习题解答 17 曲面与曲线(127-128页)
- 格式:ppt
- 大小:7.87 MB
- 文档页数:5
第十章 曲线积分与曲面积分(A)1.计算()⎰+Ldx y x ,其中L 为连接()0,1及()1,0两点的连直线段。
2.计算⎰+Lds y x 22,其中L 为圆周ax y x =+22。
3.计算()⎰+Lds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=,()π20≤≤t 。
4.计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线x y =及x 轴在第一角限内所围成的扇形的整个边界。
5.计算⎰⎪⎪⎭⎫ ⎝⎛+L ds y x 3434,其中L 为内摆线t a x 3cos =,t a y 3sin =⎪⎭⎫ ⎝⎛≤≤20πt 在第一象限内的一段弧。
6.计算⎰+Lds yx z 222,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。
7.计算⎰Lxydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。
8.计算⎰-+Lydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线段AB 。
9.计算()⎰-+++Ldz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直线。
10.计算()()⎰---Ldy y a dx y a 2,其中L 为摆线()t t a x sin -=,()t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧):11.计算()()⎰-++Ldy x y dx y x ,其中L 是:1)抛物线x y =2上从点()1,1到点()2,4的一段弧;2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。
12.把对坐标的曲线积分()()⎰+Ldy y x Q dx y x P ,,化成对弧和的曲经积分,其中L 为:1)在xoy 平面内沿直线从点()0,0到()4,3; 2)沿抛物线2x y =从点()0,0到点()2,4; 3)沿上半圆周x y x 22=+2从点()0,0到点()1,1。
曲率与曲率半径问题1.(2024·浙江温州·二模)如图,对于曲线Γ,存在圆C满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 03);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.【解析】(1)记f x =x 2,设抛物线y =x 2在原点的曲率圆的方程为x 2+y -b 2=b 2,其中b 为曲率半径.则f x =2x ,f x =2,故2=f0 =b 2b -03=1b ,2=r 2b 3,即b =12,所以抛物线y =x 2在原点的曲率圆的方程为x 2+y -122=14;(2)设曲线y =f x 在x 0,y 0 的曲率半径为r .则法一:f x 0 =-x 0-ay 0-bfx 0 =r 2b -y 03,由x 0-a 2+y 0-b 2=r 2知,fx 0 2+1=r 2y 0-b 2,所以r =fx0 2+132f x 0,故曲线y =1x在点x 0,y 0 处的曲率半径r =-1x 202+1 322x 30,所以r 2=1x 40+132x 302=14x 20+1x 23≥2,则r 23=2-23x 20+1x 20≥213,则r =12x 20+1x 232≥2,当且仅当x 20=1x 20,即x 20=1时取等号,故r ≥2,曲线y =1x在点1,1 处的曲率半径r =2.法二:-1x 20=-x 0-a y 0-b 2x 30=r 2b -y 0 3,a +bx 20-2x 0x 40+1=r ,所以y 0-b =-x 0⋅r 23213x 0-a =-r 23213x 0,而r 2=x 0-a 2+y 0-b 2=x 20⋅r 43223+r 43223⋅x 20,所以r 23=2-23x 20+1x 20,解方程可得r =12x 20+1x 2032,则r 2=14x 20+1x 203≥2,当且仅当x 20=1x 20,即x 20=1时取等号,故r ≥2,曲线y =1x在点1,1 处的曲率半径r =2.(3)法一:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,故r 23=e 43x +e-23x ,由题意知:e 43x1+e -23x 1=e43x 2+e-23x 2令t 1=e 23x1,t 2=e23x 2,则有t 21+1t 1=t 22+1t 2,所以t 21-t 22=1t 2-1t 1,即t 1-t 2 t 1+t 2 =t 1-t 2t 1t 2,故t 1t 2t 1+t 2 =1.因为x 1≠x 2,所以t 1≠t 2,所以1=t 1t 2t 1+t 2 >t 1t 2⋅2t 1t 2=2t 1t 2 32=2e x 1+x 2,所以x 1+x 2<-ln2.法二:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,有r 2=e 2x +13e 2x=e 4x +3e 2x +3+e -2x令t 1=e 2x 1,t 2=e 2x 2,则有t 21+3t 1+3+1t 1=t 22+3t 2+3+1t 2,则t 1-t 2 t 1+t 2+3-1t 1t 2=0,故t 1+t 2+3-1t 1t 2=0,因为x 1≠x 2,所以t 1≠t 2,所以有0=t 1+t 2+3-1t 1t 2>2t 1t 2+3-1t 1t 2,令t =t 1t 2,则2t +3-1t2<0,即0>2t 3+3t 2-1=(t +1)22t -1 ,故t <12,所以e x 1+x 2=t 1t 2=t <12,即x 1+x 2<-ln2;法三:函数y =e x 的图象在x ,e x处的曲率半径r =e 2x +1 32e x.故r 23=e 43x +e23x 设g x =e 43x +e 23x ,则gx =43e 43x -23e -23x =23e -23x 2e 2x -1 ,所以当x ∈-∞,-12ln2 时g x <0,当x ∈-12ln2,+∞ 时g x >0,所以g x 在-∞,-12ln2 上单调递减,在-12ln2,+∞ 上单调递增,故有x 1<-12ln2<x 2,所以x 1,-ln2-x 2∈-∞,-12ln2 ,要证x 1+x 2<-ln2,即证x 1<-ln2-x 2,即证g x 2 =g x 1 >g -ln2-x 2 将x 1+x 2<-ln2,下证:当x ∈-12ln2,+∞ 时,有g x >g -ln2-x ,设函数G x =g x -g -ln2-x (其中x >-12ln2),则G x =g x +g -ln2-x =232e 2x -1 e 23x -2-13 ⋅e -43x >0,故G x 单调递增,G x >G -12ln2 =0,故g x 2 >g -ln2-x 2 ,所以x 1+x 2<-ln2.法四:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,有r 2=e 2x +13e2x=e 4x +3e 2x +3+e -2x ,设h x =e 4x +3e 2x +3+e -2x .则有h x =4e 4x +6e 2x -2e -2x =2e -2x e 2x +1 22e 2x -1 ,所以当x ∈-∞,-12ln2 时h x <0,当x ∈-12ln2,+∞ 时h x >0,故h x 在-∞,-12ln2 上单调递减,在-12ln2,+∞ 上单调递增.故有x 1<-12ln2<x 2,所以x 1,-ln2-x 2∈-∞,-12ln2 ,要证x 1+x 2<-ln2,即证x 1<-ln2-x 2,即证h x 2 =h x 1 >h -ln2-x 2 .将x 1+x 2<-ln2,下证:当x ∈-12ln2,+∞ 时,有h x >h -ln2-x ,设函数H x =h x -h -ln2-x (其中x >-12ln2),则H x =h x +h -ln2-x =2e 2x -1 21+12e -2x +14e -4x >0,故H x 单调递增,故H x >H -12ln2 =0,故h x 2 >h -ln2-x 2 ,所以x 1+x 2<-ln2.2.有一种速度叫“中国速度”,“中国速度”正在刷新世界对中国高铁的认知.由于地形等原因,在修建高铁、公路、桥隧等基建中,我们常用曲线的曲率(Curvature )来刻画路线弯曲度.如图所示的光滑曲线C 上的曲线段AB ,设其弧长为Δs ,曲线C 在A ,B 两点处的切线分别为l A ,l B ,记l A ,l B 的夹角为ΔθΔθ∈0,π2,定义K =ΔθΔs为曲线段AB 的平均曲率,定义K (x )=lim Δx →0ΔθΔs=f (x )1+f (x ) 232为曲线C :y =f (x )在其上一点A (x ,y )处的曲率.(其中f (x )为f (x )的导函数,f (x )为f (x )的导函数)(1)若f (x )=sin (2x ),求K π4;(2)记圆x 2+y 2=2025上圆心角为π3的圆弧的平均曲率为a .①求a 的值;②设函数g (x )=ln (x +45a )-xe x -1,若方程g (x )=m (m >0)有两个不相等的实数根x 1,x 2,证明:x 2-x 1 <1-(5e -2)m3e -3,其中e 为自然对数的底数,e =2.71828⋯.【解析】(1)f (x )=sin (2x ),f (x )=2cos (2x ),f (x )=-4sin (2x ),所以f π4 =2cos π2=0,f π4 =-4sin π2=-4,因此K π4 =f π4 1+f π4 232=-4 1+0 32=4.(2)①由圆的性质知圆x 2+y 2=2025上圆心角为π3的圆弧的弧长为ΔS =π3⋅R .弧的两端点处的切线对应的夹角Δθ=π3,所以该圆弧的平均曲率K =Δθ ΔS=1R =12025=145,也即a =145.②由于a =145,故g x =ln x +1 -xe x -1,x ∈-1,+∞ ,又g (0)=0,g x =1x +1-x +1 e x -1,g x =-1x +12-x +2 e x -1<0,所以g (x )在-1,+∞ 上单调递减,而g 0 =1-1e >0,g 1 =12-2=-32<0.因此必存在唯一的x 0∈(0,1)使得g (x 0)=0且g (x )在-1,x 0 上为正,在x 0,+∞ 为负,即g (x )在-1,x 0 上单调递增,在x 0,+∞ 上单调递减,而g (0)=0,又g 12 =ln 32-12e>ln 32-13>0∵2e >3⇔e >94,ln 32>13⇔e 13<32⇔e <278,g (1)=ln2-1<0,所以∃t ∈12,1 使得g (t )=0,即g (x )的图象与x 轴有且仅有两个交点(0,0),(t ,0),易得g (x )在(0,0)处的切线方程为l 0:y =1-1e x =e -1ex ,在(t ,0)处的切线方程为l t :y =1t +1-t +1 e t -1 x -t ,下面证明两切线l 0,l t 的图象不在g (x )的图象的下方:令h x =g x -1t +1-t +1 e t -1 x -t =g (x )-g (t )(x -t ),则h (x )=g (x )-g (t ).因为h (x )=g (x )<0,所以h (x )在(-1,+∞)单调递减,而h (t )=0,所以h (t )在(-1,t )上为正,在(t ,+∞)为负,即h (x )在(-1,t )上单调递增,在(t ,+∞)单调递减,因此h (x )≤h (t )=g (t )-0=0,即g x ≤1t +1-t +1 e t -1 x -t ,即g (x )的图象恒在其图象上的点(t ,0)处的切线的下方(当且仅当x =t 时重合).同理可证(将t 视为0即可),g x ≤1-1ex设直线y =m (m >0)与两切线l 0,l 1交点的横坐标分别为X 0,X t ,则易得X 0=me e -1,X t =m1t +1-t +1 e t -1+t 且X 0<x 1<x 2<X t ,因为t ∈12,1,故1t +1-t +1 e t -1∈-32,23-32e⊆-32,0 ,所以X t =m 1t +1-t +1 e t -1+t <m -32+t <1-2m3,因此x 2-x 1 <X t -X 0<1-2m 3-mee -1=1-5e -2 m 3e -3.3.定义:若h (x )是h (x )的导数,h (x )是h (x )的导数,则曲线y =h (x )在点(x ,h (x ))处的曲率K =h (x )1+h(x ) 232;已知函数f (x )=e x sin π2+x,g (x )=x +(2a -1)cos x ,a <12,曲线y =g (x )在点(0,g (0))处的曲率为24;(1)求实数a 的值;(2)对任意x ∈-π2,0,mf (x )≥g (x )恒成立,求实数m 的取值范围;(3)设方程f (x )=g (x )在区间2n π+π3,2n π+π2n ∈N * 内的根为x 1,x 2,⋯,x n ,⋯比较x n +1与x n +2π的大小,并证明.【解析】(1)由已知g (x )=-2a -1 sin x +1,g (x )=-2a -1 cos x ,所以2a -1 1+12 32=24,解得a =0(a =1舍去),所以a =0;(2)由(1)得g (x )=x -cos x ,f (x )=e x sin π2+x=e x cos x ,则g x =1+sin x ,对任意的x ∈-π2,0,mf x -gx ≥0,即me x cos x -sin x -1≥0恒成立,令x =-π2,则m ⋅0+1-1=0≥0,不等式恒成立,当x ∈-π2,0时,cos x >0,原不等式化为m ≥sin x +1e x cos x ,令h x =sin x +1e x cos x,x ∈-π2,0 ,则hx =cos x e x cos x -e xcos x -sin x sin x +1 e x cos x2=1-sin x cos x -cos x +sin xe x cos 2x =1-cos x 1+sin x e x cos 2x≥0,所以h x 在区间-π2,0单调递增,所以h x max =h 0 =1,所以m ≥1,综上所述,实数m 的取值范围为1,+∞ ;(3)x n +1>x n +2π,证明如下:由已知方程f x =g x 可化为e x cos x -sin x -1=0,令φx =e x cos x -sin x -1,则φ x =e x cos x -sin x -cos x ,因为x ∈2n π+π3,2n π+π2,所以cos x <sin x ,cos x >0,所以φ x <0,所以φx 在区间2n π+π3,2n π+π2n ∈N * 上单调递减,故φ2n π+π3 =e 2n π+π3cos 2n π+π3 -sin 2n π+π3 -1=12e 2n π+π3-32-1≥12e 2π+π3-32-1>22×3+1×12-32-1>0,φ2n π+π2=-2<0,所以存在唯一x 0∈2n π+π3,2n π+π2,使得φx 0 =0,又x n ∈2n π+π3,2n π+π2 ,x n +1-2π∈2n π+π3,2n π+π2 ,则φx n +1-2π =e x n +1-2πcos x n +1-2π -sin x n +1-2π -1=e x n +1-2πcos x n +1-sin x n +1-1=ex n +1-2πcos x n +1-e x n +1cos x n +1=ex n +1-2π-ex n +1cos x n +1<0=φx n由φx 单调递减可得x n +1-2π>x n ,所以x n +1>x n +2π.4.(2024·湖北黄冈·二模)第二十五届中国国际高新技术成果交易会(简称“高交会”)在深圳闭幕.会展展出了国产全球首架电动垂直起降载人飞碟.观察它的外观造型,我们会被其优美的曲线折服.现代产品外观特别讲究线条感,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB ,其弧长为Δs ,当动点从A 沿曲线段AB 运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δ→0ΔθΔs=y1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ,y 分别表示y =f x 在点A 处的一阶、二阶导数)(1)已知抛物线x 2=2py (p >0)的焦点到准线的距离为3,则在该抛物线上点3,y 处的曲率是多少?(2)若函数g x =12x +1-12,不等式g e x +e -x 2 ≤g 2-cos ωx 对于x ∈R 恒成立,求ω的取值范围;(3)若动点A 的切线沿曲线f x =2x 2-8运动至点B x n ,f x n 处的切线,点B 的切线与x 轴的交点为x n +1,0 n ∈N * .