等差数列公开课教案
- 格式:doc
- 大小:201.50 KB
- 文档页数:4
《等差数列》教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《等差数列》教案优秀3篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
数学等差数列教案数学等差数列教案(精选10篇)作为一名老师,就难以避免地要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
快来参考教案是怎么写的吧!以下是小编为大家整理的数学等差数列教案,仅供参考,希望能够帮助到大家。
数学等差数列教案篇1[教学目标]1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。
通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]1.教学重点:等差数列的概念的理解,通项公式的推导及应用。
2.教学难点:(1)对等差数列中“等差”两字的把握;(2)等差数列通项公式的推导。
[教学过程]一.课题引入创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)二、新课探究(一)等差数列的定义1、等差数列的定义如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。
这个常数叫做等差数列的公差,通常用字母d来表示。
(1)定义中的关健词有哪些?(2)公差d是哪两个数的差?(二)等差数列的通项公式探究1:等差数列的通项公式(求法一)如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?根据等差数列的定义可得:因此等差数列的通项公式就是:,探究2:等差数列的通项公式(求法二)根据等差数列的定义可得:将以上-1个式子相加得等差数列的通项公式就是:,三、应用与探索例1、(1)求等差数列8,5,2,…,的第20项。
(2)等差数列-5,-9,-13,…,的第几项是–401?(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。
等差数列的教案教案标题:等差数列的教案教学目标:1. 理解等差数列的概念和性质。
2. 掌握等差数列的通项公式和求和公式。
3. 能够运用等差数列的性质解决实际问题。
4. 培养学生的逻辑思维能力和问题解决能力。
教学准备:1. 教师准备:白板、黑板笔、教材、教具、电脑和投影仪等。
2. 学生准备:教材、作业本、笔和计算器等。
教学步骤:引入(约5分钟):1. 利用引人入胜的事例或问题,激发学生对等差数列的兴趣。
2. 引导学生思考等差数列的定义,并通过简单的数字序列示例向学生介绍等差数列的特点。
探究(约15分钟):1. 让学生合作解决一系列等差数列问题,引导他们发现数列中的规律。
2. 向学生提问,帮助他们从已知数列中寻找通项公式的套路。
讲解与示范(约20分钟):1. 解释等差数列的通项公式和求和公式的推导过程和意义。
2. 通过具体的例子帮助学生理解和应用这些公式。
3. 解释如何利用通项公式和求和公式解决实际问题。
练习与巩固(约15分钟):1. 给学生分发练习题,让他们独立或合作解答。
2. 布置一道综合题,要求学生利用所学知识解决问题。
3. 及时检查学生答题情况,并给予指导和批评。
拓展(约10分钟):1. 引导学生思考等差数列在实际生活中的应用。
2. 鼓励学生做更多的练习,巩固所学知识。
3. 提供一些挑战性问题,激发学生的思考和求知欲。
总结(约5分钟):1. 回顾本节课的重点内容和学习收获。
2. 强调等差数列的重要性和实用性。
3. 激励学生保持学习动力,并鼓励他们在课后进一步探索等差数列的其他应用。
课堂延伸活动:1. 组织学生进行数列游戏,加深对等差数列的理解。
2. 请学生以小组形式设计并演示一些实际应用等差数列的场景。
教学评估:1. 教师根据学生的课堂表现、练习题、作业以及参与度等进行综合评估。
2. 对于出现理解困难的学生,教师可给予额外辅导和指导。
教学反思:通过本节课的设计和实施,学生能够深入理解等差数列的概念和性质,掌握其相关公式,并能运用所学知识解决实际问题。
一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。
二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。
2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。
三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。
2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。
3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。
4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。
四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。
五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。
2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。
3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。
六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。
2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。
