江苏省响水中学高三数学二轮复习 第44课时 瞬时变化率导学案
- 格式:doc
- 大小:137.00 KB
- 文档页数:2
第4课时瞬时变化率——导数(1)教学过程一、数学运用【例1】已知f(x)=,求曲线y=f(x)在x=处的切线斜率.(见学生用书P8)[处理建议]让学生体会割线斜率无限逼近于切线斜率,熟悉求曲线y=f(x)上一点P(x0,y0)处的切线斜率的步骤:(1)求差f(x0+Δx)-f(x0);(2)当Δx(Δx可正,也可负)无限趋近于0时,趋近于某个常数k;(3)曲线y=f(x)上一点P(x0,y0)处的切线斜率为k.[规范板书]解==-.当Δx无限趋近于0时,无限趋近于-,所以曲线在x=处的切线斜率是-.[题后反思]本题应注意分子有理化,再用逼近思想处理.变式已知曲线y=2x2上一点A(1,2),求点A处的切线的斜率与切线方程.[规范板书]解设A(1,2),B(1+Δx,2(1+Δx)2),则割线AB的斜率为k AB==4+2Δx,当Δx无限趋近于0时,k AB无限趋近于常数4,从而曲线y=f(x)在点A(1,2)处的切线斜率为4,所求切线方程为4x-y-2=0.【例2】物体自由落体的运动方程为S=S(t)=gt2,其中位移S的单位为m,时间t的单位为s,g=9.8 m/s2,求t=3 s时的瞬时速度.(见学生用书P8)[处理建议]瞬时速度是位移对时间的瞬时变化率.[规范板书]解取一小段时间[3,3+Δt],位移改变量ΔS=g(3+Δt)2-g·32=(6+Δt)Δt,平均速度==g(6+Δt),当Δt→0时,g(6+Δt)→3g=29.4,即瞬时速度v=29.4 m/s.[题后反思]若求t=3s时的瞬时加速度呢?变式设一物体在t s内所经过的路程为S m,并且S=4t2+2t-3,试求物体分别在运动开始及第5s末的速度.[规范板书]解在t到t+Δt的时间内,物体的平均速度为===8t+2+4Δt,当Δt→0时,→8t+2,所以,时刻t s的瞬时速度为8t+2,由题意,物体在第5s末的瞬时速度是42 m/s,在运动开始时的速度为2 m/s.【例3】如果曲线y=x3+x-10的某一切线与直线y=4x+3平行,求切点坐标与切线方程.(见学生用书P8)[处理建议]曲线在某点的切线的斜率等于函数在切点处的导数值.[规范板书]解设切点坐标为(x,x3+x-10),==3x2+1+3xΔx+(Δx)2,当Δx→0时,3x2+1+3xΔx+(Δx)2→3x2+1,由题得,3x2+1=4⇒x=1或-1.所以切点坐标为(1,-8),此时切线方程为4x-y-12=0;或切点坐标为(-1,-12),此时切线方程为4x-y-8=0.变式已知曲线y=x2上过某一点的切线分别满足下列条件,求此点:(1)平行于直线y=4x-5;(2)垂直于直线2x-6y+5=0;(3)与x轴成135°的倾斜角.[处理建议]利用导数的概念及两直线的位置关系来求解.[规范板书]解设P(x0,y0)是满足条件的点.==2x0+Δx,当Δx→0时,2x0+Δx→2x0.(1)因为切线与直线y=4x-5平行,所以2x0=4⇒x0=2,y0=4,即P(2,4).(2)因为切线与直线2x-6y+5=0垂直,所以2x0·=-1⇒x0=-,即P.(3)因为切线与x轴成135°的倾斜角,所以k=-1,即2x0=-1⇒x0=-,即P-,.*【例4】设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11),求a,b 的值.[处理建议]利用切点坐标既满足曲线方程也满足切线方程来求解.[规范板书]解利用导数的定义可得f'(x)=3x2-6ax+3b,由于函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11),所以f(1)=-11,f'(1)=-12,解得a=1,b=-3.变式已知f(x)=ax4+bx2+c的图象过点(0,1),且在x=1处的切线方程是y=x-2,求a,b,c.[处理建议]利用导数的几何意义——函数在某点处的导数就等于在该点处的切线的斜率——来求解.[规范板书]解由题意有解得.二、课堂练习1.借助直尺,用割线逼近切线的方法作出下列曲线在点P处的切线:(第1题)解(第1题)2.质点沿x轴运动,设距离为x(m),时间为t(s),x=10+5t2,则当t0≤t≤t0+Δt时,质点的平均速度为10t0+5Δt(m/s);当t=t0时,质点的瞬时速度为10t0(m/s);当t0≤t≤t0+Δt时,质点的平均加速度为10(m/s2);当t=t0时,质点的瞬时加速度为10(m/s2).提示当t0≤t≤t0+Δt时,==10t0+5Δt(m/s);当t=t0时,质点的瞬时速度为10t0(m/s);当t0≤t≤t0+Δt时,质点的平均加速度为=10(m/s2);当t=t0时,质点的瞬时加速度为10(m/s2).3.已知曲线y=x3上过点(2,8)的切线方程为12x-ay-16=0,则实数a的值为1.提示将点(2,8)代入切线方程可得a=1.三、课堂小结1.曲线上一点处的切线的求法.2.运动物体的瞬时速度和瞬时加速度,学会用运动学的观点理解和解决实际问题.3.导数的定义及几何意义.。
1.1.2 瞬时变化率——导数导数定义求函数的导函数.1.瞬时速度(1)在物理学中,运动物体的位移与所用时间的比称为__________.(2)一般地,如果当Δt __________0时,运动物体位移s (t )的平均变化率s (t 0+Δt )-s (t 0)Δt无限趋近于一个______,那么这个______称为物体在t =t 0时的__________,也就是位移对于时间的____________.预习交流1做一做:如果质点A 按规律s =3t 2运动,则在t =3 s 时的瞬时速度为__________. 2.瞬时加速度一般地,如果当Δt __________时,运动物体速度v (t )的平均变化率v (t 0+Δt )-v (t 0)Δt无限趋近于一个_______,那么这个________称为物体在t =t 0时的_________,也就是速度对于时间的____________.3.导数(1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx无限趋近于一个______A ,则称f (x )在x =x 0处______,并称该______A 为函数f (x )在x =x 0处的______,记为______.(2)导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处切线的________. (3)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的________,记作________.预习交流2做一做:设函数f (x )可导,则当Δx →0时,f (1+Δx )-f (1)3Δx等于__________.预习交流3做一做:函数y =x +1x在x =1处的导数是__________.预习交流4利用导数求曲线切线方程的步骤有哪些?预习导引1.(1)平均速度 (2)无限趋近于 常数 常数 瞬时速度 瞬时变化率预习交流1:提示:s (3+Δt )=3(3+Δt )2=3[9+6Δt +(Δt )2]=27+18Δt +3(Δt )2.s (3)=3×32=27.Δs =s (3+Δt )-s (3)=18Δt +3(Δt )2, ∴Δs Δt =18+3Δt ,当Δt →0时,ΔsΔt→18. 2.无限趋近于0 常数 常数 瞬时加速度 瞬时变化率3.(1)常数 可导 常数 导数 f ′(x 0) (2)斜率 (3)导函数 f ′(x )预习交流2:提示:f (1+Δx )-f (1)3Δx =13·f (1+Δx )-f (1)Δx,当Δx →0时,f (1+Δx )-f (1)Δx =f ′(1),∴原式=13f ′(1).预习交流3:提示:∵函数y =f (x )=x +1x,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=(Δx )21+Δx.∴Δy Δx =Δx 1+Δx ,当Δx →0时,Δy Δx →0,即y =x +1x在x =1处的导数为0. 预习交流4:提示:利用导数的几何意义求曲线的切线方程的步骤: (1)求出函数y =f (x )在点x 0处的导数f ′(x 0);(2)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0); (3)将所得切线方程化为一般式.一、求瞬时速度一辆汽车按规律s =at 2+1做直线运动,当汽车在t =2 s 时的瞬时速度为12 m/s ,求a .思路分析:先根据瞬时速度的求法得到汽车在t =2 s 时的瞬时速度的表达式,再代入求出a 的值.1.一个物体的运动方程为s =1-t +t 2.其中s 的单位是m ,t 的单位是s ,那么物体在3 s 末的瞬时速度是__________.2.子弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a =5×105 m/s 2,子弹从枪口射出时所用的时间为t 0=1.6×10-3s .求子弹射出枪口时的瞬时速度.根据条件求瞬时速度的步骤:(1)探究非匀速直线运动的规律s =s (t );(2)由时间改变量Δt 确定路程改变量Δs =s (t 0+Δt )-s (t 0);(3)求平均速度v =ΔsΔt;(4)运用逼近思想求瞬时速度,当Δt →0时,ΔsΔt→v (常数).二、利用导数的定义求函数的导数已知f (x )=x 2-3.(1)求f (x )在x =2处的导数; (2)求f (x )在x =a 处的导数.思路分析:根据导数的定义进行求解.深刻理解概念是正确解题的关键.1.若函数f (x )=ax -2在x =3处的导数等于4,则a =__________.2.(1)求函数f (x )=1x +1在x =1处的导数;(2)求函数f (x )=2x 的导数.结合函数,先求出Δy =f (x 0+Δx )-f (x 0),再求ΔyΔx=f (x 0+Δx )-f (x 0)Δx ,当Δx →0时,求ΔyΔx 的值,即f ′(x 0).三、导数的几何意义已知y =2x 3上一点A (1,2),求点A 处的切线斜率.思路分析:为求得过点(1,2)的切线斜率,可以从经过点(1,2)的任意一条直线(割线)入手.1.抛物线y =14x 2在点Q (2,1)处的切线方程为__________.2.已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程.1.导数的几何意义是指:曲线y =f (x )在(x 0,y 0)点处的切线的斜率就是函数y =f (x )在x =x 0处的导数,而切线的斜率就是切线倾斜角的正切值.2.运用导数的几何意义解决曲线的切线问题时,一定要注意所给的点是否是在曲线上,若点在曲线上,则该点的导数值就是该点处的曲线的切线的斜率;若点不在曲线上,则该点的导数值不是切线的斜率.3.