若x 1=4,b n =x n -2,T n 是数列b n 的前n 项和,证明T n <3.【解析】(1)∵抛物线x 2=2py (p >0)的焦点到准线的距离为3,∴p =3,即抛物线方程为x 2=6y ,即f x =y =16x 2,则f x =13x ,f x =13,又抛物线在点3,y 处的曲率,则K =131+19⋅3232=1322=212,即在该抛物线上点3,y 处的曲率为212;(2)∵g -x =12-x +1-12=2x 2x +1-12=12-12x +1=-g x ,∴g x 在R 上为奇函数,又g x 在R 上为减函数.∴g e x +e -x 2≤g 2-cos ωx 对于x ∈R 恒成立等价于cos ωx ≥2-e x +e -x2对于x ∈R 恒成立.又因为两个函数都是偶函数,记p x =cos ωx ,q x =2-e x +e -x2,则曲线p x 恒在曲线q x 上方,p x =-ωsin ωx ,qx =-e x -e -x 2,又因为p 0 =q 0 =1,所以在x =0处三角函数p x 的曲率不大于曲线q x 的曲率,即p 0 1+p 20 32≤q 01+q 232,又因为p x =-ω2cos ωx ,qx =-e x +e -x 2,p 0 =-ω2,q 0 =-1,所以ω2≤1,解得:-1≤ω≤1,因此,ω的取值范围为-1,1 ;(3)由题可得f x =4x ,所以曲线y =f x 在点x n ,f x n 处的切线方程是y -f x n =f x n x -x n ,即y -2xn 2-8 =4x n x -x n ,令y =0,得-x n 2-4 =2x n x n +1-x n ,即x n 2+4=2x n x n +1,显然x n ≠0,∴x n +1=x n 2+2x n,由x n +1=x n 2+2x n ,知x n +1+2=x n 2+2x n +2=x n +2 22x n ,同理x n +1-2=x n -2 22x n,故x n +1+2x n +1-2=x n +2x n -22,从而lg x n +1+2x n +1-2=2lg x n +2x n -2,设lg x n +2x n -2=a n ,即a n +1=2a n ,所以数列a n 是等比数列,故a n =2n -1a 1=2n -1lg x 1+2x 1-2=2n -1lg3,即lg x n +2x n -2=2n -1lg3,从而x n +2x n -2=32n -1,所以x n =232n -1+132n -1-1,∴b n =x n -2=432n -1-1>0,b n +1b n =32n -1-132n-1=132n -1+1<132n -1≤1321-1=13,当n =1时,显然T 1=b 1=2<3;当n >1时,b n <13b n -1<13 2b n -2<13n -1b 1,∴T n =b 1+b 2+⋯+b n <b 1+13b 1+⋯+13 n -1b 1=b 11-13 n1-13=3-3⋅13n<3,综上,T n <3n ∈N * .5.(2024·高三·浙江宁波·期末)在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs=y1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y1+y 3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.【解析】(1)K =ΔθΔs=π3π3=1.(2)y =1-x 24,y=-x 41-x 24 -12,y =-141-x 24 -12-x 2161-x 24 -32,故y x =3=-32,y x =3=-2,故K =21+3432=16749.(3)fx =ln x -1,fx =1x ,故φy =22y 1+y 3=22x ln x 3=223s ln s3,其中s =3x ,令t 1=3x 1,t 2=3x 2,则t 1ln t 1=t 2ln t 2,则ln t 1=-t ln tt -1,其中t =t 2t 1>1(不妨t 2>t 1)令p x =x ln x ,p x =1+ln x ⇒p x 在0,1e 递减,在1e ,+∞ 递增,故1>t 2>1e>t 1>0;令h t =ln t 1+t 2 =ln t +1 -t ln tt -1,h 't =1t -1 2ln t -2t -1 t +1,令m (t )=ln t -2t -1 t +1(t >1),则m(t )=t -1 2t (t +1),当t >1时,m (t )>0恒成立,故m (t )在(1,+∞)上单调递增,可得m (t )>m (1)=0,即ln t -2t -1t +1>0,故有h t =1t -12ln t -2t -1 t +1>0,则h t 在1,+∞ 递增,又lim t →1h t =ln2-1,lim t →+∞h t =0,故ln t 1+t 2 ∈ln2-1,0 ,故3x 1+3x 2=t 1+t 2∈2e ,1.6.(2024·高三·辽宁·期中)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f x 是f x 的导函数,fx 是fx 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =f (x )1+f (x ) 232.(1)求曲线f x =ln x +x 在1,1 处的曲率K 1的平方;(2)求余弦曲线h x =cos x (x ∈R )曲率K 2的最大值;【解析】(1)因为f x =ln x +x ,则f x =1x +1,f x =-1x 2,所以K 1=f 11+f 1 232=11+2232=1532,故K 1 2=15322=153=1125.(2)因为h x =cos x x ∈R ,则h x =-sin x ,h x =-cos x ,所以K 2=h x 1+hx 2 32=-cos x1+sin 2x 32,则K 22=cos 2x 1+sin 2x 3=cos 2x2-cos 2x3,令t =2-cos 2x ,则t ∈1,2 ,K 22=2-t t3,设p t =2-t t 3,则pt =-t 3-3t 22-t t 6=2t -6t 4,显然当t ∈1,2 时,p t <0,p t 单调递减,所以p (t )max =p 1 =1,则K 22最大值为1,所以K 2的最大值为1.7.曲线的曲率定义如下:若f '(x )是f (x )的导函数,f "(x )是f '(x )的导函数,则曲线y =f (x )在点(x ,f (x ))处的曲率K =|f "(x )|1+[f '(x )]232.已知函数f x =e x cos x ,g x =a cos x +x a <0 ,曲线y =g (x )在点(0,g (0))处的曲率为24.(1)求实数a 的值;(2)对任意的x ∈-π2,0,tf x -g x ≥0恒成立,求实数t 的取值范围;(3)设方程f x =g x 在区间2n π+π3,2n π+π2(n ∈N +)内的根从小到大依次为x 1,x 2,⋯,x n ,⋯,求证:x n +1-x n >2π.【解析】(1)由已知g (x )=-a sin x +1,g (x )=-a cos x ,,所以a 1+1232=24,解方程得a =-1(2)对任意的x ∈-π2,0,tf x -gx ≥0,即te x cos x -sin x -1≥0恒成立,令x =-π2,则t ⋅0+1-1≥0,不等式恒成立当x ∈-π2,0时,cos x >0,原不等式化为t ≥sin x +1e x cos x 令h x =sin x +1e x cos x,则hx =cos x e x cos x -e xcos x -sin x sin x +1 e x cos x2=1-sin x cos x -cos x +sin xe x cos 2x=1-cos x 1+sin xe x cos 2x所以h x 在区间-π2,0单调递增,所以最大值为h 0 =1所以要使不等式恒成立必有t ≥1(3)由已知方程f x =g x 可化为e x cos x -sin x -1=0令φx =e x cos x -sin x -1,则φ x =e x cos x -sin x -cos x因为x ∈2n π+π3,2n π+π2,所以cos x <sin x ,cos x >0所以φ x <0,φx 在区间2n π+π3,2n π+π2(n ∈N +)上单调递减,φ2n π+π3 =e 2n π+π3cos 2n π+π3 -sin 2n π+π3 -1=e 2n π+π312-32-1≥e 2π+π312-32-1>22⋅3+112-32-1>0φ2n π+π2=-2<0所以存在唯一x 0∈2n π+π3,2n π+π2,φx 0 =0x n ∈2n π+π3,2n π+π2 ,x n +1-2π∈2n π+π3,2n π+π2φx n +1-2π =e x n +1-2πcos x n +1-2π -sin x n +1-2π -1=e x n +1-2πcos x n +1-sin x n +1-1=ex n +1-2πcos x n +1-e x n +1cos x n +1=ex n +1-2π-ex n +1cos x n +1<0=φx n由φx 单调递减可得x n +1-2π>x n 即x n +1-x n >2π8.(2024·湖南永州·三模)曲线的曲率定义如下:若f (x )是f (x )的导函数,令φ(x )=f (x ),则曲线y =f (x )在点x ,f x 处的曲率K =φ (x )1+f (x ) 232.已知函数f (x )=x 2a +x (a >0),g (x )=(x +1)ln (x +1),且f (x )在点(0,f (0))处的曲率K =24.(1)求a 的值,并证明:当x >0时,f (x )>g (x );(2)若b n =ln (n +1)n +1,且T n =b 1⋅b 2⋅b 3⋯b n (n ∈N ∗),求证:(n +2)T n <e 1-n 2.【解析】(1)f ′(x )=2x a +1=φ(x ),φ′(x )=2a,f ′(0)=1,a >0,∵f (x )在点(0,f (0))处的曲率K =24,∴2a(1+12)32=24,解得a =2.当x >0时,h (x )=f (x )-g (x )=12x 2+x -(x +1)ln (x +1),h ′(x )=x +1-ln (x +1)-1=x -ln (x +1),令u (x )=x -ln (x +1),则u ′(x )=1-1x +1=xx +1>0,∴u (x )在x >0时单调递增,∴u (x )>u (0)=0,∴h ′(x )>0,∴函数h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,因此f (x )>g (x ).(2)证明:由(1)可得:12x 2+x >(x +1)ln (x +1),∴ln (x +1)x +1<x (x +1)2(x +1)2,x >0,令x =n ∈N *,则:ln (n +1)n +1<n (n +2)2(n +1)2,∴T n =b 1⋅b 2⋅b 3⋅⋯⋅b n <12n ×1×322×2×432×3×542×4×652×⋯⋯×(n -1)(n +1)n 2×n (n +2)(n +1)2=12n ×12×n +2n +1要证明:(n +2)T n <e 1-n 2,只要证明:2ln (n +2)-(n +1)ln2-ln (n +1)-1+n2<0即可,n =1时,左边=2ln3-2ln2-ln2-12<0n ≥2时,令v (x )=2ln (x +2)-(x +1)ln2-ln (x +1)-1+x 2,v ′(x )=2x +2-ln2-1x +1+12=s (x ),s ′(x )=1(x +1)2-2(x +2)2=-x 2+2(x +1)2(x +2)2<0,∴v ′(x )<v ′(2)=23-ln2<0,∴v (x )在(2,+∞)上单调递减,∴v (x )<v (2)=4ln2-3ln2-ln3=ln2-ln3<0,综上可得:(n +2)T n <e1-n2成立.9.曲率是曲线的重要性质,表征了曲线的“弯曲程度”,曲线曲率解释为曲线某点切线方向对弧长的转动率,设曲线C :y =f x 具有连续转动的切线,在点x ,f x 处的曲率K =f x1+f x 232,其中f x为f x 的导函数,f x 为f x 的导函数,已知f x =x 2ln x -a 3x 3-32x 2.(1)a =0时,求f x 在极值点处的曲率;(2)a >0时,f x 是否存在极值点,如存在,求出其极值点处的曲率;(3)g x =2xe x -4e x +a 2x 2,a ∈0,1e,当f x ,g x 曲率均为0时,自变量最小值分别为x 1,x 2,求证:x1ex 2>e 2.【解析】(1)当a =0时,f x =x 2ln x -32x 2,x >0,可得f x =2x ln x +x -3x =2x (ln x -1),令f x =0,可得x =e ,当0<x <e 时,f x <0,当x >e 时,f x >0,所以当x =e 为f x 在极小值点,又f x =2ln x ,所以f e =2ln e =2,所以K =f e 21+f e 2232=2[1+02]32=2;(2)由f x =x 2ln x -a 3x 3-32x 2,可得f x =2x ln x +x -ax 2-3x =2x ln x -2x -ax 2,令h (x )=f x =2x ln x +x -ax 2-3x =2x ln x -2x -ax 2,则h x =2ln x -2ax ,令h x =0时,可得a =ln x x ,令φ(x )=ln x x ,可得φ (x )=1-ln xx 2,当0<x <e 时,φ x >0,φ(x )=ln xx 单调递增,当x >e 时,φ x <0,φ(x )=ln x x 单调递减,则φ(x )max =1e,所以0<a <1e时,f x =2ln x -2ax =0有解,且有两解x 1,x 3且1<x 1<e <x 3,x 1为f x 的极小值点,x 3为f x 的极大值点,当a =1e 时,f x =2ln x -2ax =0有解,且有唯一解,但此解不是f x 极值点,当a >1e时,f x =2ln x -2ax =0无解,所以f x 无极值点,所以当0<a <1e 时,f x 存在极值点,所以K =f x1+f x 2 32=0;(3)由题意可得g x =2xe x -4e x +a 2x 2,可得g x =2(x +1)e x -4e x +2ax ,要g x ,f x 曲率为0,则g x =f (x )=0,即2ln x -2ax =2a +2xe x =0,可得a =ln x x ,a 2=-xe x ,所以0<a <1e 时,φ(x )=ln xx有两解x 1,x 3,1<x 1<e <x 3,可证x 1x 3>e 2,由(2)可得ln x 1-ax 1=0,ln x 3-ax 3=0,可得ln x 1+ln x 3=ax 1+ax 3,ln x 1-ln x 3=ax 1-ax 3.要证明x 1x 3>e 2,即证明ln x 1+ln x 3>2,也就是a (x 1+x 3)>2.因为a =ln x 1-ln x 3x 1-x 3,所以即证明ln x 1-ln x 3x 1-x 3>2x 1+x 3,即ln x 1x 3<2(x 1-x 3)x 1+x 3,令x1x 3=t ,则0<t <1,于是ln t <2(t -1)t +1,令f (t )=ln t -2(t -1)t +1,则f(t )=1t -4(t +1)2=(t -1)2(t +1)2>0,故函数f (t )在(0,1)上是增函数,所以f (t )<f (1)=0,即ln t <2(t -1)t +1成立.所以x 1x 3>e 2成立.又因为a 2<a ,则-x 2e x 2=ln e-x2e-x 2<ln x 3x 3,由(2)可得φ(x )=ln xx在(e ,+∞)上单调递减,因为e -x 2>e ,x 3>e ,所以x 1ex 2=x 1e -x2>x 1x 3>e 2,10.用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇,衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f x 是f x 的导函数,f x 是f x 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =f x1+f x 232.(1)求曲线f x =ln x +x 在1,1 处的曲率K 1的平方;(2)求余弦曲线h x =cos x x ∈R 曲率K 2的最大值;(3)余弦曲线h x =cos x x ∈R ,若g x =e x h x +xh x ,判断g x 在区间-π2,π2上零点的个数,并写出证明过程.【解析】(1)因为f x =ln x +x ,所以f x =1x +1,f x =-1x2,所以K 1=f 11+f 1 232=11+2232=1532,∴K 1 2=15322=153=1125.(2)因为h x =cos x x ∈R ,h x =-sin x ,h x =-cos x ,所K 2=h x 1+h x 2 32=-cos x 1+sin 2x32,K 22=cos 2x 1+sin 2x 3=cos 2x 2-cos 2x3,令t =2-cos 2x ,则t ∈1,2 ,K 22=2-t t3,设p t =2-t t 3,t ∈1,2 ,则pt =-t 3-3t 22-t t 6=2t -6t4,显然当t ∈1,2 时,p t <0,p t 在1,2 上单调递减,所以p t max =p 1 =1,所以K 22最大值为1,所以K 2的最大值为1.(3)g x 在区间-π2,π2上有且仅有2个零点.证明:g x =e x cos x -x sin x ,所以g x =e x cos x -sin x -x cos x +sin x ,①当x ∈-π2,0时,因为cos x ≥0,sin x ≤0,则cos x -sin x >0,-x cos x +sin x >0,∴g x >0,g x 在-π2,0上单调递增,又g 0 =1>0,g -π2 =-π2<0.∴g x 在-π2,0上有一个零点,②设φx =e x -x ,则φ x =e x -1,当x ∈0,π4时,φx ≥0,φx 单调递增,φx =e x -x ≥φ0 =1,又cos x ≥sin x >0,∴g x =e x cos x -x sin x ≥e x sin x -x sin x =sin x e x -x >0恒成立,∴g x 在0,π4上无零点.③当x ∈π4,π2 时,0<cos x <sin x ,g x =e x cos x -sin x -x cos x +sin x <0,∴g x 在π4,π2 上单调递减,又g π2 =-π2<0,g π4 =22e π4-π4>0.∴g x 在π4,π2上必存在一个零点,综上,g x 在区间-π2,π2上有且仅有2个零点.。
