP的垂线CD,垂足为点D.连接BD;∵∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC﹣∠ABC=60°﹣45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°﹣15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°.。
2016-2017学年天津市部分区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.如果有意义,那么()A.a≥﹣2 B.a≤2 C.a≥2 D.a≤﹣22.下列二次根式,不能与合并的是()A.B.C.D.﹣3.下列计算正确的是()A.+=B.﹣=C.=3D.=4.如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是()A.6,8,10 B.4,5,6 C.,1,D.,4,55.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.B.C.13 D.56.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和407.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.90°B.60°C.120°D.45°8.下列说法不正确的是()A.对角线互相垂直的矩形一定是正方形B.对角线相等的菱形一定是正方形C.对角线互相垂直且相等的平行四边形一定是正方形D.顺次连接任意对角线相等的四边形的各边中点所得的四边形一定是正方形9.如图,菱形ABCD的边长为20,∠DAB=60,对角线为AC和BD,那么菱形的面积为()A.50B.100C.200D.40010.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t(min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化11.一次函数y=kx+b中,y随x的增大而减小,b<0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.某书定价8元,如果一次购买10本以上,超过10本部分打八折,那么付款金额y与购书数量x之间的函数关系如何,同学们对此展开了讨论:(1)小明说:y与x之间的函数关系为y=6.4x+16(2)小刚说:y与x之间的函数关系为y=8x(3)小聪说:y与x之间的函数关系在0≤x≤10时,y=8x;在x>10时,y=6.4x+16(4)小斌说:我认为用下面的列表法也能表示它们之间的关系购买量/本 1 2 3 4 …9 10 11 12 …付款金额/元8 16 24 32 …72 80 86.4 92.8 …(5)小志补充说:如图所示的图象也能表示它们之间的关系.其中,表示函数关系正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.计算:(2)2=.14.在△ABC中,∠C=90°,AC=6,BC=8,则高CD的长为.15.已知点(﹣2,y1),(3,y2)都在直线y=kx﹣1上,若y1<y2,则k0.(填>,<或=)16.已知矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AB=4,则矩形对角线的长是.17.函数y=kx与y=6﹣x的图象如图所示,则k=.18.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A 出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间秒时,以点P,Q,E,D为顶点的四边形是平行四边形.三、解答题(本大题共7小题,共46分)19.(6分)计算:(Ⅰ)××(Ⅱ)(+)+(﹣)20.(6分)为了考察甲、乙两种小麦的长势,分别从中抽取5株麦苗,测得苗高(单位:cm)如下:甲:6、8、9、9、8;乙:10、7、7、7、9.(Ⅰ)分别计算两种小麦的平均苗高;(Ⅱ)哪种小麦的长势比较整齐?为什么?21.(6分)如图,在矩形ABCD中,AB=8,AD=4,点E,F分别在边CD,AB上,若四边形AFCE是菱形,求菱形AFCE的周长.22.(6分)直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D 和点E.(1)求△ABC的面积;(2)求四边形ADOC的面积.23.(6分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.24.(8分)如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.(1)求证:OE=OF;(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.25.(8分)为保障我人民海军的海上生活,现需通过A港、B港分别运送200t和300t生活物资.已知该物资在甲仓库存有240t,乙仓库存有260t,若从甲、乙两仓运送物资到港口A的费用分别为20元/t、15元/t;从甲、乙两仓运送物资到港口B的费用分别为25元/t、24元/t.(Ⅰ)若设从甲仓库运往A港x吨,试填写表格.表一:港口从甲仓库运(吨)从乙仓库运(吨)A港xB港表二:港口从甲仓库运到港口费用(元)从乙仓库运到港口费用(元)A港20xB港(Ⅱ)给出能完成此次运输任务的总费用最少的调运方案,并说明理由.2016-2017学年天津市部分区八年级(下)期末数学试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.A;2.C;3.D;4.B;5.A;6.A;7.B;8.D;9.C;10.B;11.A;12.C;二、填空题(本大题共6小题,每小题3分,共18分)13.28;14.4.8;15.>;16.8;17.2;18.2或;三、解答题(本大题共7小题,共46分)19.;20.;21.;22.;23.25;28;24.;25.200﹣x;240﹣x;60+x;15(200﹣x);25(240﹣x);24(60+x);。