若所给的点不在曲线上,应另设切点,然后利用导数的几何意义建立关于所设切点横坐标的关系式进行求解.1.若一物体的运动方程为s =2-12t 2,则该物体在t =6时的瞬时速度为__________.2.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为__________. 3.函数f (x )=1-3x 在x =2处的导数为__________.4.一质点按规律s =2t 3运动,则t =2时的瞬时速度为__________.5.如图,函数y =f (x )的图象在点P 处的切线是l ,则f (2)+f ′(2)=__________.答案:活动与探究1:解:∵s =at 2+1,∴s (2+Δt )=a (2+Δt )2+1=4a +4a ·Δt +a ·(Δt )2+1.于是Δs =s (2+Δt )-s (2)=4a +4a ·Δt +a ·(Δt )2+1-(4a +1)=4a ·Δt +a ·(Δt )2,∴Δs Δt =4a ·Δt +a ·(Δt )2Δt=4a +a ·Δt . 当Δt →0时,ΔsΔt→4a ,依题意有4a =12,∴a =3. 迁移与应用:1.5 m/s 解析:s (3+Δt )=1-(3+Δt )+(3+Δt )2=(Δt )2+5Δt +7,所以s (3+Δt )-s (3)=(Δt )2+5Δt , 故s (3+Δt )-s (3)Δt=Δt +5,于是物体在3 s 末的瞬时速度,即Δt →0时,ΔsΔt→5(m/s).2.解:运动方程为s =12at 2.∵Δs =12a (t 0+Δt )2-12at 20=at 0·Δt +12a ·(Δt )2,∴Δs Δt =at 0+12a ·Δt ,∴Δt →0时,ΔsΔt→at 0. 由题意知a =5×105(m/s 2),t 0=1.6×10-3(s),故at 0=8×102=800(m/s).即子弹射出枪口时的瞬时速度为800 m/s.活动与探究2:解:(1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-3-(22-3)Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4.(2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2-3-(a 2-3)Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .迁移与应用:1.4 解析:由题意知f ′(3)=4,而f ′(3)=Δy Δx =a (3+Δx )-2-(3a -2)Δx=a ,当Δx →0时,ΔyΔx→a ,故a =4.2.解:(1)(导数定义法)∵Δy =f (1+Δx )-f (1)=12+Δx -12=-Δx 2(2+Δx ),∴ΔyΔx=-12(2+Δx ),从而Δx →0时,2+Δx →2,∴f (x )在x =1处的导数等于-14.(导函数的函数值法)∵Δy =1x +Δx +1-1x +1=-Δx (x +Δx +1)(x +1),∴ΔyΔx=-1(x +Δx +1)(x +1),从而Δx →0时,Δy Δx →-1(x +1)2,于是f ′(1)=-1(1+1)2=-14.(2)∵Δy =f (x +Δx )-f (x )=2x +Δx -2x ,∴Δy Δx =2x +Δx -2x Δx =(2x +Δx -2x )(x +Δx +x )Δx (x +Δx +x )=2x +Δx +x,从而Δx →0时,Δy Δx →1x.活动与探究3:解:设A (1,2),B (1+Δx,2(1+Δx )3),则割线AB 的斜率为k AB =2(1+Δx )3-2Δx =6+6Δx +2(Δx )2,当Δx 无限趋近于0时,k AB 无限趋近于常数6,从而曲线y =2x 3在点A (1,2)处的切线斜率为6.迁移与应用:1.x -y -1=0 解析:∵y =14x 2,Δy =14(2+Δx )2-14×22=Δx +14(Δx )2,Δy Δx=1+14Δx , ∴当Δx →0时,Δy Δx →1,即f ′(2)=1,由导数的几何意义得抛物线y =14x 2在点Q (2,1)处的切线的斜率为1.∴切线方程为y -1=x -2,即x -y -1=0.2.解:因为Δy Δx =3(1+Δx )2-(1+Δx )-(3×12-1)Δx=5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5.切线方程为y -2=5(x -1),即5x -y -3=0. 当堂检测1.-6 解析:Δs Δt =s (6+Δt )-s (6)Δt =2-12(6+Δt )2-(-16)Δt =-12Δt -6,∴当Δt →0时,ΔsΔt→-6.2.45° 解析:∵Δy Δx =12(1+Δx )2-2-12×1+2Δx =Δx +12(Δx )2Δx =1+12Δx ,当Δx无限趋近于0时,1+12Δx 无限趋近于1,∴曲线y =12x 2-2在点P ⎝⎛⎭⎪⎫1,-32处的切线斜率为1,∴倾斜角为45°.3.-3 解析:Δy =f (2+Δx )-f (2)=-3Δx ,Δy Δx =-3,则Δx 趋于0时,ΔyΔx=-3.∴f (x )在x =2处的导数为-3.4.24 解析:Δs =s (2+Δt )-s (2)=2(2+Δt )3-2×23=2×[8+6(Δt )2+12Δt +(Δt )3]-16=24Δt +12(Δt )2+2(Δt )3, ∴Δs Δt =24+12Δt +2(Δt )2,则当Δt →0时,Δs Δt →24. 5.98解析:由题图可知,直线l 的方程为9x +8y -36=0. 当x =2时,y =94,即f (2)=94.又切线斜率为-98,即f ′(2)=-98,∴f (2)+f ′(2)=98.欢迎您的下载,资料仅供参考!。
1.1.2 瞬时变化率——导数学习目标 1.理解切线的含义.2.理解瞬时速度与瞬时加速度.3.掌握瞬时变化率——导数的概念,会根据定义求一些简单函数在某点处的导数.知识点一 曲线上某一点处的切线如图,P n 的坐标为(x n ,f (x n ))(n =1,2,3,4,…),点P 的坐标为(x 0,y 0).思考1 当点P n →点P 时,试想割线PP n 如何变化?答案 当点P n 趋近于点P 时,割线PP n 趋近于确定的位置,即曲线上点P 处的切线位置. 思考2 割线PP n 的斜率是什么?它与切线PT 的斜率有何关系. 答案 割线PP n 的斜率k n =f (x n )-f (x 0)x n -x 0;当P n 无限趋近于P 时,k n 无限趋近于点P 处切线的斜率k .梳理 (1)设Q 为曲线C 上的不同于P 的一点,这时,直线PQ 称为曲线的割线.随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C .当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 称为曲线在点P 处的切线. (2)若P (x ,f (x )),过点P 的一条割线交曲线C 于另一点Q (x +Δx ,f (x +Δx )),则割线PQ 的斜率为k PQ =f (x +Δx )-f (x )Δx ,当Δx →0时,f (x +Δx )-f (x )Δx 无限趋近于点P (x ,f (x ))处的切线的斜率.知识点二 瞬时速度与瞬时加速度——瞬时变化率 1.平均速度在物理学中,运动物体的位移与所用时间的比称为平均速度. 2.瞬时速度一般地,如果当Δt 无限趋近于0时,运动物体位移S (t )的平均变化率S (t 0+Δt )-S (t 0)Δt无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,也就是位移对于时间的瞬时变化率. 3.瞬时加速度一般地,如果当Δt 无限趋近于0时,运动物体速度v (t )的平均变化率v (t 0+Δt )-v (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,也就是速度对于时间的瞬时变化率. 知识点三 导数 1.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx=f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0). 2.导数的几何意义导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 3.导函数(1)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).在不引起混淆时,导函数f ′(x )也简称为f (x )的导数.(2)f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.类型一 求曲线上某一点处的切线例1 已知曲线y =x +1x 上的一点A (2,52),用切线斜率定义求:(1)点A 处的切线的斜率; (2)点A 处的切线方程. 解 (1)∵Δy =f (2+Δx )-f (2)=2+Δx +12+Δx -(2+12)=-Δx 2(2+Δx )+Δx ,∴Δy Δx =-Δx 2Δx (2+Δx )+ΔxΔx =-12(2+Δx )+1. 当Δx 无限趋近于零时,Δy Δx 无限趋近于34,即点A 处的切线的斜率是34.(2)切线方程为y -52=34(x -2),即3x -4y +4=0.反思与感悟 根据曲线上一点处的切线的定义,要求曲线过某点的切线方程,只需求出切线的斜率,即在该点处,Δx 无限趋近于0时,ΔyΔx无限趋近的常数.跟踪训练1 (1)已知曲线y =2x 2+4x 在点P 处的切线的斜率为16,则点P 坐标为________. 答案 (3,30)解析 设点P 坐标为(x 0,y 0), 则f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=2(Δx )2+4x 0Δx +4Δx Δx=4x 0+4+2Δx .当Δx 无限趋近于0时,4x 0+4+2Δx 无限趋近于4x 0+4, 因此4x 0+4=16,即x 0=3, 所以y 0=2×32+4×3=18+12=30. 即点P 坐标为(3,30).(2)已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程. 解 设A (1,2),B (1+Δx,3(1+Δx )2-(1+Δx )), 则k AB =3(1+Δx )2-(1+Δx )-(3×12-1)Δx =5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5, 所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5. 