第六章曲线和曲面3、参照Hermite三次曲线的几何形式,试用B[P0 P1Pu P1u Puu P1uu]T , 推导相应五次曲线的调和函数和系数矩阵M。
解:设Hermite五次曲线的几何形式为:P(t)=a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0其中 t∈[0,1]按题意,已知曲线两端点的坐标值P0 P1曲线两端点的一阶导数值P0u P1u曲线两端点的二阶导数值P0uu P1uu则求出系数a5,a4,a3,a2,a1,a0则P(t)就可确定;由于P(t)= a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0其中 t∈[0,1]P’(t)=5a5t4 + 4a4t3 + 3a3t2 + 2a2t + a1P”(t)=20a5t3+12a4t2+6a3t+2a2P0=P(0)=a0P1=P(1)=a5+a4+a3+a2+a1+a0P0’=P’(0)=a1P1’=P’(1)=5a5+4a4+3a3+2a2+a1P0”=P”(0)=2a2P1”=P”(1)=20a5+12a4+6a3+2a2所以 a0 = P(0)a1 =P’(0)a2 =P”(0)/2a3 = 10P(1)- 10P(0) - 4P’(1) - 6P’(0) + P”(1)/2 - 3P”(0)/2 a4 =-15P(1)+ 15P(0) + 7P’(1) + 8P’(0) - P”(1) - 3P”(0)/2 a5 = 6P(1)- 6P(0) - 3P’(1) - 3P’(0) - P”(0)/2 + P”(1)/2 =>P(t)=[ -6P(0) + 6P(1) - 3P’(0) - 3P’(1) - P”(0)/2 + P”(1)/2] t5+[+15P(0) - 15P(1) + 8P’(0) + 7P’(1) + 3P”(0)/2 ] t4+[-10P(0) + 10P(1) - 6P’(0) - 4P’(1) - 3P”(0)/2 + P”(1)/2] t3+ [ P”(0)/2] t2 + [P’(0)] t +P(0)整理得:P(t) = (-6t5 + 15t4 - 10t3 + 1) P(0) + (6t5-15t4+10t3) P(1)+ (-3t5 + 8t4 -6t3 + t) P’(0) + (-3t5 +7t4-4t3) P’(1)+ (-t5/2+ 3t4/2-3t3/2+t2/2) P”(0) + (t5/2-t4+t3/2) P”(1)故调和函数为:F(0)= -6t5 + 15t4 - 10t3 + 1F(1)= 6t5 - 15t4 + 10t3F(2)= -3t5 + 8t4 - 6t3 + tF(3)= -3t5 + 7t4- 4t3F(4)= -t5/2 + 3t4/2 -3t3/2 + t2/2F(5)= t 5/2 - t 4 + t 3/2 系数矩阵为:- 6 6 -3 -3 -1/2 1/2 15 -15 8 7 3/2 -1 -10 10 -6 -4 -3/2 1/2 0 0 0 0 1/2 0 0 0 1 0 0 0 1 0 0 0 0 09.试求两段三次Hermite 曲线达C 1和G 1连续的条件 解:两段三次Hermite 曲线分别为:Q 1(t 1)=a 3 t 13 + a 2 t 12+ a 1 t 1+ a 0 t 1∈[0 1] Q 2(t 2)=b 3 t 23 + b 2 t 22+ b 1 t 2+ b 0 t 2∈[0 1] (1)依据G 1连续充要条件为: Q 1(1)和Q 2(0)在P 点处重合,且其在P 点处的切矢量方向相同,大小不等即 Q 1(1)= Q 2(0), Q 1’(1)≠ Q 2’(0) ,Q 1”(1)= Q 2”(0) 而 Q 1(1)= a 3 + a 2 + a 1 + a 0 Q2(0)= b 0Q 1’(t 1)=3a 3 t 12 + 2a 2 t 1+ a 1Q 2’(t 2)=3b 3 t 22 + 2b 2 t 2+ b 1Q 1’(1)=3a 3 + 2a 2+ a 1 Q 2’(0)= b 1Q 1”(t 1)=6a 3 t 1 + 2a 2 Q 2”(t 2)=6b 3 t 2 + 2b 2 Q 1”(1)=6a 3 + 2a 2 Q 2”(0)= 2b 2=> 两段三次Hermite 曲线:Q 1(t 1)=a 3 t 13 + a 2 t 12+ a 1 t 1+ a 0 t 1∈[0 1] Q 2(t 2)=b 3 t 23 + b 2 t 22+ b 1 t 2+ b 0 t 2∈[0 1]要达到G 1连续,其系数必须满足下列关系式: a 3 + a 2 + a 1 + a 0 = b 0 3a 3 + 2a 2 + a 1 ≠ b 1 6a 3 + 2a 2 =2 b 2(2)依据C 1连续充要条件为: Q 1(1)和Q 2(0)在P 点处重合,且其在P 点处的切矢量方向相同,大小相等即 Q 1(1)= Q 2(0), Q 1’(1)= Q 2’(0) ,Q 1”(1)= Q 2”(0) 而 Q 1(1)= a 3 + a 2 + a 1 + a 0 Q2(0)= b 0Q 1’(t 1)=3a 3 t 12 + 2a 2 t 1+ a 1Q 2’(t2)=3b3t22 + 2b2t2+ b1Q1’(1)=3a3+ 2a2+ a1Q 2’(0)= b1Q 1”(t1)=6a3t1+ 2a2Q 2”(t2)=6b3t2+ 2b2Q 1”(1)=6a3+ 2a2Q 2”(0)= 2b2=> 两段三次Hermite曲线:Q1(t1)=a3t13 + a2t12+ a1t1+ at1∈[0 1]Q 2(t2)=b3t23 + b2t22+ b1t2+ bt2∈[0 1]要达到C1连续,其系数必须满足下列关系式:a3+ a2+ a1+ a= b3a3+ 2a2+ a1 =b16a3 + 2a2=2 b210.给定四点P1(0,0,0),P2(1,1,1),P3(2,-1,-1),P4(3,0,0),用其作为特征多边形来构造一条三次Bezier曲线,并计算参数为0,1/3,2/3,1的值。
第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。
分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。
证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r=)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。
反之,若r ×'r =0 ,对)(t r =)(t λ)(t e求微商得'r ='λe +λ'e ,于是r ×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。
当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。
所以,)(t r 具有固定方向。
6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。
分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。
微分几何参考答案微分几何参考答案微分几何是数学中的一个分支,研究的是曲线、曲面以及它们的性质和变化。
它在物理学、计算机图形学、机器人学等领域都有着广泛的应用。
在微分几何的学习过程中,我们经常会遇到一些问题和难题,下面是一些常见问题的参考答案,希望能对大家的学习有所帮助。
1. 什么是曲线的切向量?曲线的切向量是指曲线上某一点的切线方向。
在微分几何中,我们可以通过对曲线进行参数化来求得切向量。
设曲线为r(t),其中t为参数,那么曲线的切向量可以表示为r'(t)。
2. 什么是曲面的法向量?曲面的法向量是指曲面上某一点的垂直于曲面的方向。
在微分几何中,我们可以通过对曲面进行参数化来求得法向量。
设曲面为r(u,v),其中u和v为参数,那么曲面的法向量可以表示为N = r_u × r_v,其中r_u和r_v分别表示对u和v 求偏导数后的向量。
3. 什么是曲率?曲率是描述曲线或曲面弯曲程度的量。
在微分几何中,我们可以通过计算曲线或曲面的切向量和法向量之间的夹角来求得曲率。
对于曲线来说,曲率可以表示为k = |r''(t)| / |r'(t)|^3,其中r''(t)表示对t求二阶导数后的向量。
对于曲面来说,曲率可以表示为k = |N_u × N_v| / |r_u × r_v|^2,其中N_u和N_v分别表示对u和v求偏导数后的向量。
4. 什么是高斯曲率和平均曲率?高斯曲率和平均曲率是描述曲面性质的重要指标。
高斯曲率描述了曲面在某一点的弯曲程度,平均曲率描述了曲面在某一点的整体弯曲情况。
在微分几何中,我们可以通过计算曲面的法曲率和切曲率来求得高斯曲率和平均曲率。
高斯曲率可以表示为K = det(II) / det(I),其中II和I分别表示第二基本形式和第一基本形式,det表示行列式。
平均曲率可以表示为H = (k1 + k2) / 2,其中k1和k2分别表示主曲率。
第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。
分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。
证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r=)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。
反之,若r ×'r =0 ,对)(t r =)(t λ)(t e求微商得'r ='λe +λ'e ,于是r ×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。
当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。
所以,)(t r 具有固定方向。
6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。
分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。
第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 ;分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e为常向量,因为)(t e的长度固定;证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λe ×e =0 ;反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λe ×'e =0 ,则有 λ =0 或e ×'e =0 ;当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e=0,而e×'e2)=22'e e -e ·'e 2)=2'e ,因为e 具有固定长,e ·'e = 0 ,所以 'e =0 ,即e为常向量;所以,)(t r 具有固定方向;6.向量函数)(t r平行于固定平面的充要条件是r 'r ''r =0 ;分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n= 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系;证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n为常向量,且)(t r·n = 0 ;两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直于同一非零向量n,因而共面,即r 'r ''r =0 ;反之, 若r 'r ''r =0,则有r ×'r =0 或r ×'r ≠0 ;若r ×'r =0,由上题知)(t r 具有固定方向,自然平行于一固定平面,若r ×'r≠0 ,则存在数量函数)(t λ、)(t μ,使''r =r λ+μ'r①令n =r ×'r,则n≠0 ,且)(t r ⊥)(t n ;对n =r ×'r求微商并将①式代入得'n =r ×''r =μr ×'r=μn ,于是n ×'n =0 ,由上题知n 有固定方向,而)(t r ⊥n ,即)(t r 平行于固定平面;§3 曲线的概念1.求圆柱螺线x =t cos ,y =t sin ,z=t 在1,0,0的切线和法平面;解 令t cos =1,t sin =0, t =0得t =0, 'r0={ -t sin ,t cos ,1}|0=t ={0,1,1},曲线在0,1,1的切线为 111z y x ==- ,法平面为 y + z = 0 ;2.求三次曲线},,{32ct bt at r =在点0t 的切线和法平面;解 }3,2,{)('2000ct bt a t r = ,切线为230020032ct ct z bt bt y a at x -=-=-, 法平面为 0)(3)(2)(30202000=-+-+-ct z ct bt y bt at x a ; 3. 证明圆柱螺线r ={ a θcos ,a θsin ,θb } +∞∞- θ的切线和z 轴作固定角;证明 'r= {-a θsin ,a θcos ,b },设切线与z 轴夹角为ϕ,则ϕcos=22||||'ba be r k r +=⋅ 为常数,故ϕ为定角其中k 为z 轴的单位向量; 4. 求悬链线r ={t ,a t a cosh }-∞∞ t 从t =0起计算的弧长;解'r = {1,atsinh },|'r | =at2sinh 1+ = a tcosh , s=a tta ta dt sinh cosh=⎰ ;9.求曲线2232,3axz y a x ==在平面3ay =与y = 9a 之间的弧长;解 曲线的向量表示为r =}2,3,{223xa a x x ,曲面与两平面3a y = 与y = 9a 的交点分别为x=a 与x=3a , 'r =}2,,1{2222xa ax -,|'r |=444441x a a x ++=22222xa a x +,所求弧长为a dx xa a x s aa9)2(22322=+=⎰; 10. 将圆柱螺线r ={a t cos ,a t sin ,b t }化为自然参数表示;解 'r= { -a t sin ,a t cos ,b},s = t b a dt r t 220|'|+=⎰ ,所以22ba s t +=,代入原方程得 r ={a cos22ba s +, a sin22ba s +,22ba bs +}11.求用极坐标方程)(θρρ=给出的曲线的弧长表达式; 解由θθρcos )(=x ,θθρsin )(=y 知'r ={)('θρθcos -θθρsin )(,)('θρθsin +θθρcos )(},|'r| = )(')(22θρθρ+,从0θ到θ的曲线的弧长是s=⎰θθ0)(')(22θρθρ+d θ ;§4 空间曲线1.求圆柱螺线x =a t cos ,y =a t sin ,z = b t 在任意点的密切平面的方程;解 'r ={ -a t sin ,a t cos ,b},''r={-a t cos ,- a t sin ,0 } 所以曲线在任意点的密切平面的方程为sin cos cos sin sin cos ta ta b t a t a bt z t a y t a x ------ = 0 ,即b t sin x-b t cos y+a z-ab t=0 .2. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线;解 原点对应t=0 , 'r0={ t sin +t t cos ,t cos - t t sin ,t e +t t e 0}=t ={0,1,1},=)0(''r{2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} ,所以切线方程是110zy x == ,法面方程是 y + z = 0 ; 密切平面方程是202110zy x=0 ,即x+y-z=0 ,主法线的方程是⎩⎨⎧=+=-+00z y z y x 即112zy x =-=; 从切面方程是2x-y+z=0 ,副法线方程式111-==zy x ; 3.证明圆柱螺线x =a t cos ,y =a t sin ,z = b t 的主法线和z 轴垂直相交;证 'r ={ -a t sin ,a t cos ,b}, ''r ={-a t cos ,- a t sin ,0 } ,由'r ⊥''r 知''r为主法线的方向向量,而''r 0=⋅k所以主法线与z 轴垂直;主法线方程是与z 轴有公共点o,o,bt;故圆柱螺线的主法线和z 轴垂直相交;4.在曲线x = cos αcost ,y = cos αsint , z = tsin α的副法线的正向取单位长,求其端点组成的新曲线的密切平面;解 'r = {-cos αsint, cos αcost, sin α } , ''r={ -cos αcost,- cos αsint ,0 }=⨯⨯=|'''|'''r r r rγ{sin αsint ,- sin αcost , cos α }新曲线的方程为r ={ cos αcost + sin αsint ,cos αsint- sin αcost ,tsin α + cos α }对于新曲线'r={-cos αsint+ sin αcost ,cos αcost+ sin αsint,sin α }={sin α-t,cos α-t, sin α} , ''r={ -cos α-t, sin α-t,0} ,其密切平面的方程是即 sin α sint-α x –sin α cost-α y + z – tsin α – cos α = 0 .5.证明曲线是球面曲线的充要条件是曲线的所有法平面通过一定点; 证 方法一:⇒设一曲线为一球面曲线,取球心为坐标原点,则曲线的向径)(t r具有固定长,所以r ·'r= 0,即曲线每一点的切线与其向径垂直,因此曲线在每一点的法平面通过这点的向径,也就通过其始点球心;⇐ 若一曲线的所有法平面通过一定点,以此定点为坐标原点建立坐标系,则r ·'r = 0,)(t r具有固定长,对应的曲线是球面曲线;方法二:()r r t =是球面曲线⇔存在定点0r 是球面中心的径矢和常数R 是球面的半径使220()r r R -=⇔02()0r r r '-⋅= ,即0()0r r r '-⋅= ﹡而过曲线()r r t =上任一点的法平面方程为()0r r ρ'-⋅= ;可知法平面过球面中心⇔﹡成立;所以,曲线是球面曲线的充要条件是曲线的所有法平面通过一定点;6.证明过原点平行于圆柱螺线r ={a t cos ,a t sin ,b t }的副法线的直线轨迹是锥面2222)(bz y x a =+.证 'r={ -a tsin ,a t cos , }, ''r ={-a t cos ,- a t sin ,0 } ,'r×''r=},cos ,sin {a t b t b a ---为副法线的方向向量,过原点平行于副法线的直线的方程是az t b y t b x =-=cos sin ,消去参数t 得2222)(bz y x a =+; 7.求以下曲面的曲率和挠率⑴ },sinh ,cosh {at t a t a r =,⑵ )0)}(3(,3),3({323a t t a at t t a r +-=;解 ⑴},cosh ,sinh {'a t a t a r =,}0,sinh ,cosh {''t a t a r =,}0,cosh ,{sinh '''t t a r =,}1,cosh ,sinh {'''--=⨯t t a r r,所以t a t a t a r r r k 2323cosh 21)cosh 2(cosh 2|'||'''|==⨯= ta t a a r r r r r 22422cosh 21cosh 2)'''()''','','(==⨯=τ ; ⑵ }1,2,1{3'22t t t a r +-= ,}1,0,1{6'''},,1,{6''-=-=a r t t a r,'r ×''r =}1,2,1{18222+--t t t a ,22322223)1(31)1(2227)1(218|'||'''|+=++=⨯=t a t a t a r r r k22224232)1(31)1(2182618)'''()''','','(+=+⨯⨯⨯=⨯=t a t a a r r r r r τ ; 8.已知曲线}2cos ,sin ,{cos 33t t t r = ,⑴求基本向量γβα ,,;⑵曲率和挠率;⑶验证伏雷内公式;分析 这里给出的曲线的方程为一般参数,一般地我们可以根据公式去求基本向量和曲率挠率,我们也可以利用定义来求;解 ⑴ }4,sin 3,cos 3{cos sin }2sin 2,cos sin 3,sin cos 3{'22--=--=t t t t t t t t t r,,cos sin 5|)('|t t t r dtds ==设sintcost>0, 则}54,sin 53,cos 53{|'|'--==t t r r α,}0,cos 53,sin 53{cos sin 51t t t t ds dt dt d ==•αα, }0,cos ,{sin ||t t ==••ααβ,}53,sin 54,cos 54{--=⨯=t t βαγ ,⑵ t t k cos sin 253||==•α,}0,cos ,sin {cos sin 254t t t t --=•γ ,由于•γ 与β 方向相反,所以 tt cos sin 254||==•γτ⑶ 显然以上所得 τγβα,,,••k 满足 βτγβα -==••,k ,而γτακβ+-=-=•}0,sin ,{cos cos sin 51t t tt 也满足伏雷内公式 ;9.证明如果曲线的所有切线都经过一的定点,则此曲线是直线;证 方法一:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的切线方程是)(')(t r t r λρ=-,由条件切线都过坐标原点,所以)(')(t r t rλ=,可见r ∥'r ,所以r 具有固定方向,故r =)(t r是直线;方法二:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的切线方程是)(')(t r t rλρ=-,由条件切线都过坐标原点,所以)(')(t r t rλ=,于是'r =λ''r ,从而'r ×''r=0 ,所以由曲率的计算公式知曲率k =0,所以曲线为直线;方法二:设定点为0r ,曲线的方程为r =()r s ,则曲线在任意点的切线方程是()()r s s ρλα-=,由条件切线都过定点0r ,所以0()()r r s s λα-=,两端求导得:()()s s αλαλκβ'-=+, 即(1)()0s λαλκβ'++= ,而(),()s s αβ无关,所以10λ'+=,可知0,()0s λκ≠∴=,因此曲线是直线;10. 证明如果曲线的所有密切平面都经过一的定点,则此曲线是平面曲线;证 方法一:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的密切平面的方程是0))('')('())((=⨯⋅-t r t r t r ρ,由条件0))('')('()(=⨯⋅-t r t r t r,即r 'r ''r =0,所以r 平行于一固定平面,即r =)(t r是平面曲线;方法二:取定点为坐标原点建坐标系,曲线的方程设为r =)(s r,则曲线在任意点的密切平面方程是0))((=⋅-γρ s r ,由条件0)(=⋅γs r ,两边微分并用伏雷内公式得τ-0)(=⋅β s r ;若0)(=⋅β s r ,又由0)(=⋅γ s r 可知)(s r ∥)(s r •= α,所以r =)(s r平行于固定方向,这时r =)(s r表示直线,结论成立;否则0=τ,从而知曲线是平面曲线;方法三:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的密切平面方程是0))('')('())((=⨯⋅-t r t r t r ρ,由条件0))('')('()(=⨯⋅-t r t r t r,即r 'r ''r =0,所以r ,'r ,''r 共面,若r ∥'r ,则r =)(t r是直线,否则可设''',''''''r r r r r r λμλμ=+∴=+,所以','','''r r r 共面,所以0=τ,从而知曲线是平面曲线;11. 证明如果一条曲线的所有法平面包含常向量e,那么曲线是直线或平面曲线;证 方法一:根据已知0=⋅e α,若α是常向量,则k=||•α =0 ,这时曲线是直线;否则在0=⋅e α两边微分得•α ·e =0,即 k β ·e =0,所以β ·e =0,又因0=⋅e α,所以γ ∥e ,而γ 为单位向量,所以可知γ 为常向量,于是0||||==•γτ,即0=τ,此曲线为平面曲线;方法二:曲线的方程设为r =)(t r ,由条件'r ·e =0,两边微分得''r ·e =0,'''r ·e=0,所以'r , ''r ,'''r共面,所以'r ''r '''r =0;由挠率的计算公式可知0=τ,故曲线为平面曲线;当'r ×''r=0 时是直线;方法三:曲线的方程设为r =)(t r,由条件'r ·e =0,两边积分得p 是常数;因r e p ⋅=是平面的方程,说明曲线r =)(t r在平面上,即曲线是平面曲线,当'r 有固定方向时为直线;12.证明曲率为常数的空间曲线的曲率中心的轨迹仍是曲率为常数的曲线;证明 设曲线C :r =)(s r的曲率k 为常数,其曲率中心的轨迹C 的方程为:)(1)(s ks r βρ+= ,β 为曲线C 的主法向量,对于曲线C 两边微分得γτγτααρ kk k s =+-+=)(1)(' ,α ,γ ,τ分别为曲线C 的单位切向量,副法向量和挠率,βτγτρ k k 2''-=•,k |||'|τρ= ,23'''k τρρ=⨯ α ,曲线C 的曲率为k k k k ==⨯=-33233|||||'||'''|ττρρρ为常数;13.证明曲线x=1+3t+22t ,y=2-2t+52t ,z=1-2t 为平面曲线,并求出它所在的平面方程 ;证 'r ={3+4t, -2+10t,-2t}, ''r ={4,10,-2}, '''r={0,0,0}曲线的挠率是0)'''()''','','(2=⨯=r r r r r τ,所以曲线为平面曲线;曲线所在平面是曲线在任一点的密切平面;对于t=0,r ={1,2,1},'r ={3, -2,0}, ''r ={4,10,-2}, '''r={0,0,0};所以曲线的密切平面,即曲线所在平面是02104023121=-----z y x ,即2x+3y+19z –27=0.14.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也互相平行;证 设曲线Γ:r =)(s r与Γ:)(s r r =点s 与s 一一对应,且对应点的切线平行,则)(s α=)(s α±, 两端对s 求微商得ds s d αα ±=, 即dss d s k s k )()(ββ ±= ,这里k ≠0,若k=||α =0,则β 无定义,所以β ∥β ,即主法线平行,那么两曲线的副法线也平行;15.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的主法线平行,证明它们在对应点的切线作固定角;证 设α ,α分别为曲线Γ、Γ的切向量,β ,β 分别为曲线Γ、Γ的主法向量,则由已知)()(s s ββ ±=.....① ,而ds s d ds d αααααα ⋅+⋅=⋅)(= dss d s k k )(βααβ ⋅+⋅ 将①式代入 0)(=⋅±⋅dss d k βααβ ;所以α ·α=常数,故量曲线的切线作固定角;16.若曲线Γ的主法线是曲线Γ的副法线, Γ的 曲率、挠率分别为τκ,;求证k=0λ2κ+2τ ,其中0λ为常数;证 设Γ的向量表示为r =)(s r,则Γ可表示为ρ =)(s r +)(s λ)(s β , Γ的切向量'ρ =α+λ β +λ-k α +τγ 与β 垂直,即'ρ ·β =λ =0,所以λ为常数,设为0λ,则'ρ =1-0λk α +0λτγ ;再求微商有''ρ =-0λk α+1-0λkk β +0λτ γ -0λ2τβ ,''ρ ·β =1-0λkk -0λ2τ=0,所以有k=0λ2κ+2τ;17.曲线r ={at-sint,a1-cost,4acos2t}在那点的曲率半径最大;解 'r= a{1-cost,sint,-2sin2t } , ''r = a{sint,cost,-cos 2t}, |2sin |22|'|tr = ,'r ×''r =}1,2cos ,2{sin 2sin 2}2cos 4,2cos 2sin 2,2sin 2{22232tt t a t a t t t a -=--,|'r ×''r |=22sin 222t a , |2sin|81|||'''|3ta r r r k =⨯=,|2sin |8t a R = ,所以在t=2k+1π,k 为整数处曲率半径最大;18. 已知曲线)(:)(3s r r C C =∈上一点)(0s r 的邻近一点)(0s s r ∆+ ,求)(0s s r ∆+点到)(0s r 点的密切平面、法平面、从切平面的距离设点)(0s r 的曲率、挠率分别为00,τκ;解)(0s s r ∆+-)(0s r =30200])([!31)(21)(s s r s s r s s r ∆++∆+∆ε =300021s s ∆+∆βκα +300000020)(61s k k ∆+++-εγτκβα ,设030201γεβεαεε ++=,其中0lim 0=→∆ε s ;则)(0s s r ∆+ -)(0s r=0330003202003120])(61[])(6121[])(61[γετκβεκκαεκ s s s s s ∆++∆++∆+∆+-+∆ 上式中的三个系数的绝对值分别是点)(0s s r ∆+ 到)(0s r的法平面、从切平面、密切平面的距离;§5 一般螺线5. 证明如果所有密切平面垂直于固定直线,那么它是平面直线.证法一: 当曲线的密切平面垂直于某固定直线时,曲线的副法向量γ是常向量.即γ=0;曲线的挠率的绝对值等于|γ|为零,所以曲线为平面曲线; 证法二:设n 是固定直线一向量,则'r ·n =0 ,积分得r ·n=p ,说明曲线在以n 为法向量的一个平面上,因而为平面直线;证法三:设n 是固定直线一向量,则'r ·n =0 ,再微分得''r ·n =0 ,'''r ·n=0 ;所以'r 、''r 、'''r三向量共面,于是'r ''r '''r = 0 ,由挠率的计算公式知τ=0,因此曲线为平面曲线;7.如果两曲线在对应点有公共的副法线,则它们是平面曲线;证 设一曲线为Γ:r =)(s r,则另一曲线Γ的表达式为:+=)(s r ρ)(s λ)(s γ ,)(s γ 为曲线Γ在点s 的主法向量,也应为Γ在对应点的副法线的方向向量;'ρ =α+λ γ -λτβ 与γ 正交,即'ρ ·γ =0,于是λ =0,λ为常数;'ρ =α -λτβ ,''ρ =k β -λτ β -λτ-k α+τγ 也与γ 正交,即''ρ ·γ =-λ2τ=0,而λ≠0,所以有τ=0,曲线Γ为平面曲线;同理曲线Γ为平面曲线;8. 如果曲线Γ:r =)(s r为一般螺线, α、β 为Γ的切向量和主法向量,R 为Γ的曲率半径;证明Γ:ρ=R α-⎰ds β 也是一般螺线;证 因为Γ为一般螺线, 所以存在一非零常向量e 使α与e成固定角,对于曲线Γ,其切向量'ρ=αββκα R R R =-+与α共线,因此也与非零常向量e 成固定角, 所以Γ也为一般螺线;9.证明曲线r =)(s r 为一般螺线的充要条件为0),,(....=r r r证 βκ =r ,γτκτκβκτκκακκγκτβκακ )2()(3,23....2++-+-+-=++-=r r 25333....)(3)2(),,(κτκτκκτκτκκτκκτκτκ -=-=-+=k r r r =)(5κτκ,其中k ≠0. 曲线r =)(s r 为一般螺线的充要条件为κτ为常数,即•)(κτ=0,也就是0),,(....=r r r ;方法二: 0),,(....=r r r ,即0),,(=ααα;曲线r =)(s r 为一般螺线,则存在常向量e ,使α·e =常数,所以,0,0,0=⋅=⋅=⋅e e e ααα所以ααα ,,共面,从而ααα ,,=0;反之,若ααα ,,=0,则α 平行于固定平面,设固定平面的法矢为e ,则有0=⋅e α,从而α·e = p 常数,所以r =)(s r 为一般螺线;方法三:曲线r =)(s r 为一般螺线⇔存在常向量e 使e β⊥,即0e ββ⋅=⇔平行于固定平面以e 为法向量的平面r ⇔平行于一固定平面(,,)0r r r ⇔= ;方法四:""⇒设r =)(s r 为一般螺线,存在常向量e 使e α⋅=常数,即r e ⋅=常数,连续三次求微商得0,0r e r e ⋅=⋅=,0r e ⋅= ,所以0),,(....=r r r ;""⇐因为0),,(....=r r r ,所以r 平行于固定平面,设固定平面的法矢为n 常向量,则r n ⊥,而,r n ββ∴⊥,所以曲线为一般螺线;10. 证明一条曲线的所有切线不可能同时都是另一条曲线的切线;证 设曲线Γ与Γ在对应点有公共的切线,且Γ的表达式为:r =)(s r ,则Γ:+=)(s r ρ)(s λ)(s α ,λ≠0,其切向量为'ρ=α+λ α+λk β 应与α平行,所以k =0,从而曲线Γ为直线;同理曲线Γ为直线,而且是与Γ重合的直线;所以作为非直线的两条不同的曲线不可能有公共的切线;11.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也互相平行,且它们的挠率和曲率都成比例,因此如果Γ为一般螺线, 则Γ也为一般螺线;证 设曲线Γ:r =)(s r 与Γ:)(s r r =点建立了一一对应,使它们对应点的切线平行,则适当选择参数可使)(s α =)(s α , 两端对s 求微商得ds s d αα =, 即ds s d s k s k )()(ββ = ,这里0 ds s d ,所以有β =β ,即主法线平行,从而)(s γ =)(s γ ,即两曲线的副法线也平行;且,ds s d κκ= 或ds s d =κκ;)(s γ =)(s γ 两边对s 求微商得dss d s s )()(βτβτ -=-,于是 ,ds s d ττ=或ds s d =ττ,所以,ττκκ= 或τκτκ=;。
