漆安慎_杜禅英_力学习题及答案04章
- 格式:doc
- 大小:1.42 MB
- 文档页数:16
第四章 动能和势能 第四章 动能和势能4.1、本题图表示测定运动物体能的装置,绳栓在腰间沿水平展开跨过理想滑轮,下悬重物50kg ,人用力向后蹬传送带,而人的质心相对于地面不动,设传送带上侧以s m /2的速率向后运动,问运动员对传送带做功否?功率如何?解:如右图,建立图示坐标xy o -分析得:W T =又 人用力后蹬传送带而人的质心相对于地面不动∴人克服绳的拉力做功,即:运动员对传送带做功 k dE x d F dA =⋅=v F dtdA N ⋅== 28.950⨯⨯=∴N=)(108.92W ⨯ 即为所求4、2、一非线性拉伸弹簧的弹性力大小为321l k l k f +=,l 表示弹簧的伸长量,1k 为正。
(1)研究当0,022<>k k 和02=k 时,弹簧的劲度dldf有何不同;(2)求出将弹簧由1l 拉长至2l 时弹簧对外所作的功。
解:(1)由kx f -=,可建立以自然伸长处为坐标原点 l x =∴故 il k l k f ˆ)(321+-=i l k k dlf d ˆ)3(221+-=∴∴当02>k 时,i l k k dlf d ˆ)3(221+-=当02<k 时,i l k k dl f d ˆ)3(221+-= 当02=k 时,i k dlf d ˆ1-= (2)l d f x d f dA⋅-=⋅-=∴ ⎰⋅-=∴21l l dl f A=⎰⋅+-21)(321l l dl l k l k=2121|4|24221l l l l l k l k --=))]((21[212221222121l l l l k k -++ 即为所求 4.3、一辆卡车能够沿着斜坡以h km /15的速率向上行驶,斜坡与水平面夹角的正切02.0=αtg ,所受的阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,卡车的速率是多少?解:根据题意,可得:C v F N =⋅=上下坡均为匀速 0=∴合F 如图示,分析小车受力,得矢量式:=++W N f 阻故得标式:⎩⎨⎧='+-=-+0sin 0sin F mg mg F mg mg μαμα下坡:上坡: )2()1(由(1)得:μαmg mg F +=sin 由(2)得:αμsin mg mg F -=' C N =v F v F '⋅'=⋅∴即:F v F v '⋅=' =v mg mg mg mg ⋅-+αμμαsin sin=μαμμα⋅-+sin sin02.0=αtg 146.1≈∴α15146.1sin 04.004.0146.1sin ⨯-+='∴v h km /45≈s m /5.12≈ 即为所求4、4、质量为M 的卡车载一质量为m 的木箱,以速率v 沿平直路面行驶,因故紧急刹车,车轮立即停止转动,卡车滑行一定距离后静止,木箱在卡车上相对卡车滑行了l 距离,卡车滑行了L 距离,求L 和l 。
2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=ϖ⑴j t i t r ˆ)14(ˆ)32(-+-=ρ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=-ϖ.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y ex t t,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e i e e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ϖϖϖ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x r ϖϖϖϖγβα轴夹角与轴夹角与轴夹角与2.1.3质点运动学方程为j t it r ˆ)32(ˆ42++=ϖ. ⑴求质点轨迹;⑵求质点自t=0至t=1的位移. 解:⑴32,42+==t y t x ,消去参数t 得:2)3(-=y x⑵j i j j ir r r ˆ2ˆ4ˆ3ˆ5ˆ4)0()1(+=-+=-=∆ρρρ2.2.1雷达站于某瞬时测得飞机位置为︒==7.33,410011θm R 0.75s 后测得︒==3.29,424022θm R ,R 1,R 2均在铅直面内,求飞机瞬时速率的近似值和飞行方向(α角)解:tRt R R v v ∆∆=∆-=≈ϖϖϖϖϖ12,在图示的矢量三角形中,应用余弦定理,可求得:xx5/1mR R R R R 58.3494.4cos 42004100242404100)cos(22221212221=︒⨯⨯-+=--+=∆θθ s m t R v v /8.46575.0/58.349/≈=∆∆=≈据正弦定理:)180sin(/)sin(/1221αθθθ--︒=-∆R R︒=∴︒≈--︒≈︒=∆-=--︒89.34,41.111180,931.058.349/4.4sin 4240/)sin()180sin(12121ααθθθαθR R2.2.2 一圆柱体沿抛物线轨道运动,抛物线轨道为y=x 2/200(长度:毫米)。