切线方程为y -2=5(x -1),即5x -y -3=0. 类型二 求瞬时速度例2 某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 2+t +1表示,求物体在t =1 s 时的瞬时速度.解 在1到1+Δt 的时间内,物体的平均速度v =Δs Δt =s (1+Δt )-s (1)Δt=(1+Δt )2+(1+Δt )+1-(12+1+1)Δt=3+Δt ,∴当Δt 无限趋近于0时,v 无限趋近于3, ∴物体在t =1处的瞬时变化率为3. 即物体在t =1 s 时的瞬时速度为3 m/s. 引申探究1.若本例中的条件不变,试求物体的初速度.解 求物体的初速度,即求物体在t =0时的瞬时速度. ∵Δs Δt =s (0+Δt )-s (0)Δt=(0+Δt )2+(0+Δt )+1-1Δt=1+Δt ,∴当Δt →0时,1+Δt →1,∴物体在t =0时的瞬时变化率为1, 即物体的初速度为1 m/s.2.若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9 m/s. 解 设物体在t 0时刻的速度为9 m/s. 又Δs Δt =s (t 0+Δt )-s (t 0)Δt=(2t 0+1)+Δt .∴当Δt →0时,ΔsΔt →2t 0+1.则2t 0+1=9,∴t 0=4.则物体在4 s 时的瞬时速度为9 m/s.反思与感悟 (1)求瞬时速度的题目的常见错误是不能将物体的瞬时速度转化为函数的瞬时变化率.(2)求运动物体瞬时速度的三个步骤①求时间改变量Δt 和位移改变量Δs =s (t 0+Δt )-s (t 0). ②求平均速度v =Δs Δt. ③求瞬时速度,当Δt 无限趋近于0时,ΔsΔt无限趋近于的常数v 即为瞬时速度.跟踪训练2 一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.解 质点M 在t =2 s 时的瞬时速度即为函数在t =2 s 处的瞬时变化率. ∵质点M 在t =2 s 附近的平均变化率为 Δs Δt =s (2+Δt )-s (2)Δt =a (2+Δt )2-4a Δt =4a +a Δt , ∴当Δt →0时,ΔsΔt →4a =8,即a =2.类型三 求函数在某点处的导数 例3 已知f (x )=x 2-3. (1)求f (x )在x =2处的导数;(2)求f (x )在x =a 处的导数. 解 (1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-3-(22-3)Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4. (2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2-3-(a 2-3)Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .反思与感悟 求一个函数y =f (x )在x =x 0处的导数的步骤 (1)求函数值的改变量Δy =f (x 0+Δx )-f (x 0). (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)令Δx 无限趋近于0,求得导数.跟踪训练3 (1)设f (x )=ax +4,若f ′(1)=2,则a =________. 答案 2解析 ∵f (1+Δx )-f (1)Δx =a (1+Δx )+4-a -4Δx =a ,∴f ′(1)=a ,即a =2.(2)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第x h ,原油的温度(单位:℃)为f (x )=x 2-7x +15(0≤x ≤8).求函数y =f (x )在x =6处的导数f ′(6),并解释它的实际意义.解 当x 从6变到6+Δx 时,函数值从f (6)变到f (6+Δx ),函数值y 关于x 的平均变化率为 f (6+Δx )-f (6)Δx=(6+Δx )2-7(6+Δx )+15-(62-7×6+15)Δx=5Δx +(Δx )2Δx=5+Δx .当Δx →0时,平均变化率趋近于5,所以f ′(6)=5,导数f ′(6)=5表示当x =6时原油温度的瞬时变化率即原油温度的瞬时变化速度.也就是说,如果保持6 h 时温度的变化速度,每经过1 h 时间,原油温度将升高5 ℃.1.一个做直线运动的物体,其位移S 与时间t 的关系是S =3t -t 2,则此物体在t =2时的瞬时速度为________. 答案 -1解析 由于ΔS =3(2+Δt )-(2+Δt )2-(3×2-22) =3Δt -4Δt -(Δt )2=-Δt -(Δt )2, 所以ΔS Δt =-Δt -(Δt )2Δt=-1-Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于常数-1.故物体在t =2时的瞬时速度为-1.2.已知曲线y =f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为________. 答案 8解析 因为Δy Δx =f (2+Δx )-f (2)Δx=2(2+Δx )2-8Δx=8+2Δx ,当Δx →0时,8+2Δx 趋近于8.即k =8. 3.函数y =x +1x 在x =1处的导数是________.答案 0解析 ∵函数y =f (x )=x +1x ,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=(Δx )21+Δx ,∴Δy Δx =Δx 1+Δx ,当Δx →0时,Δy Δx→0, 即y =x +1x在x =1处的导数为0.4.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则f ′(x 0)的值为________. 答案 a解析 由导数定义,得f (x 0+Δx )-f (x 0)Δx=a Δx +b (Δx )2Δx=a +b Δx ,故当Δx →0时,其值趋近于a ,故f ′(x 0)=a .5.如果一个物体的运动方程S (t )=⎩⎪⎨⎪⎧t 2+2,0≤t <3,29+3(t -3)2,t ≥3,试求该物体在t =1和t =4时的瞬时速度. 解 当t =1时,S (t )=t 2+2,则ΔS Δt =S (1+Δt )-S (1)Δt =(1+Δt )2+2-3Δt =2+Δt , 当Δt 无限趋近于0时,2+Δt 无限趋近于2, 所以v (1)=2; ∵t =4∈[3,+∞),∴S (t )=29+3(t -3)2=3t 2-18t +56,∴ΔS Δt =3(4+Δt )2-18(4+Δt )+56-3×42+18×4-56Δt =3(Δt )2+6Δt Δt=3Δt +6,∴当Δt 无限趋近于0时,3Δt +6→6,即ΔSΔt →6,所以v (4)=6.1.平均变化率和瞬时变化率的关系平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ,当Δx 无限趋近于0时,它所趋近于的一个常数就是函数在x =x 0处的瞬时变化率.即有:Δx 无限趋近于0是指自变量间隔Δx 越来越小,能达到任意小的间隔,但始终不能为0.即对于瞬时变化率,我们通过减小自变量的改变量以致无限趋近于零的方式,实现用割线斜率“逼近”切线斜率,用平均速度“逼近”瞬时速度.一般地,可以用平均变化率“逼近”瞬时变化率.2.求切线的斜率、瞬时速度和瞬时加速度的解题步骤(1)计算Δy .(2)求Δy Δx .(3)当Δx →0时,ΔyΔx 无限趋近于哪个常数.课时作业一、填空题1.函数f (x )=x 2在x =3处的导数等于________. 答案 6解析 Δy Δx =(3+Δx )2-32Δx =6+Δx ,当Δx →0时,得f ′(3)=6.2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则a =________,b =________. 答案 1 1解析 Δy Δx =(0+Δx )2+a (0+Δx )+b -b Δx =a +Δx ,当Δx →0时,Δy Δx→a .∵切线x -y +1=0的斜率为1, ∴a =1.∵点(0,b )在直线x -y +1=0上,∴b =1.3.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为________. 答案 45°解析 ∵y =12x 2-2,∴Δy Δx =12(x +Δx )2-2-⎝⎛⎭⎫12x 2-2Δx =12(Δx )2+x ·Δx Δx=x +12Δx .故当Δx →0时,其值无限趋近于x ,∴y ′|x =1=1.∴点P ⎝⎛⎭⎫1,-32处切线的斜率为1,则切线的倾斜角为45°. 4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 答案 1解析 Δy Δx =a (1+Δx )2-aΔx =2a +a Δx ,当Δx →0时,ΔyΔx →2a ,∴可令2a =2,∴a =1.5.已知曲线y =13x 3上一点P (2,83),则该曲线在点P 处切线的斜率为________.答案4解析 由y =13x 3,得Δy Δx =13(x +Δx )3-13x 3Δx=13[3x 2+3x ·Δx +(Δx )2], 当Δx →0时,其值无限趋近于x 2. 故y ′=x 2,y ′|x =2=22=4,结合导数的几何意义知,曲线在点P 处切线的斜率为4. 6.在曲线y =x 2上切线倾斜角为π4的点的坐标为________.答案 (12,14)解析 ∵Δy Δx =(x +Δx )2-x 2Δx =2x +Δx ,当Δx →0时,其值趋近于2x . ∴令2x =tan π4=1,得x =12,∴y =⎝⎛⎭⎫122=14,所求点的坐标为⎝⎛⎭⎫12,14. 7.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 答案 (3,30)解析 设点P (x 0,2x 20+4x 0), 则Δy Δx =f (x 0+Δx )-f (x 0)Δx=2(Δx )2+4x 0·Δx +4Δx Δx=2Δx +4x 0+4,当Δx →0时,其值无限趋近于4+4x 0. 令4x 0+4=16,得x 0=3,∴P (3,30).8.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.答案 2解析 ∵点P 在切线上,∴f (5)=-5+8=3,f ′(5)=k =-1, ∴f (5)+f ′(5)=3-1=2.9.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.