【数学】数学二模试题分类汇编——旋转综合附详细答案
- 格式:doc
- 大小:738.00 KB
- 文档页数:16
一、旋转真题与模拟题分类汇编(难题易错题)1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.2.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG bDC CE a==,又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.3.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为. (3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.4.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)证明见解析(2)BF+EQ=BP (3)BF+BP=EQ 【解析】试题分析:(1)EF 与FG 关系为垂直且相等(EF=FG 且EF ⊥FG ).证明如下: ∵点E 、F 、G 分别是正方形边AD 、AB 、BC 的中点, ∴△AEF 和△BGD 是两个全等的等腰直角三角形. ∴EF=FG ,∠AFE=∠BFG=45°.∴∠EFG=90°,即EF ⊥FG .(2)取BC 的中点G ,连接FG ,则由SAS 易证△FQE ≌△FPG ,从而EQ=GP ,因此()EF 2BP EQ =-.(3)同(2)可证△FQE ≌△FPG (SAS ),得EQ=GP ,因此,()()EF GF 2BG 2GP BP 2EQ BP ===-=-.5.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标; (Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证ADB AOB △△≌; ②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ)303343033444S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ)3033430334S -+≤≤. 详解:(Ⅰ)∵点()5,0A ,点()0,3B , ∴5OA =,3OB =. ∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒. ∵矩形ADEF 是由矩形AOBC 旋转得到的, ∴5AD AO ==.在Rt ADC 中,有222AD AC DC =+, ∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=. ∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒. 又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒, ∴Rt ADB Rt AOB ≌.②由ADB AOB ≌,得BAD BAO ∠=∠. 又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =. 设BH t =,则AH t =,5HC BC BH t =-=-. 在Rt AHC 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =. ∴点H 的坐标为17,35⎛⎫⎪⎝⎭.(Ⅲ)3033430334S -+≤≤. 点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.6.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;2CD. 【解析】试题分析:(1)①如图1,证明AC=OC 和OC=OE 可得结论;②根据勾股定理可得:AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A 、D 、O 、C 四点共圆,得∠ACD=∠AOB ,同理得:∠EFO=∠EDO ,再证明△ACO ≌△EOF ,得OE=AC ,AO=EF ,根据勾股定理得:AC 2+OC 2=FO 2+OE 2=EF 2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD ,则AD=OD 证明△ACD ≌△OED ,根据△CDE 是等腰直角三角形,得CE 2=2CD 2,等量代换可得结论(OC ﹣OE )2=(OC ﹣AC )2=2CD2,开方后是:OC﹣AC=CD.试题解析:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题7.