七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。
等差数列的概念教案教学目标:1.了解等差数列的定义和性质;2.学会计算等差数列的通项公式;3.能够应用等差数列解决实际问题。
教学内容:一、引入(10分钟)1.引出等差数列的概念:教师出示一个数字序列:1,3,5,7,9,询问学生是否有发现,让学生讨论并总结规律。
2.介绍等差数列的定义:教师解释等差数列的定义:如果一个数列中任意两个相邻的项之差始终保持不变,那么这个数列就是等差数列。
二、定义与性质(20分钟)1.形式化的定义:教师整理上述讨论结果,给出等差数列的形式化定义,即对于数列{a1, a2, a3,..., an},如果有公差d,那么对于任意的n≥2, ai+1 - ai = d。
2.等差数列的特点:-公差d的大小决定了数列每一项之间的差距;-第一项a1的大小、公差d的正负以及项数n的大小决定了整个数列的排列。
三、计算等差数列的通项公式(30分钟)1.推导递推公式:教师给出等差数列的第一项a1和公差d,让学生推导出递推公式。
-a2=a1+d-a3=a1+2d-...- an = a1 + (n-1)d2.总结通项公式:教师引导学生从递推公式中总结出等差数列的通项公式:an = a1 + (n-1)d。
3.练习计算:学生通过练习计算等差数列的通项公式,巩固学习成果。
四、应用示例(30分钟)1.求等差数列的和:教师给出一个等差数列,让学生思考如何通过通项公式求出数列的和,并进行讲解。
2.实际问题的应用:-示例1:小明从1月1日起,每天存入100元,到12月31日共存了多少钱?-示例2:在一座大楼的楼梯间,第一步有10级台阶,之后每一步比前一步多2级,小明从第二步开始每一步以这个规律上楼,到第10步停下,请计算小明一共走了多少级台阶。
学生通过这些实际问题,巩固应用等差数列解决实际问题的能力。
五、练习与总结(10分钟)1.练习题:让学生独立完成一些练习题,检查学生对等差数列的概念和通项公式的理解和应用。
等差数列详细教案一、教学目标1.知识目标:了解等差数列的概念,掌握等差数列的通项公式和求和公式。
2.能力目标:能够判断数列是否为等差数列,并确定其公差,能够计算等差数列的指定项数和前n项和。
3.情感目标:培养学生对数学的兴趣,增强学生的数学思维能力。
二、教学重点和难点1.教学重点:等差数列的概念、通项公式和求和公式的掌握,能够应用相关公式解决问题。
2.教学难点:能够正确判断数列是否为等差数列,并确定其公差。
三、教学过程1.导入新知识(10分钟)-教师引导学生观察以下数列:1,3,5,7,9...2,4,6,8,10...-提问:观察上述两个数列,有什么规律?这种数列有什么特点?-引导学生发现数列的相邻两项之间的差值相同,即第二个数减去第一个数得到的结果可以得到第三个数减去第二个数得到的结果,如此类推。
-教师解释:这种数列叫做等差数列,等差数列是指数列中相邻两项之间的差值相等的数列。
第一个数叫做首项,差值叫做公差。
-引导学生通过几个例子来发现等差数列的特点。
2.探究等差数列的性质(30分钟)-教师讲解等差数列的概念,并通过几个例子引导学生判断是否为等差数列。
-引导学生观察数列的公差是如何确定的,并与学生共同发现等差数列的任意一项与首项的差值等于公差乘以项数减一-教师提供几个解决问题的实例,引导学生应用公式计算等差数列的指定项数和前n项和。
3.归纳等差数列的通项公式(20分钟)-引导学生观察以下几个等差数列:1,4,7,10,13...2,7,12,17,22...-提问:观察上述两个数列,有什么规律?这种数列的通项公式是什么?- 引导学生发现等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
-通过几个例子的实践操作,让学生理解等差数列的通项公式的计算过程。
4.推导等差数列的求和公式(30分钟)-引导学生考虑如何计算等差数列的前n项和。
-教师提供数列的前几个项,引导学生观察其中的规律。
等差数列的教学设计(合集5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等差数列的教学设计(合集5篇)等差数列的教学设计(1)一、知识与技能1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.二、过程与方法1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.教学过程导入新课师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)(1)0,5.10,15.20,25.…;(2)48,53.58,63.…;(3)18,15.5.13.10.5.8,5.5…;(4)10 072.10 144.10 216,10 288,10 366,….请你们来写出上述四个数列的第7项.生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3.第四个数列的第7项为10 510.师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生:这是由第二个数列的后一项总比前一项多 5.依据这个规律性我得到了这个数列的第7项为78.师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.生:1每相邻两项的差相等,都等于同一个常数.师:作差是否有顺序,谁与谁相减?生:1作差的顺序是后项减前项,不能颠倒.师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.这就是我们这节课要研究的内容.推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n ≥2.n∈NX,则此数列是等差数列,d叫做公差.