面向21世纪课程教材-普通物理学教程-力学-第二版-漆安慎 杜婵英 思考题习题解析第一章 物理学和力学思 考 题1.1解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2解答,(1)由量纲1dim -=LT v ,2 dim -=LT a ,h km h km h km s m /6.3/36001036001/10/33=⨯==-- 2223232/36006.3/360010)36001/(10/h km h km h km s m ⨯=⨯==-- 改为以h (小时)和km (公里)作为时间和长度的单位时,,36006.3216.320at t v s ⨯⨯+=(速度、加速度仍为SI 单位下的量值) 验证一下: 1.0h 3600s t ,4.0m /s a ,/0.220====s m v 利用,2120at t v s += 计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,36006.3216.320at t v s ⨯⨯+= 计算得:)(2.25927259202.71436006.321126.32km s =+=⨯⨯⨯⨯+⨯⨯= (2). 仅时间单位改为h 由量纲1 dim -=LT v ,2 dim -=LT a 得h m h m h m s m /3600/360036001//=== 222222/3600/3600)36001/(/h m h m h m s m === 若仅时间单位改为h ,得:,3600213600220at t v s ⨯+=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,3600213600220at t v s ⨯+=计算得:)(259272002592000072001436002112360022m s =+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h 由量纲1 dim -=LT v ,得:sm h km h km h km s m /6.31/,/6.3)36001/(10/3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s 得:,216.3120at t v s +=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,216.3120at t v s +=计算得:)(25927200259200007200360042136003600/11026.3123m s =+=⨯⨯+⨯⨯⨯=- 1.3解答,,ksv f ,22=∝sv f][][][][][[?]][][]?[][32242222222222mkgsv f s m kgms sv f s m v m s N f k s m v m s k N f ====----物理意义:体密度。
第四章 动能和势能 一、基本知识小结1、功的定义式:⎰⋅=2112r r r d F A直角坐标系中:⎰⎰+==221121,,1212y x y x yxx x xdy F dx F A dxF A ,自然坐标系中:⎰=2112s s ds F A τ极坐标系中: ⎰+=2211,,12θθθθr r rrd F dr F A2、⎰⋅-=-=b ap p k r d F a E b E mv E 保势能动能)()(,212重力势能mgy y E p =)(弹簧弹性势能 2)(21)(l r k r E p -=静电势能 rQqr E p πε4)(=3、动能定理适用于惯性系、质点、质点系∑∑∆=+k E A A内外4、机械能定理适用于惯性系∑∑+∆=+)p k E E A A(非保内外5、机械能守恒定律适用于惯性系若只有保守内力做功,则系统的机械能保持不变,C E E p k =+6、碰撞的基本公式接近速度)(分离速度(牛顿碰撞公式)动量守恒方程)e v v e v v v m v m v m v m =-=-+=+)((2010122211202101 对于完全弹性碰撞 e = 1对于完全非弹性碰撞 e = 0对于斜碰,可在球心连线方向上应用牛顿碰撞公式。
7、克尼希定理∑+=22'2121i i c k v m mv E 绝对动能=质心动能+相对动能 应用于二体问题 222121u mv E c k μ+=212121m m m m m m m +=+=μu 为二质点相对速率二、思考题解答4.1 起重机起重重物。
问在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种情况下合力之功的正负。
又:在加速上升和匀速上升了距离h 这两种情况中,起重机吊钩对重物的拉力所做的功是否一样多?答:在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种况下合力之功的正负分别为:正、0、负、正、0、负。