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b ,故答案为CB 的延长线上,a+b ;(2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形,∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠EAB ,在△CAD 与△EAB 中,AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩=== , ∴△CAD ≌△EAB ,∴CD=BE ;②∵线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM ,∵A 的坐标为(2,0),点B 的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM 长的最大值=线段BN 长的最大值,∴当N 在线段BA 的延长线时,线段BN 取得最大值,最大值=AB+AN ,∵22,∴最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,∵△APN 是等腰直角三角形,∴PE=AE=2, ∴OE=BO-AB-AE=5-3-2=2-2,∴P (2-2,2).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.8.如图,四边形ABCD 中,45ABC ADC ∠=∠=,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)判断ABC ∆的形状,并说明理由;(2)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.【答案】(1)ABC ∆是等腰直角三角形,理由详见解析;(222【解析】【分析】(1)利用旋转不变性证明A4BC 是等腰直角三角形.(2)证明ACDE 是等腰直角三角形,再在Rt △ADE 中,求出AE 即可解决问题.【详解】解:(1)ABC ∆是等腰直角三角形.理由:∵BC CA =,∴45CBA CAB ∠=∠=,∴90ACB ∠=,∴ACB ∆是等腰直角三角形.(2)如图:由旋转的性质可知:90DCE ACB ∠=∠=,3CD CE ==,BD AE =, ∴32DE =,45CDE CED ∠=∠=,∵45ADC ∠=,∴454590ADE ∠=+=,∴()222223222AE AD DE =+=+=,∴22BD AE ==.【点睛】本题考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型。
专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形二、填空题5.(2023·上海黄浦A的对应点是点6.(2023·上海静安处,点A落在点7.(2023·上海金山·统考二模)已知线段AC上,如果点E关于直线8.(2023·上海闵行三角形为特征三角形.9.(2023·上海浦东新·于点F.如果2AD AB=10.(2023·上海徐汇·统考二模)如图,抛物线“月牙线”,抛物线1C和抛物线=,那么抛物线果BD CD11.(2023·上海宝山·统考二模)13.(2023·上海闵行·统考二模)如图,在菱形ABCD 中,6AB =,80A ∠=︒,如果将菱形ABCD 绕着点D 逆时针旋转后,点A 恰好落在菱形ABCD 的初始边AB 上的点E 处,那么点E 到直线BD 的距离为___________.14.(2023·上海嘉定·统考二模)如图,在Rt ABC 中,90C ∠=︒,4AC =,2BC =,点D 、E 分别是边BC 、BA 的中点,连接DE .将BDE 绕点B 顺时针方向旋转,点D 、E 的对应点分别是点1D 、1E .如果点1E 落在线段AC 上,那么线段1CD =____.三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点()1,0A 、点()3,0B ,与y 轴交于点C ,连接BC ,点P 在线段BC 上,设点P 的横坐标为m .(1)求直线BC 的表达式;(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.17.(2023·上海徐汇·统考二模)如图,已知抛物线2y x bx c =++经过点()2,7A -,与x 轴交于点B 、()5,0C .(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于x 轴的上方,将BCE 沿直线BE 翻折,如果点C 的对应点F 恰好落在抛物线的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点Q 是抛物线上位于第四象限内的点,当CPQ 为等边三角形时,求直线BQ 的表达式.18.(2023·上海松江·统考二模)在平面直角坐标系xOy 中(如图),已知直线2y x =-+与y 轴交于点A ,抛物线()21(0)y x t t =-->的顶点为B .(1)若抛物线经过点A ,求抛物线解析式;(2)将线段OB 绕点B 顺时针旋转90︒,点O 落在点C 处,如果点C 在抛物线上,求点C 的坐标;(3)设抛物线的对称轴与直线2y x =-+交于点D ,且点D 位于x 轴上方,如果45BOD ∠=︒,求t 的值.专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆【答案】D【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.【详解】解:等边三角形有3条对称轴,菱形有2条对称轴,等腰梯形有1条对称轴,圆形有无数条对称轴,圆的对称轴条数最多,故选:D.