师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)生:从“第二项起”和“同一个常数”.师::很好!师:请同学们思考:数列(1)(2)(3)(4)的通项公式存在吗?如果存在,分别是什么?生:数列(1)通项公式为5n-5.数列(2)通项公式为5n+43.数列(3)通项公式为2.5n-15.5.….师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.[合作探究]等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1.公差是d,则据其定义可得什么?生:a2-a1=d,即a2=a1+d.师:对,继续说下去!生:a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;师:好!规律性·的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-(1)d.师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-(1)d.师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.[教师:精讲]由上述关系还可得:am=a1+(m-(1)d,即a1=am-(m-(1)d.则an=a1+(n-(1)d=am-(m-(1)d+(n-(1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式) 由此我们还可以得到.[例题剖析]【例1】(1)求等差数列8,5.2,…的第20项;(2)-401是不是等差数列-5.-9,-13…的项?如果是,是第几项?师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-(1)X(-(3)=-49.师:好!下面我们来看看第(2)小题怎么做.生:2由a1=-5,d=-9-(-(5)=-4得数列通项公式为an=-5-4(n-(1)由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-(1)成立,解之,得n=100,即-401是这个数列的第100项.师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个)说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析:师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?生:只要看差an-an-1(n≥(2)是不是一个与n无关的常数.师:说得对,请你来求解.生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n ≥(2)〕an-an-1=(pn+(1)-[p(n-(1)+q]=pn+q-(pn-p+q)=p为常数,所以我们说{an}是等差数列,首项a1=p+q,公差为p.师:这里要重点说明的是:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=pX+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3.7,11.…的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.解:根据题意可知a1=3.d=7-3=4.∴该数列的通项公式为an=3+(n-(1)X4.即an=4n-1(n≥1.n∈NX)∴a4=4X4-1=15.a 10=4X10-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,…的第20项.解:根据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为an=10+(n-(1)X(-(2)即an=-2n+12.所以a20=-2X20+12=-28.评述:要求学生:注意解题步骤的规范性与准确性.(3)100是不是等差数列2.9,16,…的项?如果是,是第几项?如果不是,请说明理由.分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.解:根据题意可得a1=2.d=9-2=7.因而此数列通项公式为an=2+(n-(1)X7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.(4)-20是不是等差数列0,-7,…的项?如果是,是第几项?如果不是,请说明理由.解:由题意可知a1=0,因而此数列的通项公式为.令,解得.因为没有正整数解,所以-20不是这个数列的项.课堂小结师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥(2);其次要会推导等差数列的通项公式an=a1+(n-(1)d(n≥(1)等差数列的教学设计(2)【教学目标】一、知识与技能1.掌握等差数列前n项和公式;2.体会等差数列前n项和公式的推导过程;3.会简单运用等差数列前n项和公式。