答案 3解析 由在点M 处的切线方程是y =12x +2,得f (1)=12×1+2=52,f ′(1)=12.∴f (1)+f ′(1)=52+12=3.10.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________. 答案 4解析 设在点P 处切线的斜率为k ,∵Δy Δx =(-2+Δx )2-(-2+Δx )+c -(6+c )Δx =-5+Δx , ∴当Δx →0时,ΔyΔx →-5,∴k =-5,∴切线方程为y =-5x .∴点P 的纵坐标为y =-5×(-2)=10, 将P (-2,10)代入y =x 2-x +c ,得c =4. 二、解答题11.已知质点运动方程是s (t )=12gt 2+2t -1(g 是重力加速度,常量),求质点在t =4 s 时的瞬时速度(其中s 的单位是m ,t 的单位是s). 解Δs Δt =s (4+Δt )-s (4)Δt=[12g (4+Δt )2+2(4+Δt )-1]-(12g ·42+2×4-1)Δt=12g (Δt )2+4g ·Δt +2Δt Δt=12g Δt +4g +2. ∵当Δt →0时,ΔsΔt→4g +2,∴S ′(4)=4g +2,即v (4)=4g +2,∴质点在t =4 s 时的瞬时速度为(4g +2) m/s.12.求曲线y =f (x )=x 3-x +3在点(1,3)处的切线方程.解 因为点(1,3)在曲线上,且f (x )在x =1处可导,Δy Δx =(1+Δx )3-(1+Δx )+3-(1-1+3)Δx=(Δx )3+3(Δx )2+2Δx Δx=(Δx )2+3Δx +2,当Δx →0时,(Δx )2+3Δx +2→2,故f ′(1)=2.故所求切线方程为y -3=2(x -1),即2x -y +1=0.13.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求直线l 1,l 2与x 轴所围成的三角形的面积.解 (1)Δy Δx =(1+Δx )2+(1+Δx )-2-(12+1-2)Δx=Δx +3,当Δx →0时,Δy Δx→3, ∴直线l 1的斜率k 1=3,∴直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点P (x 0,x 20+x 0-2),则直线l 2的方程为y -(x 20+x 0-2)=(2x 0+1)(x -x 0).∵l 1⊥l 2,∴3(2x 0+1)=-1,解得x 0=-23. ∴直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎨⎧ x =16,y =-52.又∵直线l 1,l 2与x 轴的交点坐标分别为(1,0),(-223,0), ∴所求三角形的面积为S =12×|-52|×(1+223)=12512.三、探究与拓展14.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为________.答案 ⎣⎡⎦⎤-1,-12 解析 ∵Δy Δx =(x +Δx )2+2(x +Δx )+3-(x 2+2x +3)Δx=(2x +2)·Δx +(Δx )2Δx=Δx +2x +2. 故当Δx →0时,其值无限趋近于2x +2.∴可设点P 横坐标为x 0,则曲线C 在点P 处的切线斜率为2x 0+2.由已知,得0≤2x 0+2≤1,∴-1≤x 0≤-12,∴点P 横坐标的取值范围为⎣⎡⎦⎤-1,-12. 15.已知抛物线y =2x 2+1分别满足下列条件,求出切点的坐标.(1)切线的倾斜角为45°;(2)切线平行于直线4x -y -2=0.解 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2,∴Δy Δx=4x 0+2Δx , 当Δx →0时,Δy Δx→4x 0,即f ′(x 0)=4x 0. (1)∵抛物线的切线的倾斜角为45°,∴斜率为tan 45°=1,即f ′(x 0)=4x 0=1,解得x 0=14, ∴切点坐标为(14,98). (2)∵抛物线的切线平行于直线4x -y -2=0,∴k =4,即f ′(x 0)=4x 0=4,解得x 0=1,∴切点坐标为(1,3).。
江苏省响水中学高中数学 第3章《导数及其应用》3.1.2瞬时变化率 导数(1)导学案 苏教版选修1-1学习目标:1.理解并掌握曲线在某一点处的切线的概念;2.理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;3.理解切线概念的实际背景,培养学生解决实际问题的能力和培养学生转 化问题的能力及数形结合思想.教学重点:理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法. 教学难点:用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率.课前预习:1.如何精确地刻画曲线上某一点处的变化趋势呢?2.如图所示,直线12l l ,为经过曲线上一点P 的两条直线. 试判断哪一条直线在点P 附近更加逼近曲线; 在点P 附近能作出一条比21,l l 更加逼近曲线的直线3l 吗? 在点P 附近能作出一条比321,,l l l 更加逼近曲线的直线吗?3. 切线定义:(割线逼近切线法)4. 求曲线)(x f y=上一点处的切线斜率的一般步骤:(1)______________________________(2)______________________________(3)______________________________课堂探究:1.试求2)(x x f =在点(2,4)处的切线斜率.课堂检测:1.已知2)(xxf=,求曲线)(xfy=在1-=x处的切线斜率和切线方程;2.已知1)(-=xxf,求曲线)(xfy=在1-=x处的切线斜率和切线方程;。
§1.1.2瞬时变化率(2)(预学案) 学习目标 1. 掌握利用定义求函数的导(函)数的基本步骤;
2. 会用定义求解函数的切线方程.
课前准备
(预习教材P11 ~ P14,完成以下内容并找出疑惑之处)
一、知识梳理、双基再现
1.导数的概念:
2.导数的几何意义:
二、小试身手、轻松过关
1. 求下列函数在相应位置的导数
(1)1)(2
+=x x f ,2=x (2)12)(-=x x f ,2=x (3)3)(=x f ,2=x
2. P14----练习2,5.
三、基础训练、锋芒初显
1. 函数)(x f 满足2)1('=f ,则当x 无限趋近于0时, (1)
=-+x
f x f 2)1()1( (2)=-+x f x f )1()21( 2.曲线221y x =+在点(1,3)的切线斜率为 ,切线方程为
3.已知函数x x f =
)(,求)(x f 在2=x 处的切线。
4.求曲线4y x =在点(1,4)P 处切线的方程。
四、举一反三、能力拓展
1.设f(x)在x=x 0处可导
(1)x x f x x f ∆-∆+)
()4(00无限趋近于1,则)(0x f '=___________
(2)x x f x x f ∆-∆-)
()4(00无限趋近于1,则)(0x f '=________________
(3)当△x 无限趋近于0,x x x f x x f ∆∆--∆+)
2()2(00所对应的常数与)(0x f '的
关系。
2. P17---习题10,11,12.。
第43课时 瞬时变化率——导数(1)一、激趣导学如何精确地刻画曲线上某一点处的变化趋势呢?2.探究活动.如图所示,直线12l l ,为经过曲线上一点P 的两条直线.(1) 试判断哪一条直线在点P 附近更加逼近曲线;(2) 在点P 附近能作出一条比21,l l 更加逼近曲线的直线3l 吗?(3) 在点P 附近能作出一条比321,,l l l 更加逼近曲线的直线吗?二、重点讲解切线定义:_____________________________________________三、设疑讨论思考: P 为已知曲线C 上的一点,如何求出点P 处的切线方程? 四、典题拓展例1 试求2)(x x f =在点(2,4)处的切线斜率.解法一解法二练习 试求1)(2+=x x f 在x =1处的切线斜率.五、要点小结求曲线)(x f y =上一点处的切线斜率的一般步骤:(1)找到定点P 的坐标,设出动点Q 的坐标;(2)求出割线PQ 的斜率;(3)当∞→∆x 时,割线逼近切线,那么割线斜率逼近切线斜率.思考:如上图,P 为已知曲线C 上的一点,如何求出点P 处的切线方程? 变式训练:1.已知2)(x x f =,求曲线)(x f y =在1-=x 处的切线斜率和切线方程;2.已知1)(-=x x f ,求曲线)(x f y =在1-=x 处的切线斜率和切线方程;3.已知21)(x x f -=,求曲线)(x f y =在21=x 处的切线斜率和切线方程.六、巩固训练1、若曲线2y x =在点P 处的切线的斜率为3,则点P 的坐标为____________2、曲线31y x x =++在点(1,3)处的切线方程为____________________.3、已知x x f =)(,求曲线)(x f y =在21=x 处的切线斜率和切线方程.4、确定常数b c 的值,使得2y x bx c =++与直线2y x =在2x =处相切5.在曲线2x y =上过哪一点的切线,(1)平行于直线54-=x y ;(2)垂直于直线0562=+-y x ;(3)与x 轴成 135的倾斜角;(4)求过点R (1,-3)与曲线相切的直线。
2019-2020学年高中数学 瞬时变化率导学案 新人教A 版选修1-1 学习目标:1、认清平均变化率与瞬时变化率的区别和联系.
2、理解并掌握利用“割线逼近切线”的方法求切线斜率.高考
3、掌握在物理学中,瞬时变化率的应用:瞬时速度和瞬时加速度.
重点、难点:理解并掌握利用“割线逼近切线”的方法求切线斜率.
自主学习
1、)(x f 从1x 到2x 的平均变化率是
2、)(x f 在0x x =处的瞬时变化率是
合作探究
1、圆面积A 和直径d 的关系由29d A π=
表示,当直径10=d 时,面积关于直径的瞬时变化
率是多少?
2、设一辆轿车在公路上做加速直线运动,假设t 秒时的速度为3)(2+=t t v ,求0t t =秒时轿车的加速度.
3、物体作直线运动的方程为t t t s s 53)(2
-==
(1)求物体在2秒到4秒时的平均速度;
(2)求物体在2秒时的瞬时速度;
(3)求物体在0t 秒时的瞬时速度.
练习反馈
1、一质点的运动方程为102+=t s (位移单位:米,时间单位:秒)试求该质点在3=t 秒的瞬时速度.
2、自由落体运动的位移)(m S 与时间)(s t 的关系为22
1gt S =
(g 为常数) (1)求0t t =秒时的瞬时速度.
(2)分别求0=t 、1、2秒时的瞬时速度.