2015-2016学年天津市和平区八年级(下)期末数学试卷一、选择题:每小题0分1.下列式子中,属于最简二次根式的是()A.B.C. D.2.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.120°B.90°C.60°D.45°3.一次函数y=kx+b,当x=1时,y=5,当x=﹣1时,y=1,则当x=2时,y=()A.7 B.0 C.﹣1 D.﹣24.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m,则A,B两点间的距离是()A.200m B.20m C.40m D.50m5.计算=()A.B.2 C.4 D.2a6.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表所示:候选人测试成绩(百分制)面试笔试甲8590乙9085如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.则()A.甲的平均成绩高于乙的平均成绩B.乙的平均成绩高于甲的平均成绩C.甲与乙的平均成绩相同D.无法确定谁的成绩更高7.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定8.直线y=﹣x+不经过的象限是()A.一B.二C.三D.四9.在四边形ABCD中,对角线AC、BD相交于点O,下列说法正确的是()A.如果AB=BC,AC⊥BD,那么四边形ABCD是菱形B.如果AC=BD,AC⊥BD,那么四边形ABCD是菱形C.如果AB=BC,AD∥BC,那么四边形ABCD是平行四边形D.如果AO=CO,BO=DO,BC=CD,那么四边形ABCD是菱形10.已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A.y<﹣4 B.﹣4<y<0 C.y<2 D.y<011.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s (单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个 B.2个 C.3个 D.4个12.如图,点E是正方形ABCD外一点,EA=4,EB=3,且∠AEB=45°,则ED的长为()A. B.2C. D.5二、填空题:每小题0分13.如图,点D,E分别是△ABC的BC,AC边的中点,若AB=2,则DE的长.14.计算﹣=.15.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而增大,写出一个符合条件的k的值.16.我国是世界上严重缺失的国家之一,为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如图的条形统计图,则这10个样本数据的中位数是.17.已知直线y=﹣x+1与x轴交于点B,与y轴交于点A,以线段AB为边作正方形ABCD,则点D的坐标为.18.图①②③是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)图①中△MON的面积=;(2)在图②③中以格点为顶点画出一个正方形ABCD,使正方形ABCD的面积等于(1)中△MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(在图②、图③中画出的图形不能是全等形)三、解答题19.(8分)计算:(1)(+)(﹣)(2)(﹣)﹣(+)20.(8分)某市篮球队到市一中选拔一名队员,教练对王亮和李刚两名同学进行5次三分投篮测试,每人每次投10个球.如图记录的是王亮同学5次投篮所投中的个数.(Ⅰ)根据图中的数据,求王亮同学5次投篮所投中的个数的平均数、众数和中位数;(Ⅱ)李刚同学5次投篮所投中的个数的平均数为7,方差为2.8.你认为谁的成绩比较稳定,为什么?21.(10分)如图,四边形ABCD是矩形纸片,AD=10,CD=8,在CD上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.(1)AF的长=;(2)BF的长=;(3)CF的长=;(4)求DE的长.22.(10分)已知,矩形ABCD对角线AC、BD相交于点O.(1)如图①,若AC=6,则BD=,OD=;(2)如图②,DE∥AC,CE∥BD,求证:四边形OCED是菱形;(3)如图③,在(2)的条件下,连接AE,BE,若AE=8,求BE的长.23.(10分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分0.6超过150千瓦时,但不超过300千瓦时的部分0.65超过300千瓦时的部分0.9(1)根据题意,填写表格.100150200300350400某居民一个月用电量(千瓦时)电费价格(元)90187.5232.5(2)设该市一户居民某月用电x千瓦时,当月的电费为y元,写出y与x之间的函数关系式.当0≤x≤150时,;当150<x≤300时,;当x>300时,.(3)一户居民某月的电费为174.5元,求该户居民这个月的用电量.24.(10分)在▱ABCD中,M,N分别是AD,BC的中点,连接AN,CM.(1)如图①,求证:四边形ANCM是平行四边形;(2)如图②,连接MN,DN,若∠AND=90°,求证:MN=NC;(3)如图③,在(2)的条件下,过点C作CE⊥MN于点E,交DN于点P,EP=1,且∠1=∠2,求AN的长.25.(10分)如图,在平面直角坐标系中,O为原点,点A(2,0),点C(0,4),矩形OABC的对角线的交点为M,点P(2,3).(1)直线OB的解析式为;(2)过点P且与直线OB平行的直线的解析式为;(3)点M的坐标为;(4)点Q在直线AC上,△QMB的面积与△PMB的面积相等,求点Q的坐标.2015-2016学年天津市和平区八年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题0分1.下列式子中,属于最简二次根式的是()A.B.C. D.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.120°B.90°C.60°D.45°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠B=×180°=60°,故选:C.3.一次函数y=kx+b,当x=1时,y=5,当x=﹣1时,y=1,则当x=2时,y=()A.7 B.0 C.﹣1 D.﹣2【解答】解:∵在一次函数y=kx+b中,当x=1时,y=5,当x=﹣1时,y=1;∴,解得:,∴一次函数解析式为:y=2x+3,则当x=2时,y=2×2+3=7,故选:A.4.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m,则A,B两点间的距离是()A.200m B.20m C.40m D.50m【解答】解:∵CB=60m,AC=20m,AC⊥AB,∴AB==40(m).故选:C.5.计算=()A.B.2 C.4 D.2a【解答】解:==.故选:A.6.