等差数列教案(精选多篇)第一篇:等差数列教案4等差数列(1)教学内容与教学目标1.使学生理解等差数列的定义,掌握通项公式及其简单应用,初步领会“迭加”的方法;2.通过通项公式的探求,引导学生学习归纳、猜测、证明等合情推理与逻辑推理方法,提高学生分析^p 、综合、抽象、概括等逻辑思维能力;3.通过证明的教学过程,培养学生实事求是的科学态度和勇于探索的精神.设计思想1.根据本节内容,我们选用“探究发现式”教学法,并按如下顺序逐步展开:d即的第二通项公式anamd∴ d=amanmn如:a5a4da32da23da14d三、例题讲解例1 ⑴求等差数列8,5,2的第20项⑵ -401是不是等差数列-5,-9,-13的项?如果是,是第几项?解:⑴由a18,d58253n=20,得a208d例3将一个等差数列的通项公式输入计算器数列un中,设数列的第s项和第t项分别为us和ut,计算usut st解:通过计算发现usut的值恒等于公差st证明:设等差数列{un}的首项为u1,末项为un,公差为d,usu1d和an=p n+q (p、q是常数)的理解与应用.第五篇:高中数学等差数列教案(二)课题:3.3 等差数列的前n项和(二)6161,又∵n∈n*∴满足不等式n<的正整数一共有30个. 22二、例题讲解例1 .求集合m={m|m=2n-1,n∈n*,且m<60}的元素个数及这些元素的和. 解:由2n-1<60,得n<即集合m中一共有30个元素,可列为:1,3,5,7,9,…,59,组成一个以a1=1, an(a1an)30=59,n=30的等差数列.∵sn=2,∴s30(159)30=2=900.答案:集合m中一共有30个元素,其和为900.例2.在小于100的正整数中共有多少个数能被3除余2分析^p :满足条件的数属于集合,m={m|m=3n+2,m<100,m∈n*}解:分析^p 题意可得满足条件的数属于集合,m={m|m=3n+2,m<100,n∈n*} 由3n+2<100,得n<322 3,且m∈n*,∴n可取0,1,2,3, (32)即在小于100的正整数中共有33个数能被3除余2.把这些数从小到大排列出来就是:2,5,8, (98)它们可组成一个以a1=2,d=3, a33=98,n=33的等差数列.由sn(a1an)n=2,得s33(298)33=2=1650.答:在小于100的正整数中共有33个数能被3除余2,这些数的和是1650. 例3已知数列an,是等差数列,sn是其前n项和,求证:⑴s6,s12-s6,s18-s12成等差数列;⑵设sk,s2ksk,s3ks2k (kn)成等差数列证明:设an,首项是a1,公差为d则s6a1a2a3a4a5a6∵s12s6a7a8a9a10a11a12(a16d)(a26d)(a36d)(a46d)(a56d)(a66d)(a1a2a3a4a5a6) 36ds636d∵s18s12a13a14a15a16a17a18(a76d)(a86d)(a96d)(a106d)(a116d)(a126d)(a7a8a9a10a11a12)36d(s12s6)36d∴s6,s12s6,s18s12是以36d同理可得sk,s2ksk,s3ks2k是以kd为公差的等差数列.三、练习:1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式.分析^p :将已知条件转化为数学语言,然后再解.解:根据题意,得s4=24, s5-s2=27则设等差数列首项为a1,公差为d, 24(41)d4a2412则(5a5(51)d)(2a2(21)d)271122a13解之得:∴an=3+2(n-1)=2n+1. d22.两个数列1, x1, x2, ……,x7, 5和1, y1,y2, ……,y6, 5均成等差数列公差分别是d1, d2, 求xx2x7d1与1y1y2y6d2解:5=1+8d1, d1=d147, 又5=1+7d2, d2=, ∴1=; d2278x1+x2+……+x7=7x4=7×15=21,2y1+y2+ ……+y6=3×(1+5)=18,∴x1x2x77=. y1y2y663.在等差数列{an}中, a4=-15, 公差d=3, 求数列{an}的前n项和snsn解法1:∵a4=a1+3d, ∴ -15=a1+9, a1=-24,3n(n1)3512512∴ sn=-24n+=[(n-)-],36226∴ 当|n-51|最小时,sn最小, 6即当n=8或n=9时,s8=s9=-108最小.解法2:由已知解得a1=-24, d=3, an=-24+3(n-1),由an≤0得n≤9且a9=0,∴当n=8或n=9时,s8=s9=-108最小.四、小结本节课学习了以下内容:an是等差数列,sn是其前n项和,则sk,s2ksk,s3ks2k (kn五、课后作业:1.一凸n边形各内角的度数成等差数列,公差是10°,最小内角为100°,求边数n.解:由(n-2)·180=100n+n(n1)×10, 2求得n2-17n+72=0,n=8或n=9,当n=9时, 最大内角100+(9-1)×10=180°不合题意,舍去,∴ n=8.2.已知非常数等差数列{an}的前n项和sn满足10snm23n2(m1)nmn解:由题设知2n2(n∈n, m∈r), 求数列{a5n3}的前n项和. sn=lg(m32即 sn=[(m1)n2mn(m1)n2mn)=lgm+nlg3+lg2,52(m1)mlg2]n2+(lg3+lg2)n+lgm2,55∵ {an}是非常数等差数列,当d≠0,是一个常数项为零的二次式(m1)lg2≠0且lgm2=0, ∴ m=-1, 5212 ∴ sn=(-lg2)n+(lg3-lg2)n,55(请您支持.aoo.) 3 则当n=1时,a1=lg3lg2 521当n≥2时,an=sn-sn1=(-lg2)(2n-1)+(lg3-lg2) 5541=nlg2lg3lg2 55∴41nlg2lg3lg2 554 d=an1an=lg2 541a5n3=(5n3)lg2lg3lg2 5511=4nlg2lg3lg2 531数列{a5n3}是以a8=lg3lg2为首项,5d=4lg2为公差的等差数列,∴数列5∴an={a5n3}的前n项和为n·(lg331211lg2)+n(n-1)·(4lg2)=2n2lg2(lg3lg2)n 2553.一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32:27,求公差d.解:设这个数列的首项为a1, 公差为d,则偶数项与奇数项分别都是公差为2d的等12a166d35432, 解得d=5. 差数列,由已知得6a230d6a130d27解法2:设偶数项和与奇数项和分别为s偶,s奇,则由已知得s偶s奇354s32,求得s偶=192,s奇=162,s偶-s奇=6d, ∴ d=5. 偶s27奇4.