【点睛】此题主要考查如何确定轴对称图形的对称轴条数及位置,解题的关键是掌握轴对称的概念.2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形【答案】C【分析】根据轴对称图形的定义、中心对称图形的定义逐项判断即可.【详解】A选项:等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意;B选项:等腰梯形是轴对称图形,不是中心对称图形.故本选项不合题意;C选项:矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;D选项:正五边形是轴对称图形,不是中心对称图形,故本选项不合题意.故选C.【点睛】本题考查轴对称图形、中心对称图形,理解定义,会根据定义判断轴对称图形和中心对称图形是解答的关键.二、填空题在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.116OG BG BC ===⨯=在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.∴11622OG BG BC ===⨯【答案】20【分析】根据旋转可得根据AA B '∠【详解】解:∵∴180ACB ∠=∵将ABC 绕点∴30B A C BAC ∠=∠=''︒,∴(11802CAA CA A ''∠=∠=︒∴AA B CA A B A C '''''∠=∠-∠故答案为:20︒.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理等知识,掌握旋转的性质是关键.A 的对应点是点1A ,点B 的对应点是点1B ),如果点1A 坐标是()20-,,那么点1B 的坐标是________.【答案】()12,【分析】各对应点之间的关系是横坐标减3,纵坐标加3,那么让点B 的横坐标减3,纵坐标加3即为点1B 的坐标.【详解】解:∵()13A -,平移后对应点1A 的坐标为()20-,,∴A 点的平移方法是:先向左平移3个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴()41B -,平移后的坐标是:()4313--+,即()12,.故答案为:()12,.【点睛】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.6.(2023·上海静安·统考二模)如图,在ABC 中,AB AC =,将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,如果BE BF =,那么DBC ∠的大小是______.【答案】108︒/108度【分析】设A x ∠=,由AB AC =,BE BF =得ABC C ∠∠=,BEF BFE ∠∠=,再由旋转的性质得DEB C ABC DBE ∠∠∠∠===,BE BC =,从而有CBE A x ∠∠==,同理可证:EBF A x ∠∠==,利用三角形的内角和定理构造方程即可求解.【详解】解:设A x ∠=,∵AB AC =,BE BF =,∴ABC C ∠∠=,BEF BFE ∠∠=,∵将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,∴DEB C ABC DBE ∠∠∠∠===,BE BC =,∵180BEC C CBE ABC C A ∠∠∠∠∠∠++=++=︒,∴CBE A x ∠∠==,同理可证:EBF A x ∠∠==,【点睛】本题考查解直角三角形,轴对称的性质,掌握垂线段最短是解题的关键.8.(2023·上海闵行·统考二模)阅读理解:如果一个三角形中有两个内角三角形为特征三角形.问题解决:如图,在ABC 中,【答案】253【分析】由题意可分:,A B βα∠=∠=,过点∴A ADC ∠=∠,∵4tan 3A =,∴4tan 3ADC ∠=,∵ABC 是特征三角形,即∴2ABE ABC ∠=∠,∴BC 平分ABE ∠,【答案】35【分析】通过证明AEF △得出边之间的关系,即可求解.【详解】解:∵2=AD AB ∴设,2AB a AD a ==,【点睛】本题主要考查了矩形的折叠问题,以及解直角三角形的方法和步骤.10.(2023·上海徐汇·统考二模)如图,抛物线则tan tan DAC ∠=∠∴t n a CD DAC AC ∠==∴165CD =∴1695BD =-=;作DE AB ⊥于E ,则∵AD AD =,∴Rt △∵,90ACB ∠=︒,设BD x =,则CD DE =【答案】3372-【分析】利用含30度角的直角三角形的性质,分别求出出90DBE ∠=︒,在Rt【答案】3【分析】如图,旋转、菱形的性质可知,180ADE DEA ∠=︒-∠-∠由旋转、菱形的性质可知,∴80DEA A ∠=∠=︒,ABD ∠∴180ADE DEA ∠=︒-∠-∠【答案】355【分析】根据勾股定理求得AB ,根据旋转的性质得出根据相似三角形的性质即可求解.