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸xey sin = ⑹x ey x100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+-++--+dxxdxdx xe xdx x dxe dxb ax dx dx x x dx e xx x b ax dx x x x xx x x ln 222113)12(cos )11(cos sin )sin()cos (sin )2(222⑽⑼⑻⑺⑹⑸⑷⑶ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx cx x dx x xdx ce x d e dx xec x x xd xdx x cb ax b ax d b axc ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e c x dx x dx dx x cx x x dx xdx dx x dx x x x x x x x aabax dxxx x aax dxx x x x xxx x dxx xx xx x 221ln 4121212212213312222/112212212111111122/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分πππππππππ412832/02/0212/021011143214/6/4/6/21214/6/221211112211ln 132/12/12/12/111551105514143532421213221212/1212/021114/6/2111ln 12/12/111421)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(60|arcsin )1(|)1()1()1()1(||)1)sin 3(2cos )()1()1222322+=-+=+︒===-===+-=+=+=+=++=︒===-=-=--=--=-=-=-++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++---++--dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x e e e d e dx e e x x dx dx xdx x dxx x dx xdx dx e dx dx e e dx x x x xx eeexxxdx x x x xxx xxex xxdx xx πππππππ⑻⑺⑹⑸⑷⑶⑵(解:⑴⑻⑺⑹⑸⑷⑶⑵(⑴示这些定积分。
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x 消去时间参量t 得:05x 4y 3=-+2.1.2质点运动学方程为k ˆ2j ˆe i ˆe r t 2t 2++=- ,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①⎪⎩⎪⎨⎧===-2z e y ex t 2t2消去t 得轨迹:xy=1,z=2②k ˆ2j ˆe i ˆe r 221++=-- ,k ˆ2j ˆe i ˆe r 221++=-+ ,j ˆ)e e (i ˆ)e e (r r r 222211---+-+-=-=∆2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++= ,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,①.,3t 2y ,t 4x 2+==消去t 得轨迹方程 2)3y (x -=②j ˆ2i ˆ4r r r ,j ˆ5i ˆ4r ,j ˆ3r 0110+=-=∆+== 2.2.1雷达站于某瞬时测得飞机位置为0117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得: )m (385.3494.4cos 42404100242404100R 022≈⨯⨯-+=∆)s /m (8.46575.0385.349t R v ==∆∆≈利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y ⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分 解:4. 求下列定积分解:1|cos si n 22/0=-=⎰ππx xdx 6.计算由y=3x 和y=x 2所围成的平面图形的面积。
解:如图所示,令3x=x 2,得两 条曲线交点的x 坐标:x=0,3. 面积7.求曲线y=x 2+2,y=2x,x=0和x=2诸线所包围的面积。
解:面积A8.一物体沿直线运动的速度为v=v 0+at,v 0和a 为常量,求物体在t 1至t 2时间内的位移。
解:位移S ⎰+=21)(0t t dtat v 1.2.3.4.5.6.7.略 8.二矢量如图所示A=4,B=5,α=25o ,β=36.87o ,直接根据矢量标积定义和正交分解法求B A⋅。