曲线积分与曲面积分习题详解习题9-11 计算以下对弧长的曲线积分: 〔1〕d CI y s =⎰,其中C 是抛物线2y x =上点(0,0)O 到(1,1)A 之间的一段弧;解: 由于C 由方程2y x = 〔01x ≤≤〕给出,因此 1122220d 1()d 14d CI y s x x x x x x '==+=+⎰⎰⎰1232011(14)(551)1212x ⎡⎤=+=-⎢⎥⎣⎦. 〔2〕d CI x s =⎰,其中C 是圆221x y +=中(0,1)A 到11(,)22B -之间的一段劣弧;解:C AB =的参数方程为:cos ,sin x y θθ==()42ππθ-≤≤,于是2422cos (sin )cos I d ππθθθθ-=-+⎰241cos 12d ππθθ-==+⎰.〔3〕(1)d Cx y s ++⎰,其中C 是顶点为(0,0),(1,0)O A 及(0,1)B 的三角形的边界;解:L 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,那么有(1)Cx y ds ++⎰(1)OAx y ds =++⎰(1)ABx y ds +++⎰(1)BOx y ds +++⎰,由于OA :0y =,01x ≤≤,于是2222()()10dx dy ds dx dx dx dx dx=+=+=,故 103(1)(01)2x y ds x dx ++=++=⎰⎰OA, 而:AB 1y x =-,01x ≤≤,于是2222()()1(1)2dx dy ds dx dx dx dx dx=+=+-=. xyo(1,0)A (0,1)B xyoABC故1(1)[(1)ABx y ds x x ++=+-+=⎰⎰同理可知:BO 0x =〔01y ≤≤〕,ds dy ===,那么 103(1)[01]2BOx y ds y dy ++=++=⎰⎰. 综上所述33(1)322Cx y ds -+=+=+⎰. 〔4〕22Cx y ds +⎰,其中C 为圆周22x y x +=;解 直接化为定积分.1C 的参数方程为11cos 22x θ=+,1sin 2y θ=〔02θπ≤≤〕,且12ds d θθ=.于是22201cos222Cx y ds d πθθ+=⋅=⎰⎰.〔5〕2 ds x yz Γ⎰,其中Γ为折线段ABCD ,这里A ,B ,C ,D 的坐标依次为(0,0,0), (0,0,2),(1,0,2),(1,2,3);解 如下图,2222 ABBCCDx yzds x yzds x yzds x yzds Γ=++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,那么ds =2dt =,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,那么,ds dt ==故122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,那么ds ==,故1122012(2))CDx yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222 ABBCCDx yzds x yzds x yzds x yzds Γ=++=⎰⎰⎰⎰〔6〕2ds y Γ⎰,其中Γ为空间曲线2222,(0),x y z a a x z a ⎧++=>⎨+=⎩. 解:Γ在,x y 平面的投影为:2222()x y a x a ++-=,即22220x y ax +-=,从而2221222a x y a ⎛⎫-+= ⎪⎝⎭.利用椭圆的参数方程得Γ的参数方程为11cos ,22:, 02.11cos ,22x a a y z a x a a θθθπθ⎧=+⎪⎪⎪Γ=≤≤⎨⎪⎪=-=+⎪⎩由于d s θθθ==. 那么332π2π2222 001ds sin d sin d 222a y a θθθθΓ==⎰⎰2 设一段曲线ln (0)y x a x b =<≤≤上任一点处的线密度的大小等于该点横坐标的平方,求其质量.解依题意曲线的线密度为2x ρ=,故所求质量为2CM x ds =⎰,其中:ln (0)C y x a x b =<≤≤.那么C 的参数方程为ln x xy x =⎧⎨=⎩(0)a x b <≤≤, 故ds ==,所以3221[(1)]3b a aM x ==+⎰3322221[(1)(1)]3b a =+-+.3 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。
第二章曲面论§ 1曲面的概念1.求正螺面r ={ u cos v ,u sin v , bv }的坐标曲线.解u-曲线为r ={u cos v0,u sin v0,bv 0}= {0,0 , bv0} + u { cos v0, sinv0,0}, 为曲线的直母线;v-曲线为r ={ u0cos v , u0 sin v ,bv }为圆柱螺线.2 .证明双曲抛物面r ={ a (u+v) , b (u-v ) ,2uv }的坐标曲线就是它的直母线。
证u-曲线为r ={ a (u+v。
), b (u-v。
),2u v o}={ a v。
,b v。
,0}+ u{a,b,2 v。
} 表示过点{ a v。
,b v。
,。
}以{a,b,2 v。
}为方向向量的直线;v-曲线为「= {a ( u0 +v) , b ( u 0 -v ) ,2 u 0 v} = {a u。
,b u。
,。
} +v{a,-b,2 u。
} 表示过点(a u。
, b u。
,。
)以{a,-b,2 u。
}为方向向量的直线。
3.求球面r ={acos ;:sin「,a cos;: sin ;:, a si n二}上任意点的切平面和法线方程。
saa. n解r ={ -a sin 二cos「,-a sinsin ::,acos「:} , r .匸{-a cossin ::, a coscos 「,0}x - a cos、:cos「y - a cos 二sin「z - a sin 二任意点的切平面方程为- a sin 二cos ::「:-a sinsin「 a cos=0「a cos、:sin「 a cos、:cos「0即xcos :cos + ycos :sin + zsin 二-a = 0 ;x a cos、:cos「y a cos、:sin「z a sin 二。
cos 二cos「cossin「sin 二2 24.求椭圆柱面令斗=1在任意点的切平面方程,并证明沿每一条直母线,此 a b 曲面只有一个切平面。
曲线积分与曲面积分习题详解1计算下列对弧长的曲线积分: (1)/ = J c 7ydy. 是抛物线y = x 2±.点0(0,0)到 A(l,l)之间的一段弧:解:由于C 由方程y = x 2 (0<x<l )给出,因此/ =+=卜』+ 4耳」1>心2[詁(5俣])•解:C = AB 的参数方程为:其中C 是圆X + y 2 = 1中A(0J)到“5"0-討誇),于是[\ cos & J(-sin &),+ cos ,(3) 切.Cr + y + l)d.其中C 是顶点为0(0,0)/(1・0)及B(0J)的三角形的边界:解:厶是分段光滑的闭曲线,如图9一2所示,根据积分的可加性, 则有(^(x + y + \)c/s=L (x + y + \)ds + J# (x + y + \)cls +1。
(x + y + V)ds ,由于 OA: y = 0 0<x< 1,于是ds = J(—)2+(—)2dx = W+0认=dx , V dxdxL (x + y + l)tZy = £(x + 0 + \)dx =寸,而AB: y = l-x, OSSI,于是 + (-厅dx = dlx ・之间的一段劣弧;ds =[^(x + y + l)cls= [ [x + (\-x) + \]y/2dx = 2y/2 »同理可知BO:x = 0(0<y<l), ds = 1(—)2 + (—)2 Jv = Vo2 + l2c/y = Jv > 则Y ay dyL(x+y + l)〃$= (JO+y + lk/y = [・综上所述df r(x-y + l)J5 = - + 2V2 + - = 3 + 2>/2 ・( 2 2(4)y/x2 + y2ds ,其中C 为圆周x2 + y2 = x :解直接化为左积分.C』勺参数方程为JC =1+J>COS&, y = -sin& ( Q<0<2TT ),2 2 - 2且ds =加⑹ F +[y(e)F〃e=”& •于是(5)[r x\yzds,英中T为折线段ABCD.这里A,3・C\D的坐标依次为(0,0.0), (0,0,2), (1,0,2), (1,2,3):解如图所示,^x2yzcls = \_x2yzds+ \_x2yzJs+ [_・线段殛的参数方程为x = 0,.y = 0,z = 2r(0<r<l),则T份+%+(少= V0:+02 +22Jr = 2r/r,= J 0 • 0 • 2/ • 2clt = 0线段BC 的参数方程为x = /,y = 0,z = 2(0<r<l),则ds = jF+O'+oTud?,故f _Fyzd$ = f ・0・2d/ = 0, J RC - J o线段丽的参数方程为x = l,y = 2/,z = 2 + r (0<r<l),则 ds = Jo, +2, + Fdf = yj5dt , 故J-x 2yzds = f 'l 2-2t (2 + t)-甌=2x/5j ;⑵ +12= |点所以L 疋 gds = |*_x 2 yzcls + [—yzds + J 而yzjds = ->j5 .2 2 2 2(6)f rds,其中「为空间曲线广+ G/>o ).JrX + z =",»解:F 在x,y 平而的投影为:x 2+y 2+(a-x)2=a 2 ,即 2x 2 + y 2-2t/x = 0 ,从而利用椭圆的苓奴方程得F 的参数二x = —a + — acos 0. 2 22设一段曲线y = lnx (0<a<x<b)上任一点处的线密度的大小等于该点横坐标的 平方,求其质量.解 依题意曲线的线密度为p = x 2,故所求质疑为M=\(X 2ds,英中0 <(9 < 2^.由于则ds = y]x ,2 + y t2 +z t2d0 =d&.sin 2 ede = ^=.2V2/ c 2nC :y = \nx (Q<a<x<b)・则C 的参数方程为片=片(0 < < x < b) > y = In x所以M = £—V1 + A -\Z Y = [*(1 + d = *[(1 +戻);一(1 + “2)訂3求八分之一球面x 2 + r + z 2=l(x>0,y>0.z>0)的边界曲线的重心,设曲线的密 度 ° =解 设曲线在xOy^yOz^Ox 坐标平而的弧段分别为厶、L 「厶,曲线的重心坐标为2「xdx _ 2 _ 4 =A/JoTf-x 2=A/=3^'故所求重心坐标为[二.二、学.\37T 3龙 3〃 丿4. 径为川 中心角为加的圆弧C 对于它的对称轴的转动惯応/ (设线密度解:如右图建立坐标系,则I = J c y 2^ •为了便于计算,利用c 的参数方程C :x = Rcost,y = Rsint (-a <t <a).于是I = Jc y 2(^s =「R‘ sin 2 tyj(-Rsinty +(/?cos/)2dr =R 、[a sin 2 tdt = /?'(a-sintzcostz).J-ajv=HS Jv=(订习lx — — \l\ + x 2dx , X由对称性可得重心坐标则曲线的质量为出=j ds诂卩严+o+J 严卜為严习题9・21设L为xOy直线y = b (b为常数),证明J g, y)dy=o。
第十章 曲线曲面积分§10.1对弧长的曲线积分一、选择题1. 设曲线弧段AB 为,则曲线积分有关系( ).(A)(,)d (,)d ABBAf x y s f x y s =-⎰⎰; (B )(,)d (,)d A BB Af x y s f x y s =⎰⎰;(C )(,)d (,)d A B B Af x y s f x y s +=⎰⎰;(D)(,)d (,)d AB BAf x y s f x y s =--⎰⎰. 答(B).2. 设有物质曲线23:,,(01),23t t C x t y z t ===≤≤其线密度为ρ=,它的质量M =( ).(A)10t ⎰; (B )1t t ⎰;(C)t ⎰; (D)t ⎰. 答(A).3.设OM 是从(0,0)O 到(1,1)M 的直线段,则与曲线积分OMI s=⎰不相等的积分是( ).(A)10x ⎰; (B)10y ⎰;(C)d r r ⎰; (D)10e r ⎰答(D).4 .设L 是从(0,0)A 到(4,3)B 的直线段,则曲线积分()d Lx y s -=⎰( ).(A)403d 4x x x ⎛⎫- ⎪⎝⎭⎰; (B)303d 4y y y ⎛⎫- ⎪⎝⎭⎰;(C)3034y y y ⎛- ⎝⎰; (D)4034x x x ⎛- ⎝⎰. 答(D).5. 设L 为抛物线2y x =上从点(0,0)到点(1,1)的一段弧,则曲线积分s =⎰( ).(A)x ⎰; (B)y ⎰;(C)10x ⎰; (D)y ⎰. 答(C).6. 设L 是从(1,0)A 到(1,2)B -的直线段,则曲线积分()d Lx y s +=⎰( ).(A); (B)2; (C) (D) 答(D).二、填空题1. 设L 是圆周221x y +=,则31d LI x s =⎰与52d LI x s =⎰的大小关系是.答:12.I I =2. 设L 是连接(1,0)A 与(0,1)B 两点的直线段, 则()d Lx y s +=⎰.3. 设:cos ,sin (02),L x a t y a t t π==≤≤则22()d n Lx y s +=⎰.答:212a a π+.4. 设:cos ,sin (02),L x a t y a t t π==≤≤则22()d Lx y s -=⎰.答:0.5. 设L 是圆周221x y +=,则2d LI x s ==⎰.答:π.6. 设:cos ,sin ,t t t x e t y e t z e Γ===,上相应于t 从0变到2的这段弧,则曲线积分22()d Lx y s -=⎰.答:2)e --. 7. 设L 为曲线24y x =上从点(0,0)A 到点(1,2)B 的弧段,则Ls =⎰.答:3. 三、解答题1.计算下列对弧长的曲线积分: (1)d Lx s ⎰其中为由直线y x =与抛物线2y x =所围区域的整个边界.答: 11)12.(2)22d x y Les +⎰其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界.答: 2 2.4a a e π⎛⎫+- ⎪⎝⎭(3)2d x yz s Γ⎰,其中Γ为折线ABCD ,这里,,,A B C D 依次为点(0,0,0)、(0,0,2)、(1,0,2)、(1,3,2).答:9. (4)2d Ly s ⎰其中L 为摆线一拱(sin ),(1cos )(02)x a t t y a t t π=-=-≤≤.答: 34232.53a ⋅⋅(5)22()d Lx y s +⎰其中L 为曲线(cos sin )(sin cos )x a t t t y a t t t =+⎧⎨=-⎩(02)t π≤≤. 答: 2322(12).a ππ+§10.2对坐标的曲线积分一、选择题1. 