设旋转角为α,∴11ABE CBD ∠=∠,旋转,∴115,1BE BE BD BD ====,三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点(1)求直线BC 的表达式;(2)如果以P 为顶点的新抛物线经过原点,且与①求新抛物线的表达式(用含②过点P 向x 轴作垂线,交原抛物线于点【答案】(1)3y x =-+(2)①()2233m y x m m m-=--+,【分析】(1)先利用待定系数法求出抛物线解析式,进而求出点式即可;(2)①先求出()3P m m -+,,设新抛物线解析式为抛物线解析式,再根据点P 在线段称时,当四边形AEDP 关于PE 【详解】(1)解:把()1,0A 、B ∴13a c =⎧⎨=⎩,∴抛物线解析式为24y x x =-+在243y x x =-+中,令0x =,则∴()0,3C ;设直线BC 的解析式为y kx b =+∴303k b b +=⎧⎨=⎩,∴13k b =-⎧⎨=⎩,∴直线BC 的解析式为y x =-+(2)解:①∵点P 在线段BC【点睛】本题主要考查了待定系数法求二次函数解析式,轴对称的性质,求一次函数解析式等等,灵活运用所学知识是解题的关键.16.(2023·上海松江·统考二模)如图,(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.【答案】(1)见解析(2)24(3)97OF =或95OF =.【分析】(1)如图:连接,OC O C ',先根据圆的性质和对称的性质说明OAO ' 是等边三角形,明60COO BOC '∠=∠=︒即可证明结论;(2)设圆O 的半径为2a ,则2O A OA a '==,如图:作ON AD ⊥于N ;先根据对称的性质和等腰三角形的性质可得,30120ODA OAD AOD ︒︒∠=∠=∠=,然后解直角三角形可得()232O D a '=-、EF OE ==∵点O '恰好落在半圆O 上,∴OO OA '=,∵点O '与点O 关于直线AC 对称∴AO OA CO CO ==='',O AC '∠∵,30OA OD OAD =∠=︒,∴,30120ODA OAD AOD ︒∠=∠=∠=在Rt AON △中,sin 30ON OA =⋅︒∵ON AD ⊥,∴FN FM=∴1212AFD OFA AD FM S AD S AO AO FN ⨯==⨯ ,又∵AFD S DF S OF = ,∴FN FM =,∴1212AFD OFA AD FM S AD S AO AO FN ∆∆⨯==⨯,又∵AFD OFA S DF S OF ∆∆=,(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点式.【答案】(1)245y x x =--,顶点坐标为:(2)点E 的坐标为()2,3;(3)直线BQ 的函数表达式为【分析】(1)利用待定系数法求解抛物线的解析式,再化为顶点式,即可得到顶点坐标;(2)先求解抛物线与x 轴交于轴与x 轴交于点H ,则H 点的坐标为2233FH FB BH =-=,(3)连接CF ,证明FCB 于点K ,可得点K 的坐标为【详解】(1)解:∵抛物线∵抛物线与x 轴交于(1,0B -∴6BC =,抛物线的对称轴为直线设抛物线的对称轴与x 轴交于点由翻折得6CB FB ==,由勾股定理,得FH FB =∴点F 的坐标为()2,33,∴60FBH ∠=︒,∴CP CQ =,CB CF =,∠∴FCP BCQ ∠=∠,∴BCQ FCP ≌,∴CBQ CFH ∠=∠,∵BCF △为等边三角形,∴30CFH CBQ ∠=︒=∠,设BP 与x 轴相交于点K ,∴3tan 303OK OB =︒= .(1)若抛物线经过点A ,求抛物线解析式;∵旋转,∴,90OB OC OBC =∠=∴BEO OBC BDC ∠=∠=∠∴90OBE CBD ∠=︒-∠由2y x =-+,令0y =,得∴2OA OH ==,AH =∴OAH △是等腰直角三角形∵BD y ∥轴,。
【题目1】(2023 东城二模)27.如图,在菱形ABCD 中,∠BAD =60°,E 是AB 边上一点(不与A ,B 重合),点F 与点A 关于直线DE 对称,连接DF .作射线CF ,交直线DE 于点P ,设∠ADP =α.(1)用含α的代数式表示∠DCP ;(2)连接AP ,AF .求证:△APF 是等边三角形;(3)过点B 作BG ⊥DP 于点G ,过点G 作CD 的平行线,交CP 于点H .补全图形,猜想线段CH 与PH 之间的数量关系,并加以证明.2023 二模·题型分类汇编专题—— 几何综合27.如图,在ABC 中,边AB 绕点B 顺时针旋转α(0180α︒<<︒)得到线段BD ,边A C 绕点C 逆时针旋转180α︒−得到线段CE ,连接DE ,点F 是DE 的中点.(1)以点F 为对称中心,作点C 关于点F 的对称点G ,连接BG ,DG ,①依题意补全图形,并证明AC =DG ;②求证:DGB ACB ∠=∠;(2)60α=︒,且FH BC 于H ,直接写出用等式表示的FH 与BC 的数量关系.备用图 FEDC AB CBA27.如图,在△ABC 中,AB =AC ,∠BAC =2α(4590)α︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF ⊥AE 交射线AM 于点F .(1)①依题意补全图形;②求证:∠B =∠AFE ;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.27.在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 边上(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90°,得到线段AE ,连接DE .(1)根据题意补全图形,并证明:∠EAC =∠ADC ;(2)过点C 作AB 的平行线,交DE 于点F ,用等式表示线段EF 与DF 之间的数量关系,并证明.