两个等差数列,它们的前n项和之比为5n3, 2n1解:a9a1a17b9b1b1717(a1a17)s8. 17"17s173(b1b17)2 5.一个等差数列的前10项和为100,前100项和为10,求它的前110 解:在等差数列中,s10, s20-s10, s30-s20, ……, s100-s90, s110-s100, 成等差数列,∴ 新数列的前10项和=原数列的前100项和,10s10+109·d=s100=10, 解得d=-22 2∴ s110-s100=s10+10×d=-120, ∴ s110=-110.6.设等差数列{an}的前n项和为sn,已知a3=12,s12>0,s13<0,(1) 求公差d的取值围;(2) 指出s1, s2, s3, ……,s121211s12ad01122a111d02解:(1) ,1312a6d01s1313a1d02 ∵ a3=a1+2d=12, 代入得247d024, ∴ -<d<-3, 73d0(2) s13=13a7<0, ∴ a7<0, 由s12=6(a6+a7)>0, ∴ a6+a7>0, ∴a6>0,s6最大.六、板书设计(略)七、课后记:。
等差数列教案一、教学目标1.理解等差数列的概念和特点。
2.掌握等差数列的通项公式和求和公式。
3.能够应用等差数列解决实际问题。
二、教学重点和难点•教学重点:等差数列的概念和特点,通项公式和求和公式的掌握。
•教学难点:能够应用等差数列解决实际问题。
三、教学准备1.教师准备:课件、教案、教具(黑板、粉笔、直尺等)。
2.学生准备:课本、练习册、笔记工具。
四、教学过程1. 导入新知识教师通过提问和引入实际问题,引发学生对等差数列的兴趣。
例如:•有一个数列:1、4、7、10,你觉得这四个数之间有什么规律?•如果我们继续往后推,那么下一个数字是多少?•当然,我们可以一个一个去计算,但是有没有什么更简单的方法?2. 引出等差数列的概念通过示例引导学生发现等差数列的概念。
例如:•我们将这个数列中的每两个连续的数之间的差称为公差。
•不妨将公差记为d,那么这个数列中的每一个数都可以通过前一个数加上公差来得到。
根据以上引导,我们可以得出等差数列的定义:等差数列是一个数列,其中每两个连续的数之间的差相等。
3. 掌握等差数列的特点•等差数列的前n项可以用数列的第一项a1和公差d来表示,即a1, a1 + d, a1 + 2d, …, a1 + (n-1)d。
•等差数列的第n项可以用通项公式an = a1 + (n-1)d来表示。
•等差数列的前n项和可以用求和公式Sn = (n/2)(a1 + an)来表示。
4. 解决实际问题让学生思考等差数列在现实生活中的应用,例如:问题:小明每天都会记日记,第一天记了1页,之后每天都比前一天多记2页,今天是他记日记的第10天,那么他一共记了多少页?解题思路: 1. 将这个问题转化为等差数列的求和问题。
2. 根据题意,第一项a1=1,公差d=2,一共有10项n=10。
3. 代入求和公式,Sn = (n/2)(a1 + an),得到Sn = (10/2)(1 + 1 + 9 × 2) = 100。
数学等差数列教案数学等差数列教案「篇一」一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式(一)例题与练习通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。
由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二)新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调:① “从第二项起”满足条件; f②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1—an=d (n≥1) ;h4z+0"6vG同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1、 9 ,8,7,6,5,4,√ d=—12、2、2、2、2、2、2、2、2、2、74√ d=0。
013、3、3、3、3、3、3、√ d=04、4、4、4、4、4、4、×5、5、5、5、5、5、×其中第一个数列公差<0,>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。
给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。
通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。
整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d。
则据其定义可得:a2 — a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n—1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:a2 – a1 =da3 – a2 =da4 – a3 =dan+1 – an=d将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d 即 an= a1+(n—1) d (1)当n=1时,(1)也成立。
《等差数列》教案
授课时间:授课班级:
教材:广东省中等职业技术学校文化基础课课程改革实验教材《数学》下册
①如图1所示:一个堆放铅笔的V形架的最下面
一层放1支铅笔,往上每一层都比它下面一层多放1
支,这个V形架的铅笔从最下面一层往上面排起的
铅笔支数组成数列:1,2,3,4,……
②某个电影院设置了20排座位,这个电影院从第1排起各排的座位数组成数列:
38,40,42,44,46,……
③全国统一鞋号中,成年女鞋的各种尺码(表示以cm为单位的鞋底的长度)由大到小可排列为:25,24.5,24,23.5,23,22.5,22,21.5.