设AB 为由(0,)A π到(,0)B π的直线段,则sin d sin d ABy x x y +=⎰( ).(A)2; (B)1-; (C)0; (D)1. 答(C). 2. 设C 表示椭圆22221x y a b+=,其方向为逆时针,则2()d C x y x +=⎰ ( ).(A)ab π; (B)0; (C)2a b +; (D)1. 答(B). 3. 设C 为由(1,1)A 到(2,3)B 的直线段,则(3)d (2)d Cx y x y x y +++=⎰( ).(A)21[(2)(23)]d x x x x x +++⎰; (B)21[(21)(213)]d x x x x x +-+-+⎰(C)21[(73)2(51)]d x x x -+-⎰; (D)21[(73)(51)]d x x x -+-⎰. 答(C).4. 设曲线C 的方程为x y =(0)2t π≤≤,则22d d Cx y y y x x -=⎰( )(A)20[cos sin t π⎰; (B)2220(cos sin )d t t t π-⎰(C)2200cos sin ππ-⎰⎰(D)201d 2t π⎰.答(D).5. 设()f u 连续可导,L 为以原点为心的单位圆,则必有( ).(A)22()(d d )0Lf x y x x y y ++=⎰;(B)22()(d d )0Lf x y x y y x ++=⎰(C)22()(d d )0Lf x y x y y ++=⎰; (D)22()(d d )0Lf x y x x y ++=⎰.答(A).6. 设C 是从(0,0)O 沿折线11y x =--到(2,0)A 到的折线段,则d d Cx y y x -=⎰( )(A)0; (B)1-; (C)2-; (D)2. 答(C).二、填空题1. L 为xoy 平面内直线x a =上的一段,则(,)d LP x y x =⎰.答:0.2. 设L 为2y x =上从(0,0)O 到(2,4)A 的一段弧,则22()d Lx y x -=⎰.答:5615-. 3. 设L 为2y x =上从(0,0)O 到(2,4)A 的一段弧,则22()d Lx y y -=⎰.答:403-.4.L 为圆弧y (2,2)A 的一段弧,则d Lxy y =⎰ .答:43. 5.设L 为圆周222()(0)x a y a a -+=>及x 轴所围成的在第一象限的区域的整个边界(按逆时针方向绕行),则d Lxy y =⎰.答:32a π-.6.设(2)d (23)d 9Lx y x x y y -++=-⎰,其中L 为xoy 平面上简单闭曲线,方向为逆时针.则L 所围成的平面区域D 的面积等于.答:32. 三、解答题1.计算()d ()d Lx y x y x y ++-⎰,其中L 为:(1) 抛物线2y x =上从(1,1)到(4,2)的一段弧; (2) 从点(1,1)到点(4,2)的一直线段;(3) 先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4) 曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 答案:3432(1);(2)11;(3)14;(4).332.计算d d Ly x x y +⎰其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到2π的一段弧.答:0. 3.计算22()d ()d L x y x x y yx y+--+⎰,其中L 为圆周222x y a +=(方向按逆时针). 答:2π-.4.计算d d (1)d x x y y x y z Γ+++-⎰其中Γ为从点(1,1,1)到点(2,3,4)的直线段.答:13.5. 计算22(2)d (2)d Lx xy x y xy y -+-⎰,其中L 是2y x =上从点(1,1)-到点(1,1)的一段弧.答:1415-. §10.3 格林公式一、选择题1. 设C 是圆周222x y R +=,方向为逆时针方向,则22d d Cx y x xy y -+⎰用格林公式计算可化为( ).(A)230d d Rr r πθ⎰⎰; (B)2200d d Rr r πθ⎰⎰;(C)230d 4sin cos d Rr r πθθθ-⎰⎰; (D)220d d RR r r πθ⎰⎰. 答(A).2. 设L 是圆周222x y a +=,方向为负向,则3223()d ()d Lx x y x xy y y -+-⎰= ( ).(A)323a π; (B)4a π-; (C); (D)42a π-. 答(D). 3. 设L 是从(0,0)O 沿折线22y x =--到(4,0)A 到的折线段,则d d Cx y y x -=⎰( )(A)8; (B)8-; (C)4-; (D)4. 答(B).4. 设(,),(,)P x y Q x y 在单连通区域D 内具有一阶连续偏导数,则d d LP x Q y +⎰在D 内与路径无关的充分必要条件是在D 内恒有( ).(A)0Q P x y ∂∂+=∂∂; (B)0Q Px y∂∂-=∂∂; (C)0P Q x y ∂∂-=∂∂; (D)0P Q x y∂∂+=∂∂. 答(B). 5. 设L 为一条不过原点,不含原点在内的简单闭曲线, 则22d d 4L x y y xx y -=+⎰( ).(A)4π; (B)π; (C)2π; (D)0. 答(D).6. 设L 为一条包含原点在内的简单闭曲线,则22d d 4L x y y xI x y -==+⎰( ).(A)因为Q P x y ∂∂=∂∂,所以0I =; (B)因为,Q Px y∂∂∂∂不连续,所以I 不存在; (C)2π; (D)因为Q Px y∂∂≠∂∂,所以沿不同的L ,I 的值不同. 答(C). 7. 表达式(,)d (,)d P x y x Q x y y -为某函数(,)U x y 的全微分的充分心要条件是( ).(A)P Q x y ∂∂=∂∂; (B)P Q y x∂∂=∂∂; (C)P Q x y ∂∂=-∂∂; (D)P Q y x∂∂=-∂∂. 答(D). 8. 已知2()d d ()x ay x y yx y +++为某函数(,)U x y 的全微分,则a =( ).(A)0; (B)2; (C)1-; (D)1. 答(B). 9. 设L 是从点(1,1)A 到点(2,3)B 的直线段,则(3)d (3)d Lx y x y x y +++=⎰( ).(A)2311(3)d (6)d x x y y +++⎰⎰; (B)21[(6)(23)]d x x x x x +++⎰;(C)23111(31)d (3)d 2y x x y y ++++⋅⎰⎰; (D)21[(31)(51)]d x x x -++⎰. 答(A).10*. 设()f x 连续可导,且(0)1f =,曲线积分(,)43(0,0)()tan d ()d I yf x x x f x y ππ=-⎰与路径无关,则()f x =( ).(A)1cos x +; (B)1cos x -; (C)cos x ; (D)sin x . 答(C).二、填空题1. 设区域D 的边界为L ,方向为正向, D 的面积为σ. 则d d Lx y y x -=⎰.答: 2σ.2. 设(,)f x y 在22:14x D y +≤上具有二阶连续偏导数, L 是D 的边界正向,则(,)d [3(,)]d y x Lf x y y y f x y x -+=⎰.答: 6π.3. 设L 是圆周229x y +=,方向为逆时针, 则2(2)d (4)d Lxy y x x x y -+-=⎰.答: 27π-.4. 设L 为闭曲线2x y +=方向为逆时针,,a b 为常数, 则d d L ax y by x x y -+⎰=.答: 4()a b +.5. 设ABCDA 为以点(1,0),(0,1),(1,0),(0,1)A B C D --为顶点的正方形逆时针方向一周,则d d Lx yx y++⎰=.答: 0.6. 设L 为圆周221x y +=上从(1,0)A 到(0,1)B 再到(1,0)C -的曲线段,则2d y Le y =⎰.答: 0. 7.(2,2)2(0,0)2d (3)d xy x x y +-=⎰.答: 2.8. 设L 为直线y x =从(0,0)O 到(2,2)A 的一段, 则22d 2d y y Le x xye y +=⎰.答: 42e .9*. 设L 为抛物线上一段弧,试将积分(,)d (,)d LP x y x Q x y y +⎰化为对弧长的曲线积分,其中(,),(,)P x y Q x y 在L 上连续.答:22d 14L P xQ s x ++⎰.10*. 设()f x 连续可导,且(0)0f =,曲线积分[()]sin d ()cos d x Lf x e y x f x y y --⎰与路径无关,则()f x =.答: 2x xe e --.三、解答题1. 计算22d d 2()L y x x y x y -+⎰,其中L 为圆周22(1)2x y -+=的正向.答:π-. 2. 计算(24)d (536)d Lx y x y x y -+++-⎰,其中L 是顶点分别为(0,0)、(3,0)和(3,2)的三角形正向边界.答:12. 3. 计算3222(2c o s )d (12s i n3)d Lx y y x x y x x y y -+-+⎰,其中L 为抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧.答:24π.4. 计算22()d (sin )d Lx y x x y y --+⎰,其中L 是圆周y 上由(0,0)到(1,1)的一段弧. 答:7sin 264-+.5. 证明下列曲线积分与路径无关,并计算积分值:(1) (2,3)(1,1)()d ()d x y x x y y ++-⎰.答:52. (2)(2,1)423(1,0)(23)d (4)d xy y x x xy y -++-⎰.答: 5.6. 验证下列(,)d (,)d P x y x Q x y y +在整个xoy 平面内是某函数(,)u x y 的全微分,并求函数(,)u x y .(1) (2)d (2)d x y x x y y +++. (2) 22d d xy x x y +.(3) 22(2cos cos )d (2sin sin )d x y y x x y x x y y ++-.答: (1) 22222x y xy ++; (2) 2x y ; (3)22cos sin x y y x +. 7. 用格林公式计算223()d (2)d Lx x y x xy y y -+-+⎰,其中L 是圆周y (2,0)A 到(0,0)O 的一段弧.答:324π-.8. 用格林公式计算423(23)d (4)d Lxy y x x x xy y -+++-⎰,其中L 是圆周y (1,0)A 到(1,0)B -的一段弧.答:62π-.§10.4 对面积的曲面积分一、选择题1. 设∑是xoy 平面上的一个有界闭区域xy D ,则曲面积分(,,)d f x y z S ∑⎰⎰与二重积分(,)d d xyD f x y x y ⎰⎰的关系是 ( ).(A)(,,0)d f x y S ∑⎰⎰=(,)d d xyD f x y x y ⎰⎰;(B)(,,0)d f x y S ∑⎰⎰=(,)d d xyD f x y x y -⎰⎰;(C)(,,0)d f x y S ∑<⎰⎰(,)d d xyD f x y x y ⎰⎰;(D)(,,0)d f x y S ∑>⎰⎰(,)d d xyD f x y x y ⎰⎰.答(A).2. 设∑是抛物面22(04)z x y z =+≤≤,则下列各式正确的是( ).(A)(,,)d f x y z S ∑⎰⎰=22224(,,)d d x y f x y x y x y +≤+⎰⎰;(B)(,,)d f x y z S ∑⎰⎰=22224(,,d x y f x y x y x y +≤+⎰⎰;(C)(,,)d f x y z S ∑=⎰⎰22224(,,d x y f x y x y x y +≤+⎰⎰;(D)(,,)d f x y z S ∑=⎰⎰22224(,,d x y f x y x y x y +≤+⎰⎰. 答(D).3.设2222:(0)x y z a z ∑++=≥,1∑是∑在第一卦限中的部分,则有( ).(A)1d 4d x S x S ∑∑=⎰⎰⎰⎰;(B)1d 4d y S x S ∑∑=⎰⎰⎰⎰;(C)1d 4d z S z S ∑∑=⎰⎰⎰⎰;(D)1d 4d xyz S xyz S ∑∑=⎰⎰⎰⎰. 答(C).4. 设∑是锥面1)z z =≤≤,则22()d x y S ∑+=⎰⎰( ).(A)22()d x y S ∑+=⎰⎰2120d d r r r πθ⋅⎰⎰;(B)22()d xy S ∑+=⎰⎰120d d r r r πθ⋅⎰⎰;(C)22()d xy S ∑+=⎰⎰21200d d r r πθ⎰;(D)22()d x y S ∑+=⎰⎰2120d d r r r πθ⋅⎰;. 答(D).5. 设∑为平面1234x y z++=在第一卦限内的部分, 则42d 3z x y S ∑⎛⎫++= ⎪⎝⎭⎰⎰( ).(A)4d d xyD x y ⎰⎰;(B)4d d 3xyD x y ⋅⎰⎰; (C)23004d d x y ⎰; (D)32004d d x y ⎰;. 答(B). 6. 设∑为曲面222()z x y =-+在xoy 平面上方的部分,则d z S ∑=⎰⎰().(A)222200d (2)d r r r r πθ--⋅⎰⎰;(B)2220d (2d r r r πθ-⎰⎰;(C)220d )d r r r πθ-⋅⎰⎰; (D)220d d r r r πθ-⎰⎰. 答(D).7. 设∑为球面2222x y z z ++=,则下列等式错误的是( ).(A)22()d 0x yz S ∑+=⎰⎰; (B )22()d 0y y z S ∑+=⎰⎰;(C)22()d 0z x y S ∑+=⎰⎰; (D)2()d 0x y z S ∑+=⎰⎰. 答(C). 二、填空题1. 设2222:x y z a ∑++=,则222()d x y z S ∑++=⎰⎰.答: 44a π.2. 设∑为球面2222x y za ++=,则222d xy z S ∑=⎰⎰.答: 0.3. 设∑为上半球面z ,则d z S ∑=⎰⎰.答: 3a π.4. 设∑为下半球面z =,则d z S ∑=⎰⎰.答: 3a π.5 设∑为球面2222x y z a ++=,则d z S ∑=⎰⎰.答: 23a π.6. 设∑为上半球面z ,则d x S ∑=⎰⎰.答: 0. 7. 设∑为平面1232x y z ++=在第一卦限部分,则2d 3z y x S ∑⎛⎫++=⎪⎝⎭⎰⎰.答:8. 设∑为平面1x y z ++=在第一卦限部分,则d z S ∑=⎰⎰.答:. 9. 设∑为平面226x y z ++=在第一卦限部分, 则(522)d x y z S ∑---=⎰⎰.答: 272-. 三、解答题1. 计算曲面积分(,,)d f x y z S ∑⎰⎰,其中∑为抛物面222()z x y =-+在xoy 面上方部分,(,,)f x y z 分别如下:(1) (,,)1f x y z =; (2) 22(,,)f x y z x y =+; (3) (,,)2f x y z z =. 答: (1) 136π; (2) 14930π; (3) 11110π. 2. 计算22()d x y S ∑+⎰⎰,其中∑是锥面z =1z =所围成的区域的整个边界曲面.答:.3. 计算22()d x y S ∑+⎰⎰,其中∑是锥面222z x y =+被平面0z =和3z =所截得的部分.答: 9π.4. 计算42d 3z x y S ∑⎛⎫++ ⎪⎝⎭⎰⎰,其中∑为平面1234x y z ++=在第一卦限中的部分.答: 5. 计算()d x y z S ∑++⎰⎰,其中∑为球面2222x y z a ++=上(0)z h h a ≥<<的部分.答: 22()a a h π-.§10.5 对坐标的曲面积分一、选择题1. 设∑是球面2222x y z a ++=外侧,222:xy D x y a +≤,则下列结论正确的是( ).(A) 2d d z x y ∑=⎰⎰222()d d xyD ax y x y --⎰⎰;(B)2d d z x y ∑=⎰⎰2222()d d xyD a x y x y --⎰⎰; (C)2d d z x y ∑=⎰⎰0;(D )(A)(B)(C)都不对. 答(C). 2. 设∑为柱面222x y a +=被平面0z =及3z =所截得的部分外侧,则d d d d d d z x y x y z y x z ∑++=⎰⎰( ).(A) 3d d z x y ∑⎰⎰; (B)3d d x y z ∑⎰⎰;(C)3d d y x z ∑⎰⎰0; (D)d d d d x y z y x z ∑+⎰⎰. 答(D).3. 设∑为柱面222x y a +=被平面0z =及3z =所截得的部分外侧在第一卦限内的部分,则d d d d d d z x y x y z y x z ∑++=⎰⎰( ).(A)303d y x ⎰⎰;(B)302d z y ⎰⎰;(C)30d z x ⎰⎰; (D)30d zx ⎰⎰. 答(B).4. 设2222:x y z a ∑++=,1:z ∑=∑取外侧, 1∑取上侧.