解:直接用矢量标积定义:用正交分解法:∵A x =4cos α=3.6A y =4sin α=1.7,B x =5cos(90o +β)= - 5sin β=-3,B y =5sin(90o +β)=5cos β=4∴447.1)3(6.3-=⨯+-⨯=+=⋅y y x x B A B A B A9.的夹角。
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++=ρρ求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x 消去时间参量t 得:05x 4y 3=-+2.1.2质点运动学方程为k ˆ2j ˆe i ˆe r t 2t 2++=-ρ,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①⎪⎩⎪⎨⎧===-2z e y ex t 2t2消去t 得轨迹:xy=1,z=2②k ˆ2j ˆe i ˆe r 221++=--ρ,k ˆ2j ˆe i ˆe r 221++=-+ρ,j ˆ)e e (i ˆ)e e (r r r 222211---+-+-=-=∆ρρρ2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++=ρ,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,①.,3t 2y ,t 4x 2+==消去t 得轨迹方程 2)3y (x -=②j ˆ2i ˆ4r r r ,j ˆ5i ˆ4r ,j ˆ3r 0110+=-=∆+==ρρρρρ 2.2.1雷达站于某瞬时测得飞机位置为0117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ρ代入数值得: )m (385.3494.4cos 42404100242404100R 022≈⨯⨯-+=∆ρ)s /m (8.46575.0385.349t R v ==∆∆≈ρ利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸xey sin = ⑹x ey x100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+-++--+dxxdxdx xe xdx x dxe dxb ax dx dx x x dx e xx x b ax dx x x x xx x x ln 222113)12(cos )11(cos sin )sin()cos (sin )2(222⑽⑼⑻⑺⑹⑸⑷⑶ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx cx x dx x xdx ce x d e dx xec x x xd xdx x cb ax b ax d b axc ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e c x dx x dx dx x cx x x dx xdx dx x dx x x x x x x x aabax dxxx x aax dxx x x x xxx x dxx xx xx x 221ln 4121212212213312222/112212212111111122/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分πππππππππ412832/02/0212/021011143214/6/4/6/21214/6/221211112211ln 132/12/12/12/111551105514143532421213221212/1212/021114/6/2111ln 12/12/111421)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(60|arcsin )1(|)1()1()1()1(||)1)sin 3(2cos )()1()1222322+=-+=+︒===-===+-=+=+=+=++=︒===-=-=--=--=-=-=-++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++---++--dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x e e e d e dx e e x x dx dx xdx x dxx x dx xdx dx e dx dx e e dx x x x xx eeexxxdx x x x xxx xxex xxdx xx πππππππ⑻⑺⑹⑸⑷⑶⑵(解:⑴⑻⑺⑹⑸⑷⑶⑵(⑴示这些定积分。