备用图 AB C D ABC D27.如图,在等边△ABC 中,点D ,E 分别在CB ,AC 的延长线上,且BD =CE ,EB 的延长线交AD 于点F .(1)求∠AFE 的度数;(2)延长EF 至点G ,使FG =AF ,连接CG 交AD 于点H .依题意补全图形,猜想线段CH 与GH 的数量关系,并证明.备用图E DED2α27.如图,在△ABC 中,AB =AC ,∠ACB = ,BD 平分∠ABC 交AC 于点 E ,点 F 是ED 上一点且∠EAF =α.(1)求∠AFB 的大小(用含α的式子表示);(2)连接FC .用等式表示线段FC 与FA 的数量关系,并证明.备用图DB DB【题目7】(2023 门头沟二模)27.如图,在△ABC 中,∠ACB =90,点D 在BC 延长线上,且DC =AC ,将△ABC 延BC 方向平移,使点C 移动到点D ,点A 移动到点E ,点B 移动到点F ,得到△EFD ,连接CE ,过点F 作FG ⊥CE 于G .(1)依题意补全图形;(2)求证:CG =FG ;(3)连接BG ,用等式表示线段BG ,EF 的数量关系,并证明.备用图 AC B ACB27.如图,∠BAC =90°,AB =AC ,点D 是BA 延长线上一点,连接DC ,点E 和点B 关于直线DC 对称,连接BE 交AC 于点F ,连接EC ,ED ,DF .(1)依题意补全图形,并求∠DEC 的度数;(2)用等式表示线段EC ,ED 和CF 之间的数量关系,并证明.备用图 C A B D CA BD27.如图,在△ABC 中,∠B =45 ,将线段AC 绕点A 逆时针旋转得到线段AD ,且点D 落在BC 的延长线上,过点D 作DE ⊥AC 于点E ,延长DE 交AB 于点F .(1)依题意补全图形.求证:∠BDF =12∠CAD ;(2)用等式表示线段CD 与BF 之间的数量关系,并证明.备用图C B A CB A【题目10】(2023 顺义二模)27.已知:∠ABC =120︒,D ,E 分别是射线BA ,BC 上的点,连接DE ,以点D 为旋转中心,将线段DE 绕着点D 逆时针旋转60︒,得到线段DF ,连接EF ,BF .(1)如图1,当BD =BE 时,求证:BF =2BD ;(2)当BD ≠BE 时,依题意补全图2,用等式表示线段BD ,BF ,BE 之间的数量关系,并证明.图1 图2 C A FE B DCA B D E27.在等边△ABC 中,点D 是AB 中点,点E 是线段BC 上一点,连接DE ,∠DEB =α(3060)α︒<︒,将射线DA 绕点D 顺时针旋转α,得到射线DQ ,点F 是射线DQ 上一点,且DF =DE ,连接FE ,FC .(1)补全图形;(2)求∠EDF 度数;(3)用等式表示FE ,FC 的数量关系,并证明. B B27.在әABC中,øACB=90ʎ,点D为BC边上一点,E为AC延长线上的一点,CE=CD,F为CB边上一点,EFʅ射线AD于点K,过点D作直线DGʅAB于G,交EF于点H,作øAGD的角平分线交AD于M,过点M作AB的平行线,交DG于点O,交BC于点Q,交EF于点N,MO=NO.(1)找出图中和øDHK相等的一个角,并证明;(2)判断EH㊁FN㊁MD的数量关系,并证明.27.△ABC 中,∠ACB =90°,AC =BC ,点D 为边AB 的中点,点E 在线段CD 上,连接AE ,将线段AE 绕点A 逆时针旋转90°得到线段AF ,连接CF .(1)如图1,当点E 与点D 重合时,求证:CF =AE ;(2)当点E 在线段CD 上(与点C ,D 不重合)时,依题意补全图2;用等式表示线段CF ,ED ,AD 之间的数量关系,并证明.图1 图2 (E)F C D B A CD BA E。
如图,P为☉O外一点,PA,PB是☉O的切线,A,B为切点,点C在☉O上,连接OA,OC,AC.(1)求证:∠AOC=2∠PAC;(2)连接OB,若AC∥OB,☉O的半径为5,AC=6,求AP的长.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D是BC的中点,点E是AB的延长线上的一点,∠BCE=∠BOD,OD的延长线交CE于点F.(1)求证:CE是⊙O的切线;(2)若sin E=23,AC=5,求DF的长.7.(2023·北京门头沟初三二模25题)如图,AB 是⊙O 直径,弦CD ⊥AB 于E ,点F 在CD 上,且AF =DF ,连接AD ,BC .(1)求证:∠FAD =∠B ;(2)延长FA 到P ,使FP =FC ,作直线CP .如果AF ∥BC ,求证:直线CP 为⊙O的切线.AB如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得∠BFD=∠ADB.(1)求证:DF是⊙O的切线;(2)若AD=4,DE=5,求DF的长.2023.510.(2023·北京顺义初三二模24题)如图,PA ,PB 分别与⊙O 相切于A ,B 两点,AC 是⊙O 的直径.(1)求证:∠BAC=21∠APB ;(2)连接PO 交⊙O 于点D ,若AC =6,cos ∠BAC =54,求PD 的长.2023.5 11.(2023·北京昌平初三二模23题)2023.512.(2023·北京平谷初三二模24题)24.