下列结论正确的是( ).(A) 12222()d d d d xy z x y a x y ∑∑++=⎰⎰⎰⎰;(B)12222()d d 2d d x y z x y a x y ∑∑++=⎰⎰⎰⎰;(C)2222222()d d 2d d x y a x y z x y a x y ∑+≤++=⎰⎰⎰⎰; (D) 0. 答(D).5. 已知∑为平面1x y z ++=在第一卦限内的下侧,则d d z x y ∑=⎰⎰( ).(A) 1100d (1)d x x x y y ----⎰⎰; (B)110d (1)d x x x y y ---⎰⎰;(C)110d (1)d xy x y x ---⎰⎰; (D) 110d (1)d x y x y x ----⎰⎰. 答(A).6. 曲面积分2d d z x y ∑⎰⎰在数值上等于( ).(A)向量2z i 穿过曲面∑的流量;(B)密度为2z 的曲面∑的质量;(C)向量2z k 穿过曲面∑的流量;(D)向量2z j 穿过曲面∑的流量. 答(C).二、填空题1. 设∑是xoy 平面上的闭区域0101x y ≤≤⎧⎨≤≤⎩的上侧,则()d d x y z y z ∑++=⎰⎰.答: 0.2. 设∑是xoy 平面上的闭区域0101x y ≤≤⎧⎨≤≤⎩的上侧,则()d d x y z x y ∑++=⎰⎰.答: 1.3. 设∑为球面2222x y z a ++=取外侧, 则222()d d xy z x y ∑++=⎰⎰..答: 0.4. 设∑为球面2222x y z a ++=取外侧, 则d d z x y ∑=⎰⎰..答:343a π. 5. 设∑为球面2222()()()x a yb zc R -+-+-=取外侧, 则曲面积分d d z x y ∑=⎰⎰..答:343R π. 6. 设∑为球面2222x y z a ++=取外侧, 则222()d d xy z x y ∑++=⎰⎰.答: 0. 三、解答题1. 计算22d d x y z x y ∑⎰⎰,其中∑是球面2222x y z R ++=的下半部分的下侧.答:77426422453753105R R ππ⎛⎫⋅-⋅⋅= ⎪⎝⎭. 2. 计算d d d d d d z x y x y z y z x ∑++⎰⎰,其中∑是柱面221x y +=被平面0z =及3z =所截得的在第一卦限内的部分的前侧.答: 32π.3. 计算d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中∑是平面0x =,0y =,0z =,及1x y z ++=所围成的空间区域的整个边界曲面的外侧.答:18. 4*. 把对坐标的曲面积分(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y∑++⎰⎰化成对面积的曲面积分,其中:(1) ∑是平面326x y ++=在第一卦限部分的上侧. (2) ∑是抛物面228()z x y =-+在xoy 面上方部分的上侧. 答: (1)32d 55P Q S ∑⎛⎫++ ⎪ ⎪⎝⎭⎰⎰; (2) S ∑.§10.6 高斯公式一、选择题1. 设空间闭区域Ω的边界是分片光滑的闭曲面∑围成, ∑取外侧,则Ω的体积V =( ).(A)1d d d d d d 3y y z z z x x x y ∑++⎰⎰; (B )1d d d d d d 3x y z y z x z x y∑++⎰⎰; (C)1d d d d d d 3z y z z z x y x y ∑++⎰⎰; (D) 1d d d d d d 3x y z z z x y x y ∑++⎰⎰.答(B). 2.设∑是长方体{}:(,,)0,0,0,x y z x a y b z c Ω≤≤≤≤≤≤的整个表面的外侧,则222d d d d d d x y z y z x z x y ∑++=⎰⎰( ). (A) 2a bc ; (B)2ab c ; (C)2abc ; (D) ()a b c abc ++. 答(D).3. 在高斯定理的条件下,下列等式不成立的是( ).(A)d d d P Q R x y z x y z Ω⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰(cos cos cos )d P Q R S αβγ∑++⎰⎰;(B)d d d d d d P y z Q z x R x y ∑++=⎰⎰d d d P Q R x y z x y z Ω⎛⎫∂∂∂++ ⎪∂∂∂⎝⎭⎰⎰⎰; (C)d d d d d d P y z Q z x R x y ∑++=⎰⎰d d d R Q P x y z x y z Ω⎛⎫∂∂∂++ ⎪∂∂∂⎝⎭⎰⎰⎰; (D)d d d d d d P y z Q z x R x y ∑++=⎰⎰(cos cos cos )d P Q R S αβγ∑++⎰⎰.答(C).4. 若∑是空间区域Ω的外表面,下述计算用高斯公式正确的是( ).(A) 2d d (2)d d x y z z y x y ∑++=⎰⎰(22)d d d x x y z Ω+⎰⎰⎰;(B)3()d d 2d d d d xyz y z xy z x z x y ∑--+=⎰⎰2(321)d d d xx x y z Ω-+⎰⎰⎰;(C) 2d d (2)d d x y z z y z x ∑++=⎰⎰(21)d d d x x y z Ω+⎰⎰⎰;(D)2d d (2)d d x x y z y y z ∑++=⎰⎰(22)d d d x x y z Ω+⎰⎰⎰. 答(B).二、填空题1. 设∑是球面2222x y z a ++=外侧, 则d d z x y ∑=⎰⎰.答:343a π. 2. 设∑是球面2222x y z a ++=外侧, 则333d d d d d d x y z y z x z x y ∑++=⎰⎰.答:525a π. 3. 设∑是长方体{}:(,,)0,0,0,x y z x a yb zc Ω≤≤≤≤≤≤的整个表面的外侧,则d d d d d d x y z y z x z x y ∑++=⎰⎰.答: 3abc .4. 设∑是长方体{}:(,,)0,0,0,x y z x a y b z c Ω≤≤≤≤≤≤的整个表面的外侧,则222d d d d d d x y z y z x z x y ∑++=⎰⎰.答: ()a b c abc ++.5. 向量A yzi zxj xyk =++穿过圆柱222(0)x y a z h +=≤≤全表面∑流向外侧的通量Φ=.答: 0.6.向量2(23)()(2)A x z i xz y j y z k =+-+++穿过球面222(3)(1)(2)9x y z -+++-=∑流向外侧的通量Φ=.答: 108π.三、解答题1. 计算222d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为平面0x =,0y =,0z =及x a =,y a =,z a =所围成的立体的表面外侧.答: 43a . 2. 计算333d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为球面2222xy z a ++=外侧.答:525a π. 3. 计算2232d d ()d d (2)d d xz y z xy z z x xy y z x y ∑+-++⎰⎰,其中∑为上半球体222x y a +≤,0z ≤.答:525a π. 4. 计算d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑是界于0z =和3z =之间的圆柱体223x y +≤的整个表面外侧. 答: 81π.5. 计算24d d d d d d xz y z y z x yz x y ∑-+⎰⎰,其中∑是平面0x =,0y =,0z =与平面1x =,1y =,1z =所围成的立方体的全表面外侧. 答:32. 6. 计算22d d (2)d d d d 2zx y z z xy z x x y ∑+-+⎰⎰,其中∑为曲面22z x y =+与平面1z =所围成的立体的表面外侧. 答:4π. 7. 计算曲面积分3333d d (2)d d ()d d x y z y z x z x x y ∑+++-⎰⎰,其中∑为曲面z =z .答: 326(1cos2)5π⋅⋅-.8. 计算曲面积分222d d d d (1)d d xy y z z z x z xx y ∑++-⎰⎰,其中∑为由曲面z =0z =所围成的空间区域的整个边界表面外侧.答: 322161625335πππ⋅⋅-=. 9*.用Gauss 公式计算曲面积分2()d d d d z x y z z x y ∑+-⎰⎰,其中∑是旋转抛物面221()2z x y =+介于平面0z =及2z =之间部分的下侧. 答: 8π.§10.7 斯托克斯公式一、选择题1. 在斯托克斯定理的条件下,下列等式不成立的是( ).(A) d d d P x Q y R z Γ++=⎰d d d d d d y z z x x y x y z P Q R ∑∂∂∂∂∂∂⎰⎰; (B) d d d P x Q y R z Γ++=⎰cos cos cos d S x y z PQ Rαβγ∑∂∂∂∂∂∂⎰⎰; (C)d d d P x Q y R z Γ++=⎰{}cos ,cos ,cos d i j k S x y z P Q Rαβγ∑∂∂∂⋅∂∂∂⎰⎰; (D)d d d P x Q y R z Γ++=⎰{}d ,d ,d i j k x y z x y z PQR∑∂∂∂⋅∂∂∂⎰⎰. 答(D). 2. 设Γ是从点(,0,0)a 到点(0,,0)a 再到(0,0,)a 最后回到(,0,0)a 的三角形边界(0a >),则()d ()d ()d z y x x z y y x z Γ-+-+-=⎰( ).(A) 23a ; (B )26a ; (C )22a ; (D) 2a . 答(A).3. 设Γ为圆周2229,0x y z z ++==,若从z 轴正向看去, Γ为逆时针方向.则22d 3d d y x x y z z Γ+-=⎰( ).(A) π; (B)6π; 9π; (D) 0. 答(C).二、填空题1. 设Γ为圆周2222,0x y z a z ++==,若从z 轴正向看去, Γ为逆时针方向.22d 2d d y x x y z z Γ+-=⎰.答: 0.2. 设u xy yz zx xyz =+++, 则(1)grad u =.答: {},,y z yz z x xz x y xy ++++++(2) div(grad )u = .答: 0.(3) rot(grad )u = . 答: 0.3. 设向量场(23)(3)(2)A z y i x z j y x k =-+-+-,则rot A =.答: 246i j k ++.4. 设向量场22sin sin()sin(cos )A x yi y xz j xy z k =++, 则rot A =.答: 222[sin(cos )cos()]sin(cos )[cos()cos ]x z xy xz i y z j y z xz x y k --+-. 三、解答题1. 计算d d d y x z y x z Γ++⎰,其中Γ为圆周2222,0x y z a x y z ++=++=,若高等数学 第十章 曲线曲面积分 第 21 页 学院 专业 学号 姓名从z 轴正向看去, Γ为逆时针方向.答: 2a .2*. 计算()d ()d ()d yz x z x y x y z Γ+-+-⎰,其中Γ为椭圆222x y a +=, 1(0,0)x y a b a b+=>>,若从x 轴正向看去, Γ为逆时针方向.答: π3. 计算23d d d y x xz y yz z Γ-+⎰,其中Γ为圆周222,2x y z z +==,若从z 轴正向看去, Γ为逆时针方向.答: 20π-.4. 计算22d 3d d y x x y z z Γ+-⎰,其中Γ为圆周2229,0x y z z ++==,若从z轴正向看去, Γ为逆时针方向.答: 9π.5*. 利用斯托克斯公式把曲面积分rot d A n S ∑⋅⎰⎰化为曲线积分,并计算积分值,其中A 、∑及n 分别如下:(1) 2A y i xyj xzk =++,∑为上半球面z , n 是∑的单位法向量.(2) ()A y z i yzj xzk =-+-,∑为{}(,,)02,02,02x y z x y z ≤≤≤≤≤≤的表面外侧去掉xoy 平面上的那个底面,, n 是∑的单位法向量.答: (1) 0. (2) 4-.。
十 曲线积分与曲面积分习题(一) 对弧长的曲线积分1. 计算ds y x L⎰+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t .解32032222202222222cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x Lπππ==++=+⎰⎰⎰.2. 计算ds x L⎰,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.解 )12655(1214121210-+=++=⎰⎰⎰dx x x dx x ds x L. 3.计算⎰Lyds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧.解⎰L y d s =dy y y dy y y ⎰⎰+=+202202421)2(1 )122(34)4(4412202-=++=⎰y d y . 4.计算⎰+Lds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段.解⎰+L ds y x )(=23211)(10=++⎰x x . 5.计算⎰L xyzds ,其中L 是曲线2321,232,t z t y t x ===)10(≤≤t 的一段. 解 ⎰Lx y z d s =⎰⎰+=++13102223)1(232)2(121232dt t t t dt t t t t t =143216.6.计算L⎰ ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限所围成的扇形的整个边界.解L⎰ =⎰1L +⎰2L +⎰3L=dx e dt t a t a edx eax aa x⎰⎰⎰+++++024022222201)sin ()cos (11π=(2)14ae a π+-7.设在xoy 面内有一分布着质量的曲线L ,在点(),x y 处它的线密度为(),x y μ,试用对弧长的曲线积分分别表达(1)这条曲线弧对x 轴,y 轴的转动惯量,x y I I ; (2) 这条曲线弧的质心坐标,x y . 解 (1)⎰=Lx dS yI 2μ ⎰=Ly dS x I 2μ(2)⎰⎰=L L dSy x dS y x x x ),(),(μμ ⎰⎰=LL dSy x dS y x y y ),(),(μμ (二) 对坐标的曲线积分1.计算⎰+Lxdy ydx ,其中L 为圆周t R y t R x sin ,cos ==上对应t 从0到2π的一段弧. 解⎰+Lx d y y d x =0]cos cos )sin (sin [20=+-⎰dt t tR R t R t R π2.计算⎰+Lydx xdy ,其中L 分别为(1)沿抛物线22x y =从)0,0(O 到)2,1(B 的一段; (2)沿从)0,0(O 到)2,1(B 的直线段.; (3)沿封闭曲线OABO ,其中)0,1(A ,)2,1(B .解 (1)⎰=+=122)24(dx x x x I .(2)2)22(1=+=⎰dx x x I .(3)⎰+Lydx xdy =⎰⎰⎰++BOABOA=210(22)0dy x x dx +++=⎰⎰.3.计算⎰-+++Ldz y x zdy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线.解 直线方程为312111-=-=-z y x ,其参数方程为13,12,1+=+=+=t z t y t x ,t 从0变到1.13])13(3)12(2)1[(1=+++++=⎰dt t t t I .4.计算2()Lxydx x y dy x dz +-+⎰,其中L 是螺旋线bt z t a y t a x ===,sin ,cos 从0=t 到π=t 上的一段.解 dt t b a t a t a t a t a t a t a I ⎰+-+-∙=π22]cos cos )sin cos ()sin (sin cos [)(222b a a +=π.5.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧.把对坐标的曲线积分Pdx Qdy Rdz Γ++⎰化成对弧长的曲线积分.解 由于)3,2,1()3,2,1(),,(2y x t t dt dz dt dy dt dx ==,故229411c o s y x ++=α,229412cos yx x ++=β,229413cos yx y ++=γ.(cos cos cos )Pdx Qdy Rdz P Q R dS αβγΓΓ++=++⎰⎰=dS yx yR xQ P ⎰Γ++++2294132.(三) 格林公式及应用1.