第四章 动能和势能 一、基本知识小结1、功的定义式:⎰⋅=2112r r r d F A直角坐标系中:⎰⎰+==221121,,1212y x y x yxx x xdy F dx F A dxF A ,自然坐标系中:⎰=2112s s ds F A τ极坐标系中: ⎰+=2211,,12θθθθr r rrd F dr F A2、⎰⋅-=-=b ap p k r d F a E b E mv E 保势能动能)()(,212重力势能mgy y E p =)(弹簧弹性势能 2)(21)(l r k r E p -=静电势能 rQqr E p πε4)(=3、动能定理适用于惯性系、质点、质点系∑∑∆=+k E A A内外4、机械能定理适用于惯性系∑∑+∆=+)p k E E A A(非保内外5、机械能守恒定律适用于惯性系若只有保守内力做功,则系统的机械能保持不变,C E E p k =+6、碰撞的基本公式接近速度)(分离速度(牛顿碰撞公式)动量守恒方程)e v v e v v v m v m v m v m =-=-+=+)((2010122211202101 对于完全弹性碰撞 e = 1对于完全非弹性碰撞 e = 0对于斜碰,可在球心连线方向上应用牛顿碰撞公式。
7、克尼希定理∑+=22'2121i i c k v m mv E 绝对动能=质心动能+相对动能 应用于二体问题 222121u mv E c k μ+=212121m m m m m m m +=+=μu 为二质点相对速率二、思考题解答4.1 起重机起重重物。
问在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种情况下合力之功的正负。
又:在加速上升和匀速上升了距离h 这两种情况中,起重机吊钩对重物的拉力所做的功是否一样多?答:在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种况下合力之功的正负分别为:正、0、负、正、0、负。
在加速上升和匀速上升了距离h 这两种情况中,起重机吊钩对重物的拉力所做的功不一样多。
加速上升 mg F >;匀速上升 mg F =。
4.2 弹簧A 和B ,劲度系数B A K K >,(1)将弹簧拉长同样的距离;(2)拉长两个弹簧到某一长度时,所用的力相同。
在这两种情况下拉伸弹簧的过程中,对那个弹簧做的功更多? 答: (1) B A K K > 拉长同样距离2B B 2A A K 21A K 21A ∆=∆=}B A K K >,B A A A >.(2) A A A K F x =,B B B K F x =,B A F F =A A A K F =x B BB K F=xB B A A K K x x =B 2B 2B 2B B 2B B B A2A 2A 2A A 2A A A K F 21K F K 21K 21A K F 21K F K 21K 21A ======x xB A K K >,B A A A <4.3“弹簧拉伸或压缩时,弹簧势能总是正的。
”这一论断是否正确?如果不正确,在什么情况下,弹簧势能会是负的。
答:与零势能的选取有关。
4.4 一同学问:“二质点相距很远,引力很小,但引力势能大;反之,相距很近,引力势能反而小。
想不通”。
你能否给他解决这个疑难?答:设两物体(质点)相距无限远处为零势能。
4.5 人从静止开始步行,如鞋底不在地面上打滑,作用于鞋底的摩擦力是否做了功?人体的动能是哪里来的?分析这个问题用质点BO系动能定理还是用能量守恒定律分析较为方便? 答:(1)作用于鞋底的摩擦力没有做功。
(2)人体的动能是内力做功的结果。
(3)用质点系动能定理分析这个问题较为方便。
4.6 一对静摩擦力所做功的代数和是否总是负的?正的?为零? 答:不一定。
4.7 力的功是否与参考系有关?一对作用力与反作用力所做功的代数和是否和参考系有关?答(1)有关。
如图:木块相对桌面位移(s-l )木板对木块的滑动摩擦力做功f(s-l)若以木板为参照系,情况不一样。
(2)无关。
相对位移与参照系选取有关。
(代数和不一定为零)4.8 取弹簧自由伸展时为弹性势能零点,画出势能曲线。
再以弹簧拉伸或压缩到某一程度时为势能零点,画出势能曲线。
根据不同势能零点可画出若干条势能曲线。
对重力势能和万有引力势能也可如此作,研究一下。
答(1)弹簧原长为势能零点2P K 21E x =A??)E E K 21d K 0E (0P P 20p -=-←==-⎰x x x x设0x x =处势能为零。
xx x x x x d k E E 00P p ⎰=-22P k 21k 21E x x x-=(2)重力势能:0y =处势能为零0h y =处势能为零yh Ph Py mgh mgy mgdy E E 00-==-⎰p mgh mgy )y (E -=0h y -=处势能为零yh -)P(-h Py mgh mgy mgdy E E 00+==-⎰万有引力势能与上雷同。
两质点距离无限远处势能为零r m m GE 21p -=4.9 一物体可否只具有机械能而无动量?一物体可否只具有动量而无机械能?试举例说明。
答:机械能是系统作机械运动的动能和势能的总和。
动能与物体相对参考系的运动速度有关,势能则属于保守力系统,一物体所具有的势能,是相对势能零点而言的。
若保守力系统,物体相对参考系静止,那么物体的动能为零,动量也为零。
该系统的机械能就是物体相对系统势能零点所具有的势能。