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表所示:候选人测试成绩(百分制)面试笔试甲8590乙9085如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.则()A.甲的平均成绩高于乙的平均成绩B.乙的平均成绩高于甲的平均成绩C.甲与乙的平均成绩相同D.无法确定谁的成绩更高【解答】解:甲的平均成绩为:(85×6+90×4)÷10=(510+360)÷10=870÷10=87(分)乙的平均成绩为:(90×6+85×4)÷10=(540+340)÷10=880÷10=88(分)∵88>87,∴乙的平均成绩高于甲的平均成绩.故选:B.7.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【解答】解:通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选:B.8.直线y=﹣x+不经过的象限是()A.一B.二C.三D.四【解答】解:∵直线y=﹣x+中,k=﹣<0,b=>0,∴直线的图象经过第一,二,四象限.故选:C.9.在四边形ABCD中,对角线AC、BD相交于点O,下列说法正确的是()A.如果AB=BC,AC⊥BD,那么四边形ABCD是菱形B.如果AC=BD,AC⊥BD,那么四边形ABCD是菱形C.如果AB=BC,AD∥BC,那么四边形ABCD是平行四边形D.如果AO=CO,BO=DO,BC=CD,那么四边形ABCD是菱形【解答】解:A、如图1所示,四边形ABCD是筝形,而不是菱形.故本选项错误;B、如图2所示,四边形ABCD不是菱形.故本选项错误;C、如图3所示,四边形ABCD是等腰梯形,而不是平行四边形.故本选项错误;D、如图4所示,对角线互相平分的四边形ABCD是平行四边形,邻边相等的平行四边形是菱形.故本选项正确.故选:D.10.已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A.y<﹣4 B.﹣4<y<0 C.y<2 D.y<0【解答】解:将(2,0)、(0,﹣4)代入y=kx+b中,得:,解得:,∴一次函数解析式为y=2x﹣4.∵k=2>0,∴该函数y值随x值增加而增加,∴y<2×2﹣4=0.故选:D.11.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s (单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①小明从家出发乘上公交车的时间为7﹣(1200﹣400)÷400=5分钟,①正确;②公交车的速度为(3200﹣1200)÷(12﹣7)=400米/分钟,②正确;③小明下公交车后跑向学校的速度为(3500﹣3200)÷3=100米/分钟,③正确;④上公交车的时间为12﹣5=7分钟,跑步的时间为15﹣12=3分钟,因为3<4,小明上课没有迟到,④正确;故选:D.12.如图,点E是正方形ABCD外一点,EA=4,EB=3,且∠AEB=45°,则ED的长为()A. B.2C. D.5【解答】解:如图,作AM⊥EB.EK⊥CD存在分别为M、K.EK交AB于N.∵∠AEB=45°,AE=4,∴EM=AM=2,∴BM=3﹣2,∴AB===,∵•AB•EN=EB•AM,∴EN=,∵四边形ABCD是正方形,∴∠NAD=∠ADK=∠DKN=90°.∴四边形ANKD是矩形,∴AN=DK,∴AN2=DK2=AE2﹣EN2,∴DE===.故选:C.二、填空题:每小题0分13.如图,点D,E分别是△ABC的BC,AC边的中点,若AB=2,则DE的长1.∴DE是△ABC的中位线,∴DE=AB=×2=1.故答案为:1.14.计算﹣=﹣.【解答】解:原式=﹣,故答案为:﹣.15.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而增大,写出一个符合条件的k的值1(答案不唯一).【解答】解:∵正比例函数y=kx(k是常数,k≠0),y随x的增大而增大,∴k>0,∴k的值可以为1.故答案为:1(答案不唯一).16.我国是世界上严重缺失的国家之一,为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如图的条形统计图,则这10个样本数据的中位数是6.5t.【解答】解:∵第5名与第6名的月均用水量分别为:6.5t,∴这10个样本数据的中位数是:=6.5(t).故答案为:6.5t.17.已知直线y=﹣x+1与x轴交于点B,与y轴交于点A,以线段AB为边作正【解答】解:∵当x=0时,y=1,∴A(0,1).∴OA=1.∵当y=0时,﹣x+1=0,解得:x=2,∴B(2,0).∴OB=2.∵ABCD为正方形,∴AD=AB,∠A=90°.如图1所示:过点D作DE∥y轴,过点A作AE∥x.∵∠DAE+∠EAB=90°,∠EAB+∠OAB=90°,∴∠OAB=∠EAD.在Rt△ADE和Rt△ABO中,,∴Rt△ADE≌Rt△ABO.∴AE=OA=1,DE=OB=2.∴D(1,3).如图2所示:过点D作DE⊥y轴,垂足为E.∵∠DAE+∠OAB=90°,∠DAE+∠ADE=90°,在Rt△ADE和Rt△BAO中,,∴Rt△ADE≌Rt△BAO.∴ED=OA=1,AE=OB=2.∴D(﹣1,﹣1).综上所述,点D的坐标为(﹣1,﹣1)或(1,3).故答案为:(﹣1,﹣1)或(1,3).18.图①②③是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)图①中△MON的面积=5;(2)在图②③中以格点为顶点画出一个正方形ABCD,使正方形ABCD的面积等于(1)中△MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(在图②、图③中画出的图形不能是全等形)【解答】解:(1)△MON的面积:3×4﹣1×3﹣×3﹣2×4=5,故答案为:5.(2)如图所示:.三、解答题(1)(+)(﹣)(2)(﹣)﹣(+)【解答】解:(1)(+)(﹣)=()2﹣()2=5﹣3=2;(2)原式=2﹣﹣﹣=﹣.20.(8分)某市篮球队到市一中选拔一名队员,教练对王亮和李刚两名同学进行5次三分投篮测试,每人每次投10个球.如图记录的是王亮同学5次投篮所投中的个数.(Ⅰ)根据图中的数据,求王亮同学5次投篮所投中的个数的平均数、众数和中位数;(Ⅱ)李刚同学5次投篮所投中的个数的平均数为7,方差为2.8.你认为谁的成绩比较稳定,为什么?【解答】解:(1)利用折线图可得:王亮5次投篮,有3次投中7个,故7为众数;王亮投篮的平均数为:(6+7+7+7+8)÷5=7(个),这5个数按大小排列为:6,7,7,7,8,最中间的是7,故中位数为7个;(2)∵王亮投篮5此的方差为:S2=[(6﹣7)2+(7﹣7)2+…+(7﹣7)2]=0.4个.