计算⎰-L ydy x dx xy 22,其中L 为圆周222a y x =+,取逆时针方向. 解⎰-Lydy x dx xy22=0)22(=--⎰⎰Ddxdy xy xy2.计算⎰+--Ldy y x dx y x )sin ()(22,其中L 是在圆周22x x y -=上由点)0,0(到点)1,1( 的一段弧.解 y x P -=2,)sin (2y x Q +-= ()122017sin sin 246I x x x x dx =---=-⎰ 3. 计算(1)()xxL ye dx x e dy +++⎰,其中L 为椭圆22221x y a b +=的上半周由点(,0)A a 到(,0)B a -的弧段.解 x ye P +=1,x e x Q +=⎰⎰-=+11L L L I =2aD adxdy dx ab a π--=-⎰⎰⎰4. 计算3222(2cos )(12sin 3)Lxy y x dx y x x y dy -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧. 解 322cos P xy y x =-,2212sin 3Q y x x y =-+ ⎰⎰⎰--=+211L L L L I =0)4321(00122-+--⎰⎰⎰y y dxdy D π=42π5. 计算⎰+-L y x xdy ydx )(222,其中L 为圆周2)1(22=+-y x ,L 的方向为逆时针方向. 解 )(222y x y P +=,)(222y x x Q +-=,当022≠+y x 时, yPy x y x x Q ∂∂=+-=∂∂)(22222 L 所围区域为D ,由于D ∈)0,0(,故不能直接用格林公式.选适当小的0>r ,作位于D 内的小圆周222:r y x l =+.记L 与l 所围区域为1D ,在1D 上应用格林公式,得⎰+-L y x xdyydx )(222-⎰+-l y x xdy ydx )(222=0其中l 取逆时针方向.所以⎰+-L y x xdyydx )(222=⎰+-l y x xdy ydx )(222=πθθπ=--⎰20222222cos sin r r r . 6. 计算星形线t a y t a x 33sin ,cos ==,)20(π≤≤t 所围成区域的面积.解 ⎰-=L ydx xdy A 21=2024224283)cos sin 3sin cos 3(a dt t t a t t a ππ=+⎰7. 证明曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关,并计算积分值.解 (1)42y xy P -=,324xy x Q -=xQy x y P ∂∂=-=∂∂342在整个xoy 面上成立 故曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关.(2)⎰⎰+=21L L I =8.验证dy x xydx 22+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样的一个),(y x u .解 (1)验证略;(2)y x dy x y x u yABOA2020),(=+=+=⎰⎰⎰9.试用曲线积分求dy y x dx y x )cos ()sin 2(++的原函数. 解 y x P sin 2+=,y x Q cos =,xQ y y P ∂∂==∂∂cos 在整个xoy 面上成立 所以 ⎰++=),()0,0()cos ()sin 2(),(y x dy y x dx y x y x u=y x x ydy x xdx yxsin cos 220+=+⎰⎰+C.(四) 对面积的曲面积分1.计算⎰⎰∑+dS y x)(22,其中∑是锥面22y x z +=及平面1=z 所围成的区域的整个边界曲面. 解⎰⎰∑+dS y x)(22=⎰⎰⎰⎰∑∑+21=⎰⎰⎰⎰+++++xyxyD D y x dxdy y x dxdy z z y x )(1)(222222 ⎰⎰++=xyD dxdy y x )()12(22=π212+. 2. 计算⎰⎰∑++dS zy x )223(,其中∑为平面1432=++z y x 在第一卦限的部分.解 d x d y y x y x I xyD ⎰⎰-+-+--++=22)34()2(1))321(223(, =⎰⎰⎰⎰-+=+x D dy y dx dxdy y xy 23302)265(361)265(361 =614)42741549(361202=+-⎰dx x x . (x y x D xy 2330,20:-<<<<) 3.计算⎰⎰∑dS z 2,其中∑为球面2222a z y x =++. 解⎰⎰∑dS z 2=⎰⎰⎰⎰--=++--xyxyD D y x dxdy y x a a dxdy z z y x a2222222221)(2=42022342a d a d a aπρρρθπ=-⎰⎰4.计算⎰⎰∑++dS z y x )(,∑是球面0,222≥=++z a z y x .有问题 解 ⎰⎰----++=xyD dxdy y x a y x a y x I 222222)(=⎰⎰⎰⎰--+--+xyxyD D dxdy y x a dxdy y x a y x )()(222222 =πρρρθπ2)(002220=-+⎰⎰ad a d 5.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度为z μ=. 解 ⎰⎰∑=zdS M =dxdy y x y x xyD 22221)(21+++⎰⎰=2012d d πρ⎰(五) 对坐标的曲面积分1.计算⎰⎰∑zdxdy y x22,其中∑是球面2222R z y x =++的下半部分的下侧.解⎰⎰∑zdxdy y x22=dxdy y x R y x xyD ⎰⎰--2222=24220cos sin Rd πθρθρ⎰⎰ =72105R π2.计算⎰⎰∑++yzdzdx xydydzxzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧. 解 4321∑+∑+∑+∑=∑0321===⎰⎰⎰⎰⎰⎰∑∑∑⎰⎰⎰⎰--=++∑xyD dxdy y x x yzdzdx xydydz xzdxdy )1(34=dy xy x x dx x⎰⎰---10102)(3=85. 3.计算⎰⎰∑++=dxdy z h dxdz y g dydz x f I )()()(,其中h g f ,,为已知连续函数,∑为平行六面体c z b y a x ≤≤≤≤≤≤Ω0,0,0:表面的外侧. 解 654321∑+∑+∑+∑+∑+∑=∑⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dydz a f dydz f dydz x f I )()0()(1=bc f a f )]0()([-⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dxdz b g dxdz g dxdz y g I )()0()(2=ac g b g )]0()([-ab h c h I )]0()([3-=所以321I I I I ++==ab h c h ac g b g bc f a f )]0()([)]0()([)]0()([-+-+-. 4.计算⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为半球面222y x a z --=的上侧.解⎰⎰⎰⎰⎰⎰∑∑∑+=21222dydz x dydz x dydz x=0)()(222222=-----⎰⎰⎰⎰dydz z y a dydz z y a yzyzD D 同理:02=⎰⎰∑dzdx y 4202222222)()(a d a d dxdy y x a dxdy z aD xyπρρρθπ=-=--=⎰⎰⎰⎰⎰⎰∑故⎰⎰∑++dxdy z dzdx y dydz x 222=42a π. 5.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是柱面122=+y x 被0=z 及3=z 所截得的在第一卦限内的部分的前侧. 解⎰⎰∑=0zdxdy⎰⎰⎰⎰⎰⎰-=-=∑1032211dz y dy dydz y xdydz yzDπθθθθππ43)2cos 1(23cos 320202=+==⎰⎰d d同理:π43=⎰⎰∑ydzdx 故⎰⎰∑++zdxdy ydzdx xdydz =π23. 6.设∑为平面x z a +=在柱面222x y a +=内那一部分的上侧,下面两个积分的解法是否正确?如果不对,给出正确解法. (1)3()()x z dS a dS a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积; (2)3()()x z dxdy a dxdy a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积. 解 (1)正确;(2)错误.正确解法是:()x z dxdy a dxdy ∑∑+=⎰⎰⎰⎰=3adxdy a xyD π=⎰⎰.(六) 高斯公式利用高斯公式计算: 1.计算⎰⎰∑++dxdy z dzdx y dydz x 333,其中∑为球面2222a z y x=++的内侧.解 2223()I x y z dv Ω=-++⎰⎰⎰2403sin Rd d r dr ππθϕϕ=-⎰⎰⎰5125R π=- 2.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是曲面22y x z +=在第一卦限中10≤≤z 部分的下侧.解 补充曲面:)0,0,1(,1:221≥≥≤+=∑y x y x z ,取上侧; )1,10(,0:22≤≤≤≤=∑z x x y ,取左侧;)1,10(,0:23≤≤≤≤=∑z y y x ,取后侧.∑,1∑,2∑和3∑构成闭曲面,所围的空间闭区域记为Ω,由高斯公式,得⎰⎰∑++zdxdy ydzdx xdydz =⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑+∑+∑+∑---++321zdxdy ydzdx xdydz=003+++⎰⎰⎰⎰⎰⎰⎰ΩzxxyD D dzdx dxdy dv=ππρρθρπ=+⎰⎰⎰43110202dz d d .3.计算⎰⎰∑+++-dxdy xz y dzdx x dydz z x y )()(22,∑为正方体Ω的表面并取外侧,其中 {(,,)|0,0,0}x y z x a y a z a Ω=≤≤≤≤≤≤.解 ()I y x dv Ω=+⎰⎰⎰=400)(a dz y x dy dx aaa=+⎰⎰⎰ 4.计算⎰⎰∑++dS z y x )cos cos cos (222γβα,其中∑是由222z y x =+及)0(>=h h z 所围成的闭曲面的外侧,γβαcos ,cos ,cos 是此曲面的外法线的方向余弦. 解 2()2()2I x y z d x d y d z x y d x d y d z z d x d y d zΩΩΩ=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰=2220()xyxyh D D dxdy zdz h x y dxdy +=--⎰⎰⎰⎰=412h π.(七) 斯托克斯公式1.计算⎰-+-++Ldz z y dy z x dx z y )()()2(,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1. 2.计算⎰-+-+-Ldz x y dy z x dx y z )()()(,其中L 是从)0,0,(a 经)0,,0(a 和),0,0(a 回到)0,0,(a 的三角形.解 由斯托克斯公式,得⎰-+-+-Ldz x y dy z x dx y z )()()(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =2242222a dxdy dxdy dydz dxdy dydz xyxyyzD D D ==+=+⎰⎰⎰⎰⎰⎰⎰⎰∑. (八) 曲线积分与曲面积分自测题1.计算曲线积分 (1)ds y x L⎰+22,其中L 为圆周ax y x =+22;解 :cos (-)22L r a ππθθ=≤≤)d s d d a θθθ==cos r a θ==ds y x L⎰+22=222cos 2a ad a ππθθ-=⎰ .(2)⎰Lzds ,其中Γ为曲线)0(,sin ,cos 0t t t z t t y t t x ≤≤===;解d s t d t=⎰Lz d s=0322(2)3t t +-=⎰ (3)⎰+-Lxdy dx y a )2(,其中L 为摆线)cos 1(),sin (t a y t t a x -=-=上对应t 从0到π2的一段弧;解⎰+-Lx d y dx y a )2(=20{[(2(1cos ))](1cos )(sin )sin }a a t a t a t t a t dt π---+-⎰=2220sin 2at tdt a ππ=-⎰. (4)⎰Γ-+-dz x yzdy dx z y 2222)(,其中Γ是曲线32,,t z t y t x ===上由01=t 到12=t 的一段弧;解⎰Γ-+-dz x yzdy dx z y2222)(=14623220[()1223]t t t t t t t dt -+-⎰=16401(3)35t t dt -=⎰(5)⎰-+-Lx x dyy e dx y y e )2cos ()2sin (,其中L为上半圆周0,)(222≥=+-y a y a x 沿逆时针方向;解 补充积分路径1:0L y =,x 从0到2a. sin 2,cos 2xxP e y y Q e yy =-=-11(s i n 2)(c o s 2)xx LL L L ey y dx e y dy +-+-=-⎰⎰⎰=220()(sin 020)0ax D Q Pdxdy e dx a x y π∂∂---+=∂∂⎰⎰⎰2.计算曲面积分 (1)⎰⎰∑++222z y x dS ,其中∑是介于平面0=z 及H z =之间的圆柱面222R y x =+; 解x =,dS ==⎰⎰∑++222z y x dS=12∑∑+⎰⎰⎰⎰=yzD+yzD=221yzD R z =+⎰⎰=2arctanHR π. (2) ⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()(222,其中∑为锥面)0(22h z y x z ≤≤+=的外侧;解 11I ∑+∑∑=-⎰⎰⎰⎰=()P Q Rdxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰2()xyD x y dxdy --⎰⎰ =44044h h ππ-=-.(3)⎰⎰∑++zdxdy ydzdx xdydz ,其中∑为半球面22y x R z --=的上侧;解11I ∑+∑∑=-⎰⎰⎰⎰=()P Q R dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰0xyD dxdy -⎰⎰ =3302dv R πΩ-=⎰⎰⎰.(4)⎰⎰∑++++3222)(z y x zdxdyydzdx xdydz ,其中∑为曲面)0(9)1(16)2(5122≥-+-=-z y x z 的上侧;解 0I = (利用高斯公式) (5) ⎰⎰∑xyzdxdy ,其中∑为球面)0,0(1222≥≥=++y x z y x 外侧. 解⎰⎰∑xyzdxdy =12xyzdxdy xyzdxdy ∑∑+⎰⎰⎰⎰=12022cos sin xyD d r r πθθθ=⎰⎰⎰⎰=215. 3.证明:22yx ydyxdx ++在整个xoy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分,并求出一个这样的二元函数.解 在整个xoy 平面除去y 的负半轴及原点的区域G 是单连通域.在G 内,222()Q xy Px x y y ∂-∂==∂+∂, 所以存在(,)u x y ,使22xdx ydydu x y+=+. 取积分路径:(1,0)(,0)(,)x x y →→(,)22222(1,0)10(,)x y yx xdx ydy x y u x y dx dy x y x x y +==+++⎰⎰⎰=221ln()2x y +. 4.计算⎰Γ-+-++dz x y dy z x dx z y )()()2(,其中Γ为平面1=++z y x 与各坐标面的交线,从z 轴正向看取逆时针方向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q Pdydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1.5.求均匀曲面222y x a z --=的质心的坐标.解 设面密度为ρ,重心(,,)x y z 由对称性:0x y ==2200xyaD M dS πρρ∑===⎰⎰⎰=22a πρ2112xyD z zdS Ma ρπ∑==⎰⎰=2a 故重心的坐标为(0,0,)2a .。