二、师生互动,探索新知
[设计说明:职校生的数学基础差,采用边教学边反馈的方式,有利于教师及时了解学生理解新知识的程度,增强学生学好数学的信心]
教师引导学生观察上面的数列①、②、③的特点与变化规律。
数列①从第2项起,每一项与它的前一项的差都等于;
数列②从第2项起,每一项与它的前一项的差都等于;
数列③从第2项起,每一项与它的前一项的差都等于;
提出问题1:上面三个数列的共同特点是什么?
学生:从第2项起,每一项与它的前一项的差都等于同一个常数。
<一>等差数列的定义:如果一个数列从它的第2项起每一项与它的前一项的差都等于同一
个常数,则这个数列叫做等差数列;这个常数叫做等差数列的公差,公差通常用字母d 表示。
等差数列的公差d 的数学表达式为:1(,1)n n a a d n N N --=∈>且。
基础训练:1、上面数列①的公差d= ; 数列②的公差d= ; 数列③的公差d=
[教学说明:有利于学生扫除语言与符号转换的障碍]
2、下面的数列中,哪些是等差数列?若是,求出它的公差;若不是,则说明理由。
(1) 6,10,14,18,22,……;(2)9,8,7,6,5,4,3,2;(3)3,3,3,3,3,3;(4)1,0,1,0,1,0,1,0.
提出问题2:任何一个数列一定是等差数列吗?如果是等差数列,公差一定是正数吗? 师生讨论得出结论:
(1)、一个数列是等差数列必须具有这样的特点: 从第2项起,每一项与它的前一项的差都等于同一个常数;(2)等差数列的公差d 可能是正数、负数、零。
[设计说明:从具体数列入手,有利于较多基础差的学生理解等差数的定义,判断数列是否为等差数列转换成具体的步骤:求后面一项与前面一项的差,看这些差是否相等] 提出问题3:等差数列{}n a 的公差d 的数学表达式为:1(,1)n n a a d n N N --=∈>且,
揭示了求公差d 可以用哪些式子表示?
师生共同活动:213243121,,,,,n n n n d a a d a a d a a d a a d a a ---=-=-=-⋅⋅⋅=-=-等, 变式:213243121,,,,,n n n n a a d a a d a a d a a d a a d ---=+=+=+⋅⋅⋅=+=+
提出问题4:如果等差数列{}n a 只知道首项1a ,公差d ,那么这个数列的其他项如何表示?
师生共同活动:1()21,a a d =+个1()2()
32112,a a d a d d a d =+=++=+个个
3()
1()2()432113,a a d a d d a d d d a d =+=++=+++=+个个个…, 3()1()
1()2()12311(1)n n n n n a a d a d d a d d d a d d d a n d ----=+=++=+++=⋅⋅⋅=+++⋅⋅⋅+=+-个个个个
[设计说明:问题3、问题4的提出训练学生的变形思想、递归思想,从而引出等差数列的通项公式及学生容易理解通项公式的变形公式]
<二>等差数列的通项公式:
等差数列{}n a 的任一项为n a 列的通项公式。
(说明:通项公式即对于等差数列的每一项都适用的公式,包括第一项:1a ) 提出问题5:213243121,,,,,n n n n d a a d a a d a a d a a d a a ---=-=-=-⋅⋅⋅=-=-有 个等式?