(1)解:∵BE 为O 的切线∴∠ABE=90° (1)∴∠ABC+∠EBC=90°∵AB 是直径∴∠ACB=90°∴∠A+∠ABC=90°∴∠A=∠EBC (2)∵CB CB ∴∠D=∠A∴∠D=∠EBC ··················································3(2)∵1tan D 2 ∴1tan 2EBC ∵∠ACB=90°,BC=2∴CE=1 (4)∵∠D=∠A ∴1tan 2A ∴AC=4 (5)∴AE=5Rt △AEB 中,∵F 是AE 的中点,∠ABE=90°∴12.52BF AE (6)2023.513.(2023·北京燕山地区初三二模25题)如图,AB为⊙O的直径,BC为弦,射线AM与⊙O相切于点A,过点O作OD∥BC交AM于点D,连接DC.(1)求证:DC是⊙O的切线;(2)过点B作BE⊥AB交DC的延长线于点E,连接AC交OD于点F.若AB=12,BE=4,求AF的长.。
一、旋转真题与模拟题分类汇编(难题易错题)1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.2.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α=度;发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.【答案】(1)60或240;(2) AC=BD ,理由见解析;(3)13+1或131-;(4)PC 的最大值=3,PC 的最小值=3﹣1. 【解析】分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值=3﹣1.详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°. 故答案为60或240;(2)结论:AC =BD ,理由如下:如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,OA OBCOA DOB CO OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC =BD ;(3)①如图3中,当A 、C 、D 共线时,作OH ⊥AC 于H . 在Rt △COH 中,∵OC =1,∠COH =30°,∴CH =HD =12,OH 3Rt △AOH 中,AH=22OA OH-=132,∴BD=AC=CH+AH=1132+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为131+或131-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.3.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.4.如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.(1)求证:MN⊥CE;(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出DE EN DN==,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证CF CN NF△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE ≌△BCG ,推出BG=CE ,即可得出答案. 试题解析:(1)证明:延长DN 交AC 于F ,连BF ,∵N 为CE 中点, ∴EN=CN ,∵△ACB 和△AED 是等腰直角三角形,∠AED=∠ACB=90°,DE=AE ,AC=BC , ∴∠EAD=∠EDA=∠BAC=45°, ∴DE ∥AC , ∴△EDN ∽△CFN ,∴DE EN DNCF CN NF == , ∵EN=NC ,∴DN=FN ,FC=ED ,∴MN 是△BDF 的中位线, ∴MN ∥BF , ∵AE=DE ,DE=CF , ∴AE=CF ,∵∠EAD=∠BAC=45°, ∴∠EAC=∠ACB=90°, 在△CAE 和△BCF 中,CA BC CAE BCF AE CF ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCF (SAS ), ∴∠ACE=∠CBF , ∵∠ACE+∠BCE=90°, ∴∠CBF+∠BCE=90°, 即BF ⊥CE , ∵MN ∥BF ,∴MN ⊥CE .(2)证明:延长DN 到G ,使DN=GN ,连接CG ,延长DE 、CA 交于点K ,∵M 为BD 中点, ∴MN 是△BDG 的中位线, ∴BG=2MN , 在△EDN 和⊈CGN 中, DN NGDNE GNC EN NC ⎧⎪∠∠⎨⎪⎩===, ∴△EDN ≌△CGN (SAS ), ∴DE=CG=AE ,∠GCN=∠DEN , ∴DE ∥CG , ∴∠KCG=∠CKE ,∵∠CAE=45°+30°+45°=120°, ∴∠EAK=60°, ∴∠CKE=∠KCG=30°, ∴∠BCG=120°, 在△CAE 和△BCG 中,AC BC CAE BCG AE CG ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCG (SAS ), ∴BG=CE , ∵BG=2MN , ∴CE=2MN .