所以,一物体可以有机械能而无动量。
例如:一质量为m 的物体(例如一气球)静止在相对地面为h 的高处,此时对于物体和地球系统,具有的机械能为重力势能,其值为mgh 。
由于此时物体静止,故其动量为零。
在保守力系统中,若一物体运动至某一位置时所具有的动能值,恰等于该位置相对势能零点所具有的负的势能值,则该物体的机械能为零,而因物体具有动能,因而动量不为零。
所以,一物体也可以有动量而无机械能。
例如:物体自离地面高为h 处自由下落,取物体和地球为系统,并取下落处为重力势能零点。
初始时刻系统的机械能为00E =,下落之地面时,物体具有的速度大小为v ,动能为212mv ,动量大小为mv ,系统的机械能为20102E mv mgh E =-== 。
4.10 两质量不等的物体具有相等的动能,哪个物体的动量较大?两质量不等的物体具有相等的动量,哪个物体的动能较大?答:设两物体的质量和速度的大小分别为1m ,1v 和2m ,2v 且1m >2m 。
(1)动能相等时,有2211221122m v m v = ,即有211v v => , 动量的大小分别为111p m v =,222p m v =,可得2111p m m v p ==< 。
质量的大的物体动量值较大。
(2)动量相等时,有1122m v m v = ,即有12112mv v v m => ,动能分别为211112K E m v = ,222212K E m v = ,可得:22112211112211()22K K m m E m v m v E m m ==>。
质量小的物体动能较大。
4.11 如图所示,用线把球挂起来,球下系一同样地的细线,拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线线先断?为什么?答:无论何种拉法,细线之所以断,是因其所受拉力大于它所能承受的极限张力。
缓慢的加大力量拉球下细线时,拉力通过重球均匀的作用于球上方的细线,而上方的细线除受拉力外,还受球对对它的作用力(大小等于球的重力)。
因此在逐渐加大拉力的过程中,球上方细线中的张力因率先达到极限而被拉断。
用较大力量突然拉下面细线,意味着作用力较大而作用时间较短,该拉力就是冲力,冲力通过细线首先作用于重球,但由于重球惯性很大,动量改变极小,在冲力尚未通过重球的位移传给球上之细线前,球下细线所受冲力以大于其所能承受的张力之极限,因此先断。
4.12 一物体沿粗糙面下滑,试问在这过程中哪些力作正功?哪些力作负功?哪些力不作功?答:物体沿粗糙面下滑时的受力有:重力、滑动摩擦力、斜面的支持力。
合力作功为 22221231111cos cos cos T N A F dr G ds F ds F ds θθθ=⋅=++⎰⎰⎰⎰,其中,重力G 与物体位移dr 间的夹角12πθ<,所以重力作正功。
滑动摩擦力T F 与物体位移dr 间的夹角2θπ=,因与物体位移反向,所以滑动摩擦力作负功。
斜面的支持力N F 因与物体位移相互垂直32πθ=,所以斜面的支持力不作功。
4.13 外力对质点不作功时,质点是否一定作匀速直线运动?答:根据质点的动能定理K A E =∆可知,合外力对质点作功为零时,质点的动能保持不变,有两种情况:(1)若合外力0F =,则质点将保持原来的运动状态不变,动能自然不变。
此即牛顿第一定理,原来静止的将仍然保持静止;原来作匀速直线运动的,将继续保持原有速度的大小和方向不变的匀速直线运动。
(2)若合外力F 与质点的位移dr始终垂直,则合外力对质点不作功。
如:用细绳连接着的小球在光滑水平面内作圆周运动,拉力不作功;垂直进入均匀磁场的点电荷所作的圆周运动,磁场力不作功。
此时的质点所作的是匀速率圆周运动,其动能虽然不变,但速度方向不断改变,即动量时时在变。
4.14 两个相同的物体处于同一位置,其中一个水平抛出,另一个沿斜面无摩擦的自由滑下,问哪个物体先到达地面?到达地面时两者速率是否相等?答:如图所示,取平抛物体为A ,下滑物体为B .设两物体离地面高度为h ,A 的水平速度为0v,斜面长为 l .对A ,有212h gt = ,2201122mgh mv mv += ,式中t 和v 分别为A 到达地面的所用时间和速率。
可解得t =v =对B ,有'2'211sin 22l at g t θ== ,'212mgh mv = .式中't 和v 分别为B 到达地面所用的时间和速率。
并且sin h l θ= ,可解得't t ==> ,'v v =< ,即平抛物体A 先到达地面,并且到达地面时的速率比自由下滑物体B 的大。
4.15非保守力作功总是负的,对吗?举例说明之。
答:如果力所作的功与物体所经历的中间路径有关,或物体循闭合路径运行一周时,力所作的功不为零,这种力称作非保守力。
摩擦力、粘滞力、化学力等作的功都具有这样的特征,它们都是非保守力。
但是,像摩擦力这类非保守力作功,并非总是负的。
它的功可以增大物体的动能,作正功,比如传送带对物体的静摩擦力的功,使物体的动能获得大于零的增量;它的功也可以将物体机械运动的能量转化为原子或分子无规热运动的能量(热能),即作负功,比如滑动摩擦力作功,使物体机械运动的动能减小,因此也将摩擦力称为耗散力 。