如果将上述等式相加会得到等式:
213243121(1)()()()()()n n n n n d a a a a a a a a a a ----=-+-+-+⋅⋅⋅+-+-,
1(1)n n d a a -=-,可求出等差数列的(叠加法)
由提出问题4的师生活动可知通项公式的变形: 1()2()1222n n n n a a d a d d a d ---=+=++=+个个,3()1()
2()12333n n n n n a a d a d d a d d d a d ----=+=++=+++=+个个个,,()n m a a n m d ⋅⋅⋅=+-
①,
( n 、)m N ∈②(注意n 不一定大于m )
公式的认识与理解:
1、通项公式含有四个量,根据公式之间的联系,由方程的思想,知三可求一;
2、与1,n a a 两项直接相关时一般用公式①,与,m n a a 两项直接相关时一般用公式②
三、 合作交流,熟练技能
例1 求等差数列5,7,9,11,……的通项公式与第10项。
[分析] 这个数列第一项(首项1a )是5,知第一、二、三、四项,易求公差d ,写出通项公式,再利用通项公求出第10项。
解:因为15,a =752d =-=,所以这个等差数列的通项公式是
52(1),n a n =+⨯-即23,n a n =+10210323a =⨯+=。
例2数列{}n a 是等差数列.
(1) 已知1612,1,d a a =-=求;(2)已知3105,47,a a d ==求。
[分析] 第(1)题与116,a a 两项直接相关用公式①,
第(2)题与310,a a 两项直接相关用公式②
解:(1)16115a a d =+,1115(2)a =+⨯-,解方程得 131a =。
(2)1037a a d =+,4757d =+,解方程得 6d = 。
[设计说明:例1列出等差数列的前面四项,让学生学会观察数列的首项,学会直接求出等差数列的公差,增强感性认识;例2的分析是理性认识等差数列的通项公式及其变形公式]
四、迁移应用,深化提高
1、等差数列{}n a 中,已知512110,31,a a a ==求、d 。
2、在12和60之间插入3个数,使它们与这两个数成等差数列,求这3个数。
[分析] 第1题:与512,a a 两项直接相关用公式②求出d ,与15,a a 两项直接相关或与112,a a 两项直接相关用公式①求出1a 。
第2题:插入3个数,这个等差数列共有5个数,已知1512,60,5a a n ===,求这3个数即是求234,,a a a ,由等差数列的通项公式1(1)n a a n d =+-中的1,,,n a d n a 四个量,将1512,60,5a a n ===代入公式看成方程,先求出公差d ,再代入通项公式可求得这3个数。
解:(略) 补充练习:P119 练习A 1、2
[设计说明:目的是使学生灵活运用等差数列通项公式及其变形公式。
尤其是第2题,不少学生不会分析60是第几项,所求的3个数是第几项,即将语言转换成符号的能力是学生的弱项]
五、积累与总结
1、知识梳理
(1)等差数列的定义,公差d 的数学表达式为:1(,1)n n a a d n N N --=∈>且;
(2)①,
( n 、)m N ∈②(注意n 不一定大于m ).
2如果等差数列的前面几项已列出,学会观察数列的首项,学会直接求出等差数列的公差;与1,n a a 两项直接相关时用通项公式,与,m n a a 两项直接相关时用通项公式的变形公式;如果有关等差数列的题目语言文字或数字时,学会把语言转化为符号。
六、作业
P120 习题11-2 1、(1), 2(1)。
七、【教学反思】:结合学生的实际情况,创设情境,引入图形,引入生活中学生熟悉的例子,创建数学模型,将生活中的实例转化为数学问题,引出等差数列的定义,通过启发、讨论、引导、边教边练边反馈的方法提高了学生思考问题、解决问题的能力,避免教师与学生的思维脱节的现象,从面提高了学生学好数学的信心。
多媒体辅助教学节省不少板书时间,提高了教学的效率。
比如:数列①从第2项起,每一项与它的前一项的差都等于 ,如果教师只是用口头表达,学生思考,可能有些注意力不太集中的学生听不清楚,影响了学习的效果,而用多媒体辅助教学,学生耳朵、眼睛、脑一起用,学习效果明显增强。
又如图形的板书可费时间了,多媒体辅助教学一展示就达到一目了然的效果。
这节课看起来简单,只有两个公式,表面上看学生只要记住公式就行了,可是没有学生参与探索发现的知识,对于学生来说是无法内化的知识。
这节课提出四个问题,学生能参与思考,尤其是学生能参与等差数列的通项公式的推导过程,对于培养今后良好的学习习惯起了一定的促进作用。