3、某个物体走过的路程s (单位:m )是时间t (单位:s )的函数:s=t 2—1,通过平均速度估计物体在下列各时刻的瞬时速度:
(1)x=1 (2)x=—1 (3)x=4
4、通过平均变化率估计函数y=x
1+2在下列各点的瞬时变化率: (1)x=—1 (2)x=3 (3)x=4。
1.1.2瞬时变化率——导数(二)[学习目标] 1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.知识点一曲线的切线如图所示,当点P n沿着曲线y=f(x)无限趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.(1)曲线y=f(x)在某点处的切线与该点的位置有关;(2)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.思考有同学认为曲线y=f(x)在点P(x0,y0)处的切线l与曲线y=f(x)只有一个交点,你认为正确吗?答案不正确.曲线y=f(x)在点P(x0,y0)处的切线l与曲线y=f(x)的交点个数不一定只有一个,如图所示.知识点二导数的几何意义函数y=f(x)在点x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.思考(1)曲线的割线与切线有什么关系?(2)曲线在某点处的切线与在该点处的导数有何关系?答案(1)曲线的切线是由割线绕一点转动,当割线与曲线的另一交点无限接近这一点时趋于的直线.曲线的切线并不一定与曲线有一个交点.(2)函数f(x)在x0处有导数,则在该点处函数f(x)表示的曲线必有切线,且在该点处的导数就是该切线的斜率.函数f(x)表示的曲线在点(x0,f(x0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x在x=0处有切线,但不可导.题型一 求曲线的切线方程1.求曲线在某点处的切线方程例1 求曲线y =f (x )=x 3-x +3在点(1,3)处的切线方程. 解 因为点(1,3)在曲线上,且f (x )在x =1处可导,因为Δy Δx =(1+Δx )3-(1+Δx )+3-(1-1+3)Δx=(Δx )3+3(Δx )2+2Δx Δx=(Δx )2+3Δx +2,当Δx →0时,(Δx )2+3Δx +2→2,故f ′(1)=2. 故所求切线方程为y -3=2(x -1), 即2x -y +1=0.反思与感悟 若求曲线y =f (x )在点P (x 0,y 0)处的切线方程,其切线只有一条,点P (x 0,y 0)在曲线y =f (x )上,且是切点,其切线方程为y -y 0=f ′(x 0)(x -x 0). 跟踪训练1 (1)曲线f (x )=13x 3-x 2+5在x =1处切线的倾斜角为________.(2)曲线y =f (x )=x 3在点P 处切线斜率为3,则点P 的坐标为____________. 答案 (1)34π (2)(-1,-1)或(1,1)解析 (1)设切线的倾斜角为α, ∵Δy Δx =f (x 0+Δx )-f (x 0)Δx =f (1+Δx )-f (1)Δx=13(1+Δx )3-(1+Δx )2+5-(13-1+5)Δx=13(Δx )3-Δx Δx=13(Δx )2-1. 当Δx →0时,13(Δx )2-1→-1,由导数几何意义得tan α=-1. ∵α∈[0,π), ∴α=34π.∴切线的倾斜角为34π.(2)设点P 的坐标为(x 0,x 30), ∵f (x 0+Δx )-f (x 0)Δx=3x 20Δx +3x 0(Δx )2+(Δx )3Δx=3x 20+3x 0Δx +(Δx )2.∵当Δx →0时,3x 20+3x 0·Δx +(Δx )2→3x 20.∴3x 20=3,解得x 0=±1.∴点P 的坐标是(1,1)或(-1,-1). 2.求曲线过某点的切线方程例2 求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解 ∵Δy Δx =2(x +Δx )-(x +Δx )3-2x +x 3Δx=2-3x 2-3x Δx -(Δx )2, 当Δx →0时,其值趋近于2-3x 2. 设切点的坐标为(x 0,2x 0-x 30),∴切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0).又∵切线过点(-1,-2),∴-2-2x 0+x 30=(2-3x 20)(-1-x 0), 即2x 30+3x 20=0,∴x 0=0或x 0=-32.∴切点的坐标为(0,0)或(-32,38).当切点为(0,0)时,切线斜率为2,切线方程为y =2x ;当切点为(-32,38)时,切线斜率为-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线相切的直线方程为y =2x 或19x +4y +27=0.反思与感悟 若题中所给点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程. 跟踪训练2 求过点P (3,5)且与曲线y =x 2相切的直线方程.解 由题意知Δy Δx =(x +Δx )2-x2Δx.当Δx →0时,其值趋近于2x . 设所求切线的切点为A (x 0,y 0). ∵点A 在曲线y =x 2上, ∴y 0=x 20. 又∵A 是切点,∴过点A 的切线的斜率002.x x y'|x == ∵所求切线过P (3,5)和A (x 0,y 0)两点, ∴其斜率为y 0-5x 0-3=x 20-5x 0-3.∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25).当切点为(1,1)时,切线的斜率为k 1=2x 0=2; 当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即2x -y -1=0和10x -y -25=0. 题型二 求导函数例3 求函数f (x )=x 2+1的导函数. 解 ∵Δy =f (x +Δx )-f (x ) =(x +Δx )2+1-x 2+1=2x Δx +(Δx )2(x +Δx )2+1+x 2+1,∴Δy Δx=2x +Δx (x +Δx )2+1+x 2+1,当Δx →0时,2x +Δx (x +Δx )2+1+x 2+1→xx 2+1,故f ′(x )=xx 2+1.反思与感悟 求解f ′(x )时,结合导数的定义,首先计算Δy =f (x +Δx )-f (x ).然后,再求解ΔyΔx ,最后得到f ′(x ).跟踪训练3 已知函数f (x )=x 2-1,求f ′(x )及f ′(-1). 解 因Δy =f (x +Δx )-f (x ) =(x +Δx )2-1-(x 2-1) =2Δx ·x +(Δx )2,Δy Δx =2Δx ·x +(Δx )2Δx=2x +Δx , 故当Δx →0时,其值趋近于2x . 得f ′(x )=2x ,f ′(-1)=-2. 题型三 导数几何意义的综合应用例4 设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.解 ∵Δy =f (x +Δx )-f (x )=(x +Δx )3+a (x +Δx )2-9(x +Δx )-1-(x 3+ax 2-9x -1)=(3x 2+2ax-9)Δx +(3x +a )(Δx )2+(Δx )3, ∴ΔyΔx=3x 2+2ax -9+(3x +a )Δx +(Δx )2, ∴当Δx →0时,Δy Δx →3x 2+2ax -9=3(x +a 3)2-9-a 23≥-9-a 23.由题意知f ′(x )最小值是-12, ∴-9-a 23=-12,a 2=9,∵a <0,∴a =-3.反思与感悟 与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.跟踪训练4 (1)已知函数f (x )在区间[0,3]上的图象如图所示,记k 1=f ′(1),k 2=f ′(2),k 3=f (2)-f (1),则k 1,k 2,k 3之间的大小关系为______________.(请用“>”连接)(2)曲线y =1x 和y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积是__________.答案 (1)k 1>k 3>k 2 (2)34解析 (1)结合导数的几何意义知,k 1就是曲线在点A 处切线的斜率,k 2则为在点B 处切线的斜率,而k 3则为割线AB 的斜率,由图易知它们的大小关系. (2)联立⎩⎪⎨⎪⎧y =1x ,y =x 2,解得⎩⎪⎨⎪⎧x =1,y =1,故交点坐标为(1,1).曲线y =1x 在点(1,1)处切线方程为l 1:x +y -2=0,曲线y =x 2在点(1,1)处切线方程为l 2:2x -y -1=0. 从而得S =12×⎪⎪⎪⎪2-12×1=34. 例5 已知曲线y =f (x )=x 3上一点Q (1,1),求过点Q 的切线方程.错解 因y ′=3x 2,f ′(1)=3. 故切线方程为3x -y -2=0.错因分析 上述求解过程中,忽略了当点Q 不是切点这一情形,导致漏解. 正解 当Q (1,1)为切点时,可求得切线方程为y =3x -2. 当Q (1,1)不是切点时,设切点为P (x 0,x 30), 则由导数的定义,在x =x 0处,y ′=3x 20,所以切线方程为y -x 30=3x 20(x -x 0), 将点(1,1)代入,得1-x 30=3x 20(1-x 0), 即2x 30-3x 20+1=0,所以(x 0-1)2·(2x 0+1)=0, 所以x 0=-12,或x 0=1(舍),故切点为⎝⎛⎭⎫-12,-18, 故切线方程为y =34x +14.综上,所求切线的方程为3x -y -2=0或3x -4y +1=0.防范措施 解题前,养成认真审题的习惯,其次,弄清“在某点处的切线”与“过某点的切线”,点Q (1,1)尽管在所给曲线上,但它可能是切点,也可能不是切点.1.下列说法中正确的有________.①和曲线只有一个公共点的直线是曲线的切线; ②和曲线有两个公共点的直线一定不是曲线的切线; ③曲线的切线与曲线不可能有无数个公共点; ④曲线的切线与曲线有可能有无数个公共点. 答案 ④解析 y =sin x ,x ∈R 在点(π2,1)处的切线与y =sin x 有无数个公共点.2.已知曲线y =f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为________. 答案 8解析 因为Δy Δx =f (2+Δx )-f (2)Δx=2(2+Δx )2-8Δx =8+2Δx ,当Δx →0时,其值趋近于8.即k =8.3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则a =________,b =________. 答案 1 1解析 由题意,知k =y ′|x =0=1,∴a =1. 又(0,b )在切线上,∴b =1.4.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为________. 答案 45°解析 ∵y =12x 2-2,∴Δy Δx =12(x +Δx )2-2-⎝⎛⎭⎫12x 2-2Δx =12(Δx )2+x ·Δx Δx=x +12Δx .故当Δx →0时,其值趋近于x ,∴y ′|x =1=1.∴点P ⎝⎛⎭⎫1,-32处切线的斜率为1,则切线的倾斜角为45°. 5.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________. 答案 (3,30)解析 设点P (x 0,2x 20+4x 0), 则Δy Δx =f (x 0+Δx )-f (x 0)Δx =2(Δx )2+4x 0·Δx +4Δx Δx=2Δx +4x 0+4,当Δx →0时,其值趋近于4+4x 0.令4x0+4=16,得x0=3,∴P(3,30).1.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即f(x0+Δx)-f(x0)Δx→f′(x0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f(x)在点x0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f′(x0)是其导函数y=f′(x)在x=x0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.。