差.王亮的成绩较稳定.21.(10分)如图,四边形ABCD是矩形纸片,AD=10,CD=8,在CD上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.(1)AF的长=10;(2)BF的长=6;(3)CF的长=4;(4)求DE的长.【解答】解:(1)根据折叠可得AF=AD=10,故答案为:10;(2)∵四边形ABCD是矩形,∴AB=CD=8,∠B=90°,在直角三角形中:BF===6,故答案为:6;(3)∵四边形ABCD是矩形,∴BC=AD=10,∴FC=10﹣6=4,故答案为:4;(4)设DE=x,则EF=x,EC=8﹣x,在Rt△ECF中,∵CE2+FC2=EF2,∴42+(8﹣x)2=x2,解得x=5.22.(10分)已知,矩形ABCD对角线AC、BD相交于点O.(1)如图①,若AC=6,则BD=6,OD=3;(2)如图②,DE∥AC,CE∥BD,求证:四边形OCED是菱形;(3)如图③,在(2)的条件下,连接AE,BE,若AE=8,求BE的长.【解答】(1)解:∵矩形ABCD对角线AC、BD相交于点O,∴BD=AC=6,∴OD=BD=3;故答案为:6,3;(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AB=CD,OA=OC,OB=OD,∴OC=OD,∴四边形OCED是菱形;(3)∵四边形OCED是菱形,∴DE=CE,∴∠ECD=∠EDC,∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠BCD=90°,∴∠ADE=∠BCE,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),23.(10分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分0.6超过150千瓦时,但不超过300千瓦时的部分0.65超过300千瓦时的部分0.9(1)根据题意,填写表格.某居民一个月用电量(千瓦时)100150200300350400…电费价格(元)6090122.5187.5232.5277.5…(2)设该市一户居民某月用电x千瓦时,当月的电费为y元,写出y与x之间的函数关系式.当0≤x≤150时,y=0.6x;当150<x≤300时,y=0.65x﹣7.5;当x>300时,y=0.9x﹣82.5.(3)一户居民某月的电费为174.5元,求该户居民这个月的用电量.【解答】解:(1)由题意可得,当用电100千瓦时时,需缴纳电费:100×0.6=60(元),当用电200千瓦时时,需缴纳电费:150×0.6+(200﹣150)×0.65=122.5(元),当用电400千瓦时时,需缴纳电费:150×0.6+(300﹣150)×0.65+(400﹣300)×0.9=277.5(元),故答案为:60,122.5,277.5;(2)由题意可得,当0≤x≤150时,y=0.6x,当150<x≤300时,y=150×0.6+(x﹣150)×0.65=0.65x﹣7.5,当x>300时,y=150×0.6+(300﹣150)×0.65+(x﹣300)×0.9=0.9x﹣82.5,故答案为:y=0.6x,y=0.65x﹣7.5,y=0.9x﹣82.5;(3)∵90<174.5<187.5,∴将y=174.5代入y=0.65x﹣7.5,得x=280,24.(10分)在▱ABCD中,M,N分别是AD,BC的中点,连接AN,CM.(1)如图①,求证:四边形ANCM是平行四边形;(2)如图②,连接MN,DN,若∠AND=90°,求证:MN=NC;(3)如图③,在(2)的条件下,过点C作CE⊥MN于点E,交DN于点P,EP=1,且∠1=∠2,求AN的长.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵M,N分别是AD、BC的中点,∴AM=CN,AM∥CN,所以四边形ANCM是平行四边形;(2)证明:∵∠AND=90°,AM=DM,∴MN=AD=MD,∵MD=AD=BC=CN,∴MN=NC;(3)解:∵MD=AD=BC=CN,MD∥CN∴四边形MNCD是平行四边形,由(2)知MN=NC∴▱MNCD是菱形,∴∠NMC=∠DMC,DN⊥MC,∠DNM=∠DNC,∵∠1+∠DMC=∠1+∠NMC=∠2+∠ENC=90°,∴∠NMC=∠MNC,∴MN=CN=MC,∴△MCN是等边三角形,∴∠MND=∠2=∠1=30°,在RT△NEP中,∵EP=1,∵四边形AMCN是平行四边形,∴AN=MC=2.25.(10分)如图,在平面直角坐标系中,O为原点,点A(2,0),点C(0,4),矩形OABC的对角线的交点为M,点P(2,3).(1)直线OB的解析式为y=2x;(2)过点P且与直线OB平行的直线的解析式为y=2x﹣1;(3)点M的坐标为(1,2);(4)点Q在直线AC上,△QMB的面积与△PMB的面积相等,求点Q的坐标.【解答】解:(1)∵四边形OABC是矩形,点A(2,0),点C(0,4),∴B(2,4).设直线OB的解析式为为y=kx,则2k=4,解得k=2,∴直线OB的解析式为为y=2x.故答案为y=2x;(2)设过点P且与直线OB平行的直线的解析式为y=2x+b,将P(2,3)代入,得4+b=3,解得b=﹣1,所以过点P且与直线OB平行的直线的解析式为y=2x﹣1.故答案为y=2x﹣1;(3)∵矩形OABC的对角线的交点为M,∴M是线段AC的中点,∵点A(2,0),点C(0,4),∴M(1,2).故答案为(1,2);(4)∵点Q在直线AC上,△QMB的面积与△PMB的面积相等,∴Q到BM的距离等于P到BM的距离.①如果Q在BM的下方,那么PQ∥BM,Q为直线AC与直线y=2x﹣1的交点.∵点A(2,0),点C(0,4),∴直线AC的解析式为y=﹣2x+4.由,解得,∴点Q1的坐标为(,);②如果Q在BM的上方,那么Q与(,)关于点M对称,∵M(1,2),∴点Q2的坐标为(1×2﹣,2×2﹣),即(,);故所求点Q的坐标为(,)或(,).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2017-2018学年天津市和平区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.482.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥1C.x>1D.x≥0且x≠1 3.(3分)化简的结果为()A.B.C.D.4.