瞬时变化率—导数教学目的:知识与技能:掌握用极限给瞬时速度下的精确的定义.过程与方法:会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 情感、态度与价值观:理解足够小、足够短的含义教学重点:知道了物体的运动规律,用极限来定义物体的瞬时速度,学会求物体的瞬时速度.教学难点:理解物体的瞬时速度的意义教具准备:与教材内容相关的资料。
教学设想:提供一个舞台, 让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力。
教学过程:学生探究过程: 我们物理中学习直线运动的速度时,已经学习了物体的瞬时速度的有关知识,现在我们从数学的角度重新来认识一下瞬时速度一、复习引入:1.曲线的切线如图,设曲线c 是函数()y f x 的图象,点00(,)P x y 是曲线 c 上一点作割线PQ 当点Q 沿着曲线c 无限地趋近于点P ,割线PQ 无限地趋近于某一极限位置PT 们就把极限位置上的直线PT ,叫做曲线c 在点P 处的切线y=f(x)β∆x ∆yQM Px O y00(,)P x y 处的切线斜率的方法:因为曲线c 是给定的,根据解析几何中直线的点斜是方程的知识,只要求出切设割线PQ 的倾斜角为β,切线PT 的倾斜角为α,既然割线PQ 的极限位置上的直线PT 是切线,所以割线PQ 斜率的极限就是切线PQ 的斜率tan α,即tan α=0lim →∆x =∆∆x y 0lim →∆x 0x∆ 二、讲解新课:1.瞬时速度定义:运动物体经过某一时刻(某一位置)的速度,叫做瞬时速度.2. 确定物体在某一点A 处的瞬时速度的方法:要确定物体在某一点A 处的瞬时速度,从A 点起取一小段位移AA 1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表示物体经过A 点的瞬时速度.当位移足够小时,物体在这段时间内运动可认为是匀速的,所得的平均速度就等于物体经过A 点的瞬时速度了.我们现在已经了解了一些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律用函数表示为s =s (t ),也叫做物体的运动方程或位移公式,现在有两个时刻t 0,t 0+Δt ,现在问从t 0到t 0+Δt 这段时间内,物体的位移、平均速度各是:位移为Δs =s (t 0+Δt )-s (t 0)(Δt 称时间增量) 平均速度tt s t t s t s v ∆-∆+=∆∆=)()(00 根据对瞬时速度的直观描述,当位移足够小,现在位移由时间t 来表示,也就是说时间足够短时,平均速度就等于瞬时速度.现在是从t 0到t 0+Δt ,这段时间是Δt . 时间Δt 足够短,就是Δt 无限趋近于0. 当Δt →0时,平均速度就越接近于瞬时速度,用极限表示瞬时速度 瞬时速度tt s t t s v v t t ∆-∆+==→∆→∆)()(lim lim 0000 所以当Δt →0时,平均速度的极限就是瞬时速度三、讲解X 例:例1物体自由落体的运动方程s =s (t )=21gt 2,其中位移单位m ,时间单位s ,g =9.8 m/s 2. 求t =3这一时段的速度. 解:取一小段时间[3,3+Δt ],位置改变量Δs =21g (3+Δt )2-21g ·32=2g (6+Δt )Δt ,平均速度21=∆∆=t s v g (6+Δt )瞬时速度m/s 4.293)(21lim lim 00==∆+==→∆→∆g t t g v v t t 由匀变速直线运动的速度公式得v =v 0+at =gt =g ·3=3g =29.4 m/s例2已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t =2,Δt =0.01时,求ts ∆∆.(2)当t =2,Δt =0.001时,求ts ∆∆. (3)求质点M 在t =2时的瞬时速度.分析:Δs 即位移的改变量,Δt 即时间的改变量,ts ∆∆即平均速度,当Δt 越小,求出的ts ∆∆越接近某时刻的速度. 解:∵tt t t t t s t t s t s ∆+-+∆+=∆-∆+=∆∆)32(3)(2)()(22=4t +2Δt ∴(1)当t =2,Δt =0.01时,ts ∆∆=4×2+2×0.01=8.02 cm/s (2)当t =2,Δt =0.001时,ts ∆∆=4×2+2×0.001=8.002 cm/s (3)v =00lim lim →∆→∆=∆∆t t t s (4t +2Δt )=4t =4×2=8 cm/s 四、巩固练习:1.一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0lim t s t∆→∆∆为( )A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度; C.当时间为t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均2.一球沿一斜面自由滚下,其运动方程是s =s (t )=t 2(位移单位:m ,时间单位:s),求小球在t =5时的瞬时速度解:瞬时速度v =2200(5)(5)(5)5lim lim t t s t s t t t∆→∆→+∆-+∆-=∆∆lim t ∆→=(10+Δt )=10 m/s. ∴瞬时速度v =2t =2×5=10 m/s.M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),求质点M 在t =2时的瞬时速度.解:瞬时速度v =tt t s t s t t ∆+⋅-+∆+=∆-∆+→∆→∆)322(3)2(2lim )2()2(lim 2200 =0lim →∆t (8+2Δt )=8 cm/s. 点评:求瞬时速度,也就转化为求极限,瞬时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容五、教学反思 :这节课主要学习了物体运动的瞬时速度的概念,它是用平均速度的极限来定义的,主要记住公式瞬时速度v =tt ∆→∆lim。
1.通过割线逼近切线的过程,以割线的斜率逼近切线的斜率.
2.初步掌握曲线上某点处切线斜率的方法.
重难点:求切线的斜率及某点处的切线方程.
(预习教材P8 ~ P9,完成以下内容并找出疑惑之处)
一、知识梳理、双基再现
1.割线的概念:
2.曲线某点P处切线的概念:
3. 切线斜率:
二、小试身手、轻松过关
1. P10----练习1
2. P11----练习2
3. P11----练习3
三、基础训练、锋芒初显
1.在曲线y= x2上哪一点的切线斜率为4.
2. P11----练习4
四、举一反三、能力拓展
1.在曲线y= x2上哪一点的切线平行于直线y=4x-5.
2.在曲线y= x2上哪一点的切线垂直于直线y=4x-5.。
瞬时变化率—导数 NO.2【教学目标】(1)理解并掌握曲线在某一点处的切线的概念(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度(3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处 的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想【重点难点】导数概念的理解,以及运用导数解决问题的能力。
一、复习引入1、什么叫做平均变化率;2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率3、如何精确地刻画曲线上某一点处的变化趋势呢?二、新课讲解设曲线C 上一点P(x ,f(x)),过点P 的一条割线交曲线C 于另一点Q (x x +∆,()f x x +∆)则割线PQ 的斜率为()()()()()PQ f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆ 1、曲线上一点处的切线斜率当点Q 沿曲线C 向点P 运动,并无限靠近点P 时,割线PQ 逼近点P 的切线l,从而割线的斜率逼近切线l 的斜率,即当△x 无限趋近于0时,()()f x x f x x+∆-∆无限趋近点P(x ,f(x))处的切线的斜率。
()()f x x f x k x+∆-=∆,当△x 无限趋近于0时,k 值即为(x ,f(x))处切线的斜率。
2.瞬时速度与瞬时加速度(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度(2)位移的平均变化率:tt s t t s ∆-∆+)()(00 (3)瞬时速度:当t ∆无限趋近于0 时,运动物体的位移S( t)的平均变化率tt s t t s ∆-∆+)()(00无限趋近于一个常数,这个常数称为物体在t=t 0时的瞬时速度,也就是位移对时间的瞬时变化率求瞬时速度的步骤:1.先求时间改变量t ∆和位置改变量)()(00t s t t s s -∆+=∆2.再求平均速度ts v ∆∆= 3.后求瞬时速度:当t ∆无限趋近于0,t s ∆∆无限趋近于常数v 为瞬时速度 (4)速度的平均变化率:tt v t t v ∆-∆+)()(00 (5)瞬时加速度:当t ∆无限趋近于0 时,t t v t t v ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时加速度注:瞬时加速度是速度对于时间的瞬时变化率3.导数:函数在某点的瞬时变化率)0()()(00→∆→∆-∆+=∆∆x A xx f x x f x y 记作)(0x f ' 三、数学应用例1、已知f(x)=x 2,求曲线在x=2处的切线的斜率。
1.1.2 瞬时变化率——导数学案(苏教版高中数学选修2-2)112瞬时变化率瞬时变化率导数导数学习目标1.了解切线的含义.2.理解瞬时速度与瞬时加速度.3.掌握瞬时变化率导数的概念,会根据定义求一些简单函数在某点处的导数知识点一曲线上某一点处的切线如图,Pn的坐标为xn,fxnn1,2,3,4,,点P的坐标为x0,y0思考1当点Pn点P时,试想割线PPn如何变化答案当点Pn趋近于点P时,割线PPn趋近于确定的位置,即曲线上点P处的切线位置思考2割线PPn的斜率是什么它与切线PT的斜率有何关系答案割线PPn的斜率knfxnfx0xnx0;当Pn无限趋近于P时,kn无限趋近于点P处切线的斜率k.梳理1设Q为曲线C上的不同于P的一点,这时,直线PQ称为曲线的割线随着点Q沿曲线C向点P运动,割线PQ在点P 附近越来越逼近曲线C.当点Q无限逼近点P时,直线PQ最终就成为在点P处最逼近曲线的直线l,这条直线l称为曲线在点P处的切线2若Px,fx,过点P的一条割线交曲线C于另一点Qxx,fxx,则割线PQ的斜率为kPQfxxfxx,当x0时,fxxfxx无限趋近于点Px,fx处的切线的斜率知识点二瞬时速度与瞬时加速度瞬时变化率1平均速度在物理学中,运动物体的位移与所用时间的比称为平均速度2瞬时速度一般地,如果当t无限趋近于0时,运动物体位移St的平均变化率St0tSt0t无限趋近于一个常数,那么这个常数称为物体在tt0时的瞬时速度,也就是位移对于时间的瞬时变化率3瞬时加速度一般地,如果当t无限趋近于0时,运动物体速度vt的平均变化率vt0tvt0t无限趋近于一个常数,那么这个常数称为物体在tt0时的瞬时加速度,也就是速度对于时间的瞬时变化率知识点三导数1导数设函数yfx在区间a,b上有定义,x0a,b,若x 无限趋近于0时,比值yxfx0xfx0x无限趋近于一个常数A,则称fx在xx0处可导,并称该常数A为函数fx在xx0处的导数,记作fx02导数的几何意义导数fx0的几何意义就是曲线yfx在点Px0,fx0处的切线的斜率3导函数1若fx对于区间a,b内任一点都可导,则fx在各点的导数也随着自变量x的变化而变化,因而也是自变量x的函数,该函数称为fx的导函数,记作fx在不引起混淆时,导函数fx也简称为fx的导数2fx在xx0处的导数fx0就是导函数fx在xx0处的函数值1曲线上给定一点P,过点P 可以作该曲线的无数条割线2有的曲线过它上面的某一点可作两条切线3函数fx在区间a,b内可导就是fx对于任意x0a,b都有fx0存在4fx0表示函数fx在xx0处的导数,是对一个点x0而言的,它是一个确定的值类型一求曲线上某一点处的切线例1已知曲线yfxx1x上的一点A2,52,用切线斜率定义求1点A处的切线的斜率;2点A处的切线方程解1yf2xf22x12x212x22xx,yxx2x2xxx122x1.当x无限趋近于零时,yx无限趋近于34,即点A处的切线的斜率是34.2切线方程为y5234x2,即3x4y40.反思与感悟根据曲线上一点处的切线的定义,要求曲线在某点处的切线方程,只需求出切线的斜率,即在该点处,x无限趋近于0时,yx无限趋近的常数跟踪训练11已知曲线yfx2x24x在点P处的切线的斜率为16,则点P坐标为________答案3,30解析设点P坐标为x0,y0,则fx0xfx0x0xx02x24x0x4xx4x042x.当x 无限趋近于0时,4x042x无限趋近于4x04,因此4x0416,即x03,所以y023*******30.即点P坐标为3,302已知曲线y3x2x,求曲线上一点A1,2处的切线的斜率及切线方程解设A1,2,B1x,31x21x,则kAB31x21x3121x53x,当x无限趋近于0时,53x无限趋近于5,所以曲线y3x2x在点A1,2处的切线斜率是5.切线方程为y25x1,即5xy30.类型二求瞬时速度例2某物体的运动路程s单位m与时间t单位s 的关系可用函数stt2t1表示,求物体在t1s时的瞬时速度解在1到1t的时间内,物体的平均速度vsts1ts1t1t21t11211t3t,当t 无限趋近于0时,v无限趋近于3,物体在t1处的瞬时变化率为3.即物体在t1s时的瞬时速度为3m/s.引申探究1若本例中的条件不变,试求物体的初速度解求物体的初速度,即求物体在t0时的瞬时速度sts0ts0t0t20t11t1t,当t0时,1t1,物体在t0时的瞬时变化率为1,即物体的初速度为1m/s.2若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9m/s.解设物体在t0时刻的速度为9m/s.又stst0tst0t2t01t.当t0时,st2t01.则2t019,t04.则物体在4s时的瞬时速度为9m/s.反思与感悟1求瞬时速度的题目的常见错误是不能将物体的瞬时速度转化为函数的瞬时变化率2求运动物体瞬时速度的三个步骤求时间改变量t和位移改变量sst0tst0求平均速度vst.求瞬时速度,当t无限趋近于0时,st无限趋近于的常数v即为瞬时速度跟踪训练2有一做直线运动的物体,其速度v单位m/s与时间t单位s 的关系是v3tt2,求此物体在t2s时的瞬时加速度解因为v2tv232t2t232223t4tt2tt2,所以v2tv2t1t,所以当t趋于0时,1t无限趋近于1.所以该物体在t2s时的瞬时加速度为1m/s2.类型三求函数在某点处的导数例3已知fxx23.1求fx在x2处的导数;2求fx在xa处的导数解1因为yxf2xf2x2x23223x4x,当x无限趋近于0时,4x无限趋近于4,所以fx在x2处的导数等于4.2因为yxfaxfaxax23a23x2ax,当x无限趋近于0时,2ax 无限趋近于2a,所以fx在xa处的导数等于2a.反思与感悟求一个函数yfx在xx0处的导数的步骤1求函数值的改变量yfx0xfx02求平均变化率yxfx0xfx0x.3令x无限趋近于0,求得导数跟踪训练31设fxax4,若f12,则a________.答案2解析f1xf1xa1x4a4xa,f1a,即a2.2将原油精炼为汽油.柴油.塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh原油的温度单位为fxx27x150x8求函数yfx在x6处的导数f6,并解释它的实际意义解当x从6变到6x时,函数值从f6变到f6x,函数值y关于x的平均变化率为f6xf6x6x276x15627615x5xx2x5x.当x0时,5x趋近于5,所以f65,导数f65表示当x6时原油温度大约以5/h的速度上升1设函数fx可导,则当x0时,f13xf13x趋近于________答案f1解析当x0时,f13xf13xf12若函数fx在点A1,2处的导数是1,那么过点A的切线方程是________________答案xy30解析kf11,切线方程是y2x1,即xy30.3已知函数yfx在点2,1处的切线与直线3xy20平行,则f2________.答案3解析因为直线3xy20的斜率为3,所以由导数的几何意义可知f23.4已知曲线yfx2x2上一点A2,8,则点A处的切线斜率为________答案8解析因为yxf2xf2x22x28x82x,当x0时,82x趋近于8.即k8.5函数yfxx1x在x1处的导数是________答案0解析函数yfxx1x,yf1xf11x11x11x21x,yxx1x,当x0时,yx0,即yfxx1x 在x1处的导数为0.1平均变化率和瞬时变化率的关系平均变化率yxfx0xfx0x,当x无限趋近于0时,它所趋近于的一个常数就是函数在xx0处的瞬时变化率即有x无限趋近于0是指自变量间隔x 越来越小,能达到任意小的间隔,但始终不能为0.即对于瞬时变化率,我们通过减小自变量的改变量以致无限趋近于零的方式,实现用割线斜率“逼近”切线斜率,用平均速度“逼近”瞬时速度一般地,可以用平均变化率“逼近”瞬时变化率2求切线的斜率.瞬时速度和瞬时加速度的解题步骤1计算y.2求yx.3当x0时,yx无限趋近于一个常数4常数即为所求值.。
1。
1。
2瞬时变化率-导数(三)导数的概念一、教学目标1.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵.2. 会求函数在某点的导数。
二、例题讲解例 1(1)以初速度为)0(00>v v做竖直上抛运动的物体,t 秒时的高度为2021)(gt t v t s -=,求物体在时刻0t 处的瞬时速度。
(2)求122+=xy 在0x 到x x ∆+0之间的平均变化率. (3)设2)(x x f =+1,求)('x f,)1('-f ,)2('f例2、函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+x f x f 2)1()1( (2)=-+xf x f )1()21( 变式:设f (x)在x=x 0处可导,(3)x x f x xf ∆-∆+)()4(00无限趋近于1,则)(0x f '=___________ (4)xx f x x f ∆-∆-)()4(00无限趋近于1,则)(0x f '=________________ (5)当△x 无限趋近于0,xx x f x xf ∆∆--∆+)2()2(00所对应的常数与)(0x f '的关系. 例3.(1)求函数y =3x 2在x =1处的导数.(2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.例4:已知函数x x f =)(,求)(x f 在2=x 处的切线.例 5.某工厂每日产品的总成本C 是日产量x 的函数,即2571000)(x x x C ++=,试求:(1)当日产量为100时的平均成本;(2)当日产量由100增加到125时,增加部分的平均成本;(3)当日产量为100时的边际成本.三、课堂练习1.函数xx y 1+=, 在1=x 处的导数是 2.将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( )AR R ∆π8 B ()248R R R ∆+∆ππ C ()244R R R ∆+∆ππ D ()24R ∆π 3. 在曲线12+=xy 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则x y ∆∆为( ) A 21+∆+∆x x B 21-∆-∆x x C 2+∆x D xx ∆-∆+12 四、课后作业1.函数)(x f y =在0x x =处的导数)(0/x f 的几何意义是( ) A 在点0x x =处的函数值 B 在点))(,(00x f x 处的切线与x 轴所夹锐角的正切值C 曲线)(x f y =在点))(,(00x f x 处的切线的斜率D 点))(,(00x f x 与点(0,0)连线的斜率2.已知曲线3x y =上过点(2,8)的切线方程为01612=--ax x ,则实数a 的值为( )3.设4)(+=ax x f ,若2)1('=f ,则a 的值( )4.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( )5、求下列函数在相应位置的导数(1)1)(2+=xx f ,2=x (2)12)(-=x x f ,2=x (3)3)(=x f ,2=x6.已知曲线331x y =上的一点)38,2(P ,求(1)点P 处切线的斜率;(2)点P 处的切线方程.变式:已知曲线331x y =,求与直线084=++y x 垂直,并与该曲线相切的直线方程。