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21B.21,21.5C.21,22D.22,225.(3分)下列命题正确的是()A.有一个角是直角的四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形6.(3分)不论实数k取何值,一次函数y=kx﹣3的图象必过的点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)7.(3分)如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A.4.5B.5C.6D.98.(3分)当x=3时,函数y=x﹣k和函数y=kx+1的函数值相等,则k的值为()A.2B.C.﹣D.﹣29.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<010.(3分)如图是甲、乙两射击运动员的10次射击训练成绩的折线统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定11.(3分)如图,OB、AB分别表示两名同学沿着同一路线运动的一次函数图象,图中s 和t分别表示运动路程和时间,已知甲的速度比乙快.有下列结论:①射线AB表示甲的运动路程与时间的函数关系;②甲出发时,乙已经在甲前面12米;③8秒后,甲超过了乙;④64秒时,甲追上了乙.其中,正确结论的个数是()A.1B.2C.3D.412.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰好落在边AD上的点F处:点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的点H处,有下列结论:①∠EBG=45°②S△ABG=S△FGH③AG+DF=FG④其中,正确结论的个数是()A.1B.2C.3D.4二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(+)(﹣)的结果等于.14.(3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取.15.(3分)已知一次函数y=kx+2(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为16.(3分)如图,E,F,G,H分别是正方形ABCD各边的中点,则四边形EFGH是形.17.(3分)如图,正方形OABC的对角线OB在直线y=﹣x上,点A在第一象限.若正方形OABC的面积是50,则点A的坐标为.18.(3分)如图,在每个小正方形的边长为1的格中,点C,D,E,F,G均在格点上,DE与FG相交于点T.(1)CD的长等于(2)在如图所的网格中,用无刻度的直尺,画出①以DE为一边的正方形②以CD,DT为邻边的矩形CDTP三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤域推理过程19.(8分)计算:(1)(+)﹣(﹣)(2)(+)÷20.(8分)某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,因不慎,表中数据有两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(Ⅰ)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(Ⅱ)该班捐款金额的众数,中位数分别是多少?(Ⅲ)如果用九年级(1)班捐款情况作为一个样本,请估计全校1200人中捐款在40元以上(包括40元)的人数是多少?21.(10分)如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合.(1)AC的长=.(2)求CE的长.22.(10分)在▱ABCD中,(1)如图①,若AB=5,BC=3,则▱ABCD的周长为;若∠A=70°,则∠B的度数是,∠C的度数是;(2)如图②,点E是▱ABCD外一点,连接DB并延长交CE于点F,且CF=FE.求证DF ∥AE.23.(10分)某公司计划组织员工外出,甲、乙旅行社的服务质量相问,且对外报价都是300元/人,该公同联系时,甲旅行社表示可给每人八折优惠;乙旅行社表示可免去一人的费用,其余人九折优惠.(1)根据题意,填写下表:(2)设该公司此次外出有x人,选择甲旅行社的费用为y1元,选择乙旅行社的费用为y2元,分别写出y1,y2关于x的函数关系式(3)该公司外出人数在什么范围内,选甲旅行社划算?24.(10分)已知,四边形ABCD是正方形,点E在边AD上,点F在边AB的延长线上,且DE=BF,连接EF.(1)如图①,连接CE,CF.求证:△CEF是等腰直角三角形;(2)如图②,BD与EF交于点M,若正方形ABCD的边长为6,DE=2,求AM的长.(3)点G,点H分别在边AB,边CD上,GH与EF交于点N,且∠GNF=45°,若正方形ABCD的边长为6,GH=3,求DE的长(直接写出结果即可)25.(10分)在平面直角坐标系中,O为原点,已知直线y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)点A的坐标为,点B的坐标为,点C的坐标为,直线BC的解析式为.(2)点M是x轴上的一个动点(点M不与点O重合),过点M作x轴的垂线,交直线AB 于点P.交直线BC于点Q①如图①,当点M在x轴的正半轴上时,若△PQB的面积为,求点M的坐标;②连接BM,若∠BMP=∠BAC,求点P的坐标.2017-2018学年天津市和平区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.2.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥1C.x>1D.x≥0且x≠1【解答】解:∵在实数范围内有意义,∴x≥0,x﹣1>0,解得:x>1,则x的取值范围是:x>1.故选:C.3.(3分)化简的结果为()A.B.C.D.【解答】解:==.故选:D.4.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21B.21,21.5C.21,22D.22,22【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选:C.5.(3分)下列命题正确的是()A.有一个角是直角的四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形【解答】解:A、有一个角是直角的平行四边形是矩形,故此选项不能判定是矩形;B、有三个角是直角的四边形是矩形,能判定是矩形;C、对角线相等的平行四边形是矩形,故此选项不能判定是矩形;D、两条对角线互相平分四边形是平行四边形,故此选项不能判定是矩形.