江苏省常州市西夏墅中学高中数学 1.1.2 瞬时变化率-导数(3)教案新人教A 版选修2-2教学目标:1.通过大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,体会导数的思想及其内涵;2.会求简单函数的导数,通过函数图象直观地了解导数的几何意义;3.体会建立数学模型刻画客观世界的“数学化”过程,进一步感受变量数学的思想方法.教学重点:导数概念的实际背景,导数的思想及其内涵,导数的几何意义.教学难点:对导数的几何意义理解.教学过程:一、复习回顾1.曲线在某一点切线的斜率.()()PQ f x x f x k x+-=∆∆(当∆x 无限趋向0时,k PQ 无限趋近于点P 处切线斜率) 2.瞬时速度.v 在t 0的瞬时速度=00()()f t t f t t∆∆+- 当t 时.x3.物体在某一时刻的加速度称为瞬时加速度.v 在t 0的瞬时加速度=00()()v t t v t t ∆∆+- 当t 时.二、建构数学导数的定义. 函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),如果自变量x 在x 0处有增量△x ,那么函数y 相应地有增量△y =f (x 0+△x )-f (x 0);比值y x∆∆就叫函数y =f (x )在x 0到(x 0+△x )之间的平均变化率,即00()()f x x f x y x x +∆-∆=∆∆.如果当0x ∆→时,y A x ∆→∆,我们就说函数y =f (x )在点x 0处可导,并把A 叫做函数y =f (x )在点x 0处的导数,记为0x x y =',0'000()()(),0x x f x x f x y y f x x x x=+∆-∆'===∆→∆∆当 三、数学运用例1 求y =x 2+2在点x =1处的导数.解 y =-(12+2)=2x +(x )2y x∆∆=22()x x x ∆∆∆+=2+x ∴y x∆∆=2+x ,当x 时,1x y '∣==2. 变式训练:求y =x 2+2在点x =a 处的导数.解 y =-(a 2+2)=2a x +(x )2y x∆∆=22()a x x x ∆∆∆+=2a +x ∴y x ∆∆=2a +x ,当x 时,y '=2a .小结 求函数y =f (x )在某一点处的导数的一般步骤:(1)求增量y =f (x 0+x )-f (x 0); (2)算比值 y x ∆∆=00()()f x x f x x∆∆+-; (3)求0x x y '∣==y x∆∆,在x 时. 四、建构数学导函数.若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数f (x )称为的导函数,记作f (x ),即f (x 0)=yy x ∆∆=00()()f x x f x x∆∆+-,当x 时的值. 五、数学运用例2 已知y ,求y数在x =2处的切线方程.解 y ∆y x ∆∆y y x ∆∆'∴=x 时的值. 当x =2时切线的斜率为k ,所以在x =2切线方程为2)y x -即切线方程为42y x . 练习: 课本P14 -1,2,3.六、回顾小结问题1 本节课你学到了什么?(1)了解导数概念的实际背景,体会导数的思想及其内涵;(2)会求简单函数在某一点的导数;会求简单函数在某个区间上的导函数 ;(3)通过函数图象直观地了解导数的几何意义.问题2 本节课体现了哪些数学思想方法?(1)形结合的思想方法.(2)极限的思想方法.。
瞬时变化率—导数2(案1)打造优质高效课堂 深化课堂教学改革班级: 姓名:一、复习回顾1.求曲线1y x=-在点(1,1)-处的切线斜率.二、自主预学1.知识梳理: 1.平均速度和瞬时速度:2. 平均加速度和瞬时加速度:3.边际成本和边际利润:4..跳水运动员从10m 高跳台腾空到入水的过程中,不同时刻的速度是不同的.假设t 秒后运动员相对于水面的高度为h (t )=-4.9t 2+6.5t +10,试确定t =2s 时运动员的速度.(1)计算运动员在2s 到2.1s (t ∈2,2.1])内的平均速度.(2)计算运动员在2s 到(2+△t )s (t ∈2,2+△t ])内的平均速度.(3)如何计算运动员在更短时间内的平均速度.2.预学检测:1.一质点的运动方程是2S t 2=+(位移单位:m ;时间单位:s ),求质点在4t =时的瞬时速度.2.已知圆的面积和半径之间的关系为2S r π=,则3r =时面积的瞬时变化率为3.某工厂每日产品的总成本C 是日产量x 的函数,即2()80064,C x x x =++求:(1)当日产量由100增加到125时,增加部分的平均成本;(2)当日产量为100时的边际成本(即产量为100时的成本的瞬时变化率).三、我的疑惑瞬时变化率—导数2(案2)班级: 姓名:一、 展示目标,导入新课1.理解并掌握瞬时速度的定义;2.会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;3.理解瞬时速度的实际背景,培养学生解决实际问题的能力.二、小组交流,讨论质疑探究1. 已知自由下落物体的运动方程是221gt s =,(s 的单位是m,t 的单位是s),求: (1)物体在0t 到t t ∆+0这段时间内的平均速度;(2)物体在0t 时的瞬时速度;(3)物体在0t =2s 到s t 1.21=这段时间内的平均速度;(4)物体在s t 2=时的瞬时速度.探究2.设一辆轿车在公路上作直线运动,假设t s 时的速度为3)(2+=t t v , 求当0t t =s 时轿车的瞬时加速度a .探究3:生产某塑料管的利润函数为2600675001200000,3P(n)=-n n n ++-其中n 为工厂每月生产该塑料管的根数,利润P(n)的单位为元.(1)求边际利润函数'P (n);(2)求n 的值,使'0;P (n)=(3)解释(2)中n 的值的实际意义.三、展示成果,探究应用四、师生互评,总结升华五、清理过关,当堂检测1.若质点A 按规律22t s =运动,则在3=t 秒的瞬时速度为_________________.2.一质点沿直线运动,运动方程为24810t t s -+=(式中t 单位为s ,s 单位为m )(1)计算[]t t t ∆+,内的平均速度v ;(2)求s t 3=时刻的速度。
江苏省响水中学高中数学第3章《导数及其应用》3.1.2瞬时变化率导数(2)导学案苏教版选修1-1学习目标:1.理解并掌握瞬时速度的定义;2.会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;3.理解瞬时速度的实际背景,培养学生解决实际问题的能力.教学重点:会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度.教学难点:理解瞬时速度和瞬时加速度的定义.课前预习:平均速度和瞬时速度:2. 平均加速度和瞬时加速度:3.跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的.假设t 秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.(1)计算运动员在2s到2.1s (t∈[2,2.1])内的平均速度.(2)计算运动员在2s到(2+△t)s(t∈[2,2+△t])内的平均速度.(3)如何计算运动员在更短时间内的平均速度.课堂探究:2.设一辆轿车在公路上作直线运动,假设t s 时的速度为3)(2+=t t v , 求当0t t =s 时轿车的瞬时加速度a .课堂检测:若质点A 按规律22t s =运动,则在3=t 秒的瞬时速度为_____________________.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
1
一、激趣导学
1.平均速度:物体的运动位移与所用时间的比称为平均速度.
问题一 平均速度反映物体在某一段时间段内运动的快慢程度.那么如何刻画物体在某一时刻运动的快慢程度?
问题二 跳水运动员从10m 高跳台腾空到入水的过程中,不同时刻的速度是不同的.假设t 秒后运动员相对于水面的高度为h (t )=-4.9t 2+6.5t +10,试确定t =2s 时运动员的速度.
二、设疑讨论
(1)计算运动员在2s 到2.1s (t ∈[2,2.1])内的平均速度.
(2)计算运动员在2s 到(2+△t )s(t ∈[2,2+△t ])内的平均速度.
(3)如何计算运动员在更短时间内的平均速度.
三、重点讲解
1.平均速度. 设物体作直线运动所经过的路程为)(t f s =,以0t 为起始时刻,物体在∆t 时间内的平均速度为00()()=f t t f t s v t t
+∆-∆=∆∆. v 可作为物体在0t 时刻的速度的近似值,∆t 越小,近似的程度就越好.所以当∆t →0时,v 极限就是物体在0t 时刻的瞬时速度.
2.平均加速度.
设物体作直线运动的速度为v =f (t ),以0t 为起始时刻,物体在∆t 时间内的平均加速
度为: 00()()f t t f t t +∆-=∆. a 可作为物体在0t 时刻的加速度的近似值,∆t 越小,近似的程度就越好.所以当∆t →0时,a 极限就是物体在0t 时刻的瞬时加速度.
四、典题拓展
例1 物体作自由落体运动,运动方程为22
1gt S =,其中位移单位是m ,时 间单位是s ,2
10m/s g =,求 t v a ∆∆=
2 (1) 物体在时间区间[]2,2.1s 上的平均速度;
(2) 物体在时间区间[]2,2.01s 上的平均速度;
(3) 物体在2s t =时的瞬时速度.
例2 设一辆轿车在公路上作直线运动,假设t s 时的速度为3)(2+=t t v ,
求当0t t =s 时轿车的瞬时加速度a .
五、要点小结
六、巩固迁移
1.如果一个物体的运动方程为21s t t =-+,其中s 的单位是m ,t 的单位是s,那么物体在t=3s 时的瞬时速度是_______________
2.一质点做直线运动,经过t s 后的位移为43214164
s t t t =
-+,则速度为0的时刻是_____________
3.如果做直线运动的物体的速度v(单位:m/s)与时间t(单位:s)的关系为v(t)= 2t ,那么在前三秒内,物体运动的平均加速度是___________,在t=3s 时,物体运动的瞬时加速度是_________
4.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是__________
5.设一物体在t 秒内所经过的路程为s 米,并且3242-+=t t s ,试求物体分别在运动开始及第5秒末的速度。