故选:B.6.(3分)不论实数k取何值,一次函数y=kx﹣3的图象必过的点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)【解答】解:∵一次函数y=kx﹣3,∴不论k取何值,函数图象必过点(0,﹣3).故选:A.7.(3分)如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A.4.5B.5C.6D.9【解答】解:∵四边形ABCD为菱形,且周长为36,∴AB=BC=CD=AD=9,又∵O为BD中点,H为AD的中点,∴OH为△ABD的中位线,∴OH=AB=4.5,故选:A.8.(3分)当x=3时,函数y=x﹣k和函数y=kx+1的函数值相等,则k的值为()A.2B.C.﹣D.﹣2【解答】解:由题意:3﹣k=3k+1,∴k=,故选:B.9.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【解答】解:A.由于直线y=﹣2x+1与直线y=2x+1的k值不相等,所以它们不平行,故本选项错误;B.函数y=﹣2x+1中,k=﹣2<0,y随x的增大而减小,故本选项错误;C.函数y=﹣2x+1中,k=﹣2<0,b=1>0,此函数的图象经过一、二、四象限,故本选项错误;D.函数y=﹣2x+1可化为x=,依据>,可得y<0,故本选项正确;故选:D.10.(3分)如图是甲、乙两射击运动员的10次射击训练成绩的折线统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【解答】解:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲甲的方差S甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,乙的方差S乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.35∴S2甲<S2乙.故选:A.11.(3分)如图,OB、AB分别表示两名同学沿着同一路线运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快.有下列结论:①射线AB表示甲的运动路程与时间的函数关系;②甲出发时,乙已经在甲前面12米;③8秒后,甲超过了乙;④64秒时,甲追上了乙.其中,正确结论的个数是()A.1B.2C.3D.4【解答】解:∵射线OB所表示的速度为=8米/秒,射线AB所表示的速度为=6.5米/秒,而甲的速度比乙快,∴射线AB表示乙的运动路程与时间的函数关系,所以①错误;∵乙8秒走了64﹣12=52米,甲8秒走了64米,而他们8秒时相遇,∴甲出发时,乙在甲前面12米,所以②正确;∵甲乙8秒时相遇,而甲的速度比乙快,∴8秒后,甲超过了乙,所以③正确;④错误.故选:B.12.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰好落在边AD上的点F处:点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的点H处,有下列结论:①∠EBG=45°②S△ABG=S△FGH③AG+DF=FG④其中,正确结论的个数是()A.1B.2C.3D.4【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF===8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以③正确;∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=S△FGH.所以②正确.设CE=EF=x,在Rt△EFD中,x2=(6﹣x)2+22,解得x=,∴CE=,DE=6﹣=,∴=,故④正确,故选:D.二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(+)(﹣)的结果等于2.【解答】解:原式=()2﹣()2=5﹣3=2,故答案为:2.14.(3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取乙.【解答】解:甲的平均成绩=(90×4+86×6)÷10=876÷10=87.6(分)乙的平均成绩=(83×4+92×6)÷10=884÷10=88.4(分)丙的平均成绩=(83×4+90×6)÷10=872÷10=87.2(分)丁的平均成绩=(92×4+83×6)÷10=866÷10=86.6(分)∵88.4>87.6>87.2>86.6,∴乙的平均成绩最高,∴公司将录取乙.故答案为:乙.15.(3分)已知一次函数y=kx+2(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为﹣1【解答】解:∵一次函数y随x的增大而减小,∴k<0,不妨设k=﹣1,故答案为:﹣116.(3分)如图,E,F,G,H分别是正方形ABCD各边的中点,则四边形EFGH是正方形.【解答】解:连接AC、BD.∵E、F、G、H分别是正方形ABCD各边的中点,∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=BD,EF=HG=AC,∴四边形EFGH为平行四边形,∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,∴EF=FG,EF⊥FG,∴▱EFGH是正方形,故答案为:正方.17.(3分)如图,正方形OABC的对角线OB在直线y=﹣x上,点A在第一象限.若正方形OABC的面积是50,则点A的坐标为(1,7).【解答】解:如图作OF⊥OB,交BA的延长线于F,作BM⊥x轴于M,FN⊥x轴于N.∵四边形ABCD是正方形,∴∠OBA=45°,∵∠BOF=90°,∴△BOF是等腰直角三角形,∴OB=OF,由△BOM≌△OFN,可得BM=ON,OM=FN,∵正方形OABC的面积是50,∴OB=10,∵点B在直线y=﹣上,∴B(﹣6,8),F(8,6),∵BA=AF,∴A(1,7),故答案为(1.7)18.(3分)如图,在每个小正方形的边长为1的格中,点C,D,E,F,G均在格点上,DE与FG相交于点T.(1)CD的长等于(2)在如图所的网格中,用无刻度的直尺,画出①以DE为一边的正方形②以CD,DT为邻边的矩形CDTP【解答】解:(1)由勾股定理可得,CD==;故答案为:;(2)①如图所示,四边形CDEQ即为所求;②如图所示,四边CDTP即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤域推理过程19.(8分)计算:(1)(+)﹣(﹣)(2)(+)÷【解答】解:(1)原式=3+3﹣2+5=8+;(2)原式=+=4+2.20.(8分)某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,因不慎,表中数据有两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(Ⅰ)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(Ⅱ)该班捐款金额的众数,中位数分别是多少?(Ⅲ)如果用九年级(1)班捐款情况作为一个样本,请估计全校1200人中捐款在40元以上(包括40元)的人数是多少?【解答】解:(I)被污染处的人数为:50﹣3﹣6﹣11﹣13﹣6=11(人),被污染处的捐款数[50×38﹣(10×3+15×6+30×11+50×13+60×6)]÷11=40,答:被污染处的人数为11人,被污染处的捐款数为40元;(Ⅱ)这组数据中50出现了13次,出现次数最多,则这组数据的众数是50;将组组数据从小到大依次排列,最中间的两数据是40,40,所以中位数为(40+40)÷2=40;(Ⅲ)因为九年级一班捐款数40元以上(包括40元)的有30人,占到60%,因此估计全校1200人捐款在40元以上(包括40元)的人数是1200×60%=720,答:全校1200人中捐款在40元以上(包括40元)的人数是720人.21.(10分)如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合.(1)AC的长=12.(2)求CE的长.【解答】解:(1)∵∠ACB=90°,BC=5,AB=13,∴AC=12,故答案为12.(2)根据将其三角形纸片ABC对折后点A落在BC的延长线上,则AB=BD=13,∵S△ABC=S△BCE+S△BDE,∴×5×12=BC×EC+EC×BD,∴30=×EC(5+13),∴CE=.22.(10分)在▱ABCD中,(1)如图①,若AB=5,BC=3,则▱ABCD的周长为16;若∠A=70°,则∠B的度数是110°,∠C的度数是70°;(2)如图②,点E是▱ABCD外一点,连接DB并延长交CE于点F,且CF=FE.求证DF ∥AE.【解答】解:(1)如图1中,∵四边形ABCD是平行四边形,∴AD=BC=3,AB=CD=5,AD∥BC,∴∠A=∠C=70°,∠A+∠B=180°,∴∠B=110°,∴平行四边形ABCD的周长为16.故答案为16,110°,70°.(2)如图2中,连接AC交BD于O.∵四边形ABCD是平行四边形,∴CO=OA,∵CF=FB,∴OF∥AE,即DF∥AE.23.(10分)某公司计划组织员工外出,甲、乙旅行社的服务质量相问,且对外报价都是300元/人,该公同联系时,甲旅行社表示可给每人八折优惠;乙旅行社表示可免去一人的费用,其余人九折优惠.(1)根据题意,填写下表:(2)设该公司此次外出有x人,选择甲旅行社的费用为y1元,选择乙旅行社的费用为y2元,分别写出y1,y2关于x的函数关系式(3)该公司外出人数在什么范围内,选甲旅行社划算?【解答】解:(1)根据题意,甲旅行社收费为300×0.8×10=2400;甲旅行社收费为300×0.9×(11﹣1)=2700;(2)由题意可得甲旅行社的费用:y1=300×0.8x=240x乙旅行社的费用:y2=300×0.9×(x﹣1)=270x﹣270(3)当y1<y2时,240x<270x﹣270,解得x>9∴当公司外出人数大于9人时,选甲旅行社划算.24.(10分)已知,四边形ABCD是正方形,点E在边AD上,点F在边AB的延长线上,且DE=BF,连接EF.(1)如图①,连接CE,CF.求证:△CEF是等腰直角三角形;(2)如图②,BD与EF交于点M,若正方形ABCD的边长为6,DE=2,求AM的长.(3)点G,点H分别在边AB,边CD上,GH与EF交于点N,且∠GNF=45°,若正方形ABCD的边长为6,GH=3,求DE的长(直接写出结果即可)【解答】解:(1)如图①,∵四边形ABCD是正方形,∴BC=CD,∠CBA=∠D=90°,∴∠D=∠CBF=∠BCD=90°,∵,∴△CDE≌△CBF(SAS),∴CE=CF,∠DCE=∠BCF,∴∠BCF+∠BCE=∠DCE+∠BCE=90°,∴△CEF是等腰直角三角形;(2)如图②,过M作MG⊥AF于G,∵DE=BF=2,AB=6,∴AE=4,AF=6+2=8,∵∠FGM=∠F AE=90°,∠FMG=∠FEA,∴△FGM∽△F AE,∴=2,∴FG=2GM,设GM=x,则FG=2x,∵四边形ABCD是正方形,∴∠ABM=45°,∴△BGM是等腰直角三角形,∴BG=GM=x,∴BG=BF=x=2,∴GM=2,AG=6﹣2=4,由勾股定理得:AM==2;(3)如图③,过G作GP⊥CD于P,由(1)知:∠CEF=45°,∵∠GNF=∠ENM=45°,∴∠EMN=90°,∴∠D=∠EMH=90°,∴∠GHC=∠DEC,∵GP=BC=CD,∠D=∠GPH=90°,∴CE=GH=3,∵CD=6,在Rt△CED中,由勾股定理得:DE==3.25.(10分)在平面直角坐标系中,O为原点,已知直线y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)点A的坐标为(﹣6,0),点B的坐标为(0,3),点C的坐标为(6,0),直线BC的解析式为y=﹣x+3.(2)点M是x轴上的一个动点(点M不与点O重合),过点M作x轴的垂线,交直线AB 于点P.交直线BC于点Q①如图①,当点M在x轴的正半轴上时,若△PQB的面积为,求点M的坐标;②连接BM,若∠BMP=∠BAC,求点P的坐标.【解答】解:(1)解:对于y=x+3,由x=0得:y=3,∴B(0,3)由y=0得:0=x+3,解得x=﹣6,∴A(﹣6,0),∵点C与点A关于y轴对称∴C(6,0)设直线BC的函数解析式为y=kx+b,根据题意得:,解得∴直线BC的函数解析式为y=﹣x+3.故答案为:(﹣6,0);(0,3);(6,0);y=﹣x+3.(2)如图1所示:过点B作BD⊥PQ,垂足为D.设M(x,0),则P(x,x+3)、Q(x,﹣x+3),则PQ=x,DB=x.∵△PQB的面积为,∴BD•QP x•x=,解得x=(负值舍去).∴M(,0).(3)如图2所示:当点M在x轴的正半轴上时.∵OB∥QP,∴∠BMP=∠OBM.又∵∠BMP=∠BAC,∴∠BAO=∠OBM.∴=,即,解得OM=.将x=代入y=x+3得:y=,∴P(,).如图3所示:当点M在x轴的负半轴上时.∵OB∥QP,∴∠BMP=∠OBM.又∵∠BMP=∠BAC,∴∠BAO=∠OBM.∴=,即,解得OM=.将x=﹣代入y=x+3得:y=,∴P(﹣,).∴点P的坐标为(﹣,)或(,).。
2017年八年级数学下册期末模拟测试题一、选择题:1.下列各式一定是二次根式的是()A. B. C. D.2.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6B.4C.4.8D.53.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1) B.(4,1) C.(﹣2,1) D.(2,﹣1)4.小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x之间的关系的大致图象是()A. B. C. D.5.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形6.如图,矩形ABCD的两条对角线相交于点O,AOB=600,AB=2,则矩形的对角线AC的长是()A.2 B.4 C.D.7.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形8.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④9.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<010.如图,是在同一坐标系内作出的一次函数l、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,则方程组1的解是()A. B. C. D.11.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12B.16C.18D.2412.在平面直角坐标系中,将直线l:y=-3x-1平移后,得到直线l2:y=-3x+2,则下列平移方式正确的是()1A.将l1向左平移1个单位B.将l1向右平移1个单位C.将l1向上平移2个单位D.将l1向上平移1个单位二、填空题:13.化简: = .14.在Rt△ABC中,∠C=90°,(1)若a:b=3:4,c=10,则a=_______,b=_______;(2)若a=6,b=8,则斜边c上的高h=_______.15.如图,在▱ABCD中,点E在BC边上,且AE⊥BC于点E,ED平分∠CDA,若BE:EC=1:2,则∠BCD度数为.16.如图,将矩形ABCD沿DE折叠,使A点落在BC上F处,若∠EFB=60°,则∠AED=____________.17.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是______.18.如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为________.三、解答题:19.先化简,再求值:,其中a=1+,b=1﹣.20.如图,在△ABC中,∠B=30°,∠C=45°,AC=2.求BC边上的高及△ABC的面积.21.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.求平行四边形ABCD的周长.22.如图,已知平行四边形ABCD的两条对角线相交于点O,E是BO的中点,过B点作AC的平行线,交CE的延长线于点F,连接BF(1)求证:FB=AO;(2)当平行四边形ABCD满足什么条件时,四边形AFBO是菱形?说明理由.23.小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的2倍,爸爸在小华出发后50min才乘上电缆车,电缆车的平均速度为180m/min.设小华出发x(min)行走的路程为y(m),图中的折线表示小华在整个行走过程中y(m)与x(min)之间的函数关系.(1)小华行走的总路程是_____m,他途中休息了_____min;(2)当50≤x≤80时,求y与x的函数关系式;(3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少?24.已知一次函数y=2x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d+d的值;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.参考答案1.C2.D3.A4.C5.B6.B7.D8.B9.A10.B11.A12.B13.解:原式=3+2+=.14. (1)6 8 (2)4.815.答案为:120°.16.答案为:75°17.答案为:4.5.18.答案为:-2<x<-1;19.20.解:∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵AC=2,∴2AD2=AC2,即2AD2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD===2,∴BC=BD+CD=2+2,∴S△ABC=BC•AD=(2+2)×2=2+2.21.解:在平行四边形ABCD中,∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABE=∠EBC,∠BCE=∠ECD.,∴∠EBC+∠BCE=90°,∴∠BEC=90°,∴BC2=BE2+CE2=122+52=132∴BC=13cm,∵AD∥BC,∴∠AEB=∠EBC,∴∠AEB=∠ABE,∴AB=AE,同理CD=ED,∵AB=CD,∴AB=AE=CD=ED=BC=6.5cm,∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm22.证明:(1)如图,取BC的中点G,连接EG.∵E是BO的中点,∴EG是△BFC的中位线,∴EG=0.5BF.同理,EG=0.5OC,∴BF=OC.又∵点O是▱ABCD的对角线交点,∴AO=CO,∴BF=AO.又∵BF∥AC,即BF∥AO,∴四边形AOBF为平行四边形,∴FB=AO;(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.23.解:(1)3600;20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b,根据题意,当x=50时,y=1950;当x=80时,y=3600,1950=50k+b;3600=80k+b,解得k=55,b=-800;∴函数关系式为:y=55x﹣800;(3)缆车到山顶的线路长为3600×2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米。