【点睛】考查了等腰直角三角形性质,全等三角形的性质和判定,三角形的中位线,平行线性质和判定的应用,主要考查学生的推理能力.5.如图1,ABCD 和AEFG 是两个能完全重合的平行四边形,现从AB 与AE 重合时开始,将ABCD固定不动,AEFG绕点A逆时针旋转,旋转角为α(0°<α<360°),AB=a,BC=2a;并发现:如图2,当AEFG旋转到点E落在AD上时,FE的延长线恰好通过点C.探究一:(1)在图2的情形下,求旋转角α的度数;探究二:(2)如图3,当AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;探究三:(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积最大的情形,S△BCF 33a2.【解析】试题分析:(1)由平行四边形的性质知∠D=∠B,AB=CD=a,可得∠D=∠DEC,由等角对等边知CD=CE,由AE=AB=a,AD=BC=2a,可得DE=CE,即可证得△CDE是等边三角形,∠D=60°,由两直线平行,同位角相等可得∠DAB=120°,即可求得α;(2)由旋转的性质以及∠B=60°,可得△ABE是等边三角形,由平行线的判定以及两组对边分别平行的四边形是平行四边形可证四边形ABEM是平行四边形,再由由一组邻边相等的平行四边形是菱形即可得证;(3)当点F到BC的距离最大时,△BCF的面积最大,由于点F始终在以A为圆心AF为半径的圆上运动,故当FG与⊙A相切时,点F到BC的距离最大,过点A作AH⊥BC于点H,连接AF,由题意知∠AFG=90°.由∠ABH=∠G=60°,AB=a,AG=2a,可得AH、AF的值.可求得点F到BC的最大距离.进而求得S△BCF的值.试题解析:(1)∵四边形ABCD是平行四边形,∴∠D=∠B,AB=CD=a,∵∠AEF=∠B,∠AEF=∠DEC,∴∠D=∠DEC,∴CD=CE,∵AE=AB=a,AD=BC=2a,∴DE=CE.,∴CD=CE=DE,∴△CDE是等边三角形,∴∠D=60°,∵CD∥AB,∴∠D+∠DAB=180°,∴∠DAB=120°,∴α=120°.;(2)四边形CDFM是菱形.证明:由旋转可得AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAG=∠BAE+∠GAE=60°+120°=180°,∴点G,A,B在同一条直线上,∴ME ∥AB,BE∥AM,∴四边形ABEM是平行四边形,∴AM=AB=ME,∴CD=DM=MF,∵CD ∥AB∥MF,∴四边形CDFM是平行四边形,∵∠D= 60°,CD=DM,∴△CDM是等边三角形,∴CD=DM,∴四边形CDFM是菱形;(3)存在△BCF的面积最大的情形.∵CB的长度不变,∴当点F到BC的距离最大时,△BCF的面积最大.∵点F始终在以A为圆心AF为半径的圆上运动,∴当FG与⊙A相切时,点F到BC的距离最大,如图,过点A作AH⊥BC于点H,连接AF,则∠AFG=90°.∵∠ABH=∠G=60°,AB=a,AG=2a,∴AH=AB×sin60°=32a,AF=AG×sin60°=3 a.∴点F到BC的最大距离为3a+ 3a=33a.∴S△BCF=12×2a×33a=33a2.点睛:此题考查了旋转的洗澡那个会、平行四边形的判定和性质、菱形的判定和性质,三角形的面积的求法,关键是运用旋转前后,图形的对应边相等、对应角相等的性质解题.6.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=+,236x=-(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.7.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.8.如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.【答案】(1)见解析;5π;(2)旋转中心P的坐标为(3,3)或(6,6).【解析】【分析】(1)依据旋转的方向、旋转角和旋转中心即可得到点A运动的路径为弧线,再运用弧长计算公式即可解答;(2)连接两对对应点,分别作出它们连线的垂直平分线,其交点即为所求.【详解】解:(1)点A运动的路径如图所示,出点A运动的路径长为229024180π⨯⨯+=5π;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换及其作图,掌握旋转的性质、旋转角以及确定旋转中心的方法是解答本题的关键.9.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【答案】(1)见解析;(2) ①见解析; ②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=3,∴△BDE的最小周长=CD+4=3;②存在,∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;当6<t<10时,由∠DBE=120°>90°,∴此时不存在;当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.10.如图,正方形ABCD,点M是线段CB延长线一点,连结AM,AB a,AM b(1)将线段AM沿着射线AD运动,使得点A与点D重合,用代数式表示线段AM扫过的平面部分的面积.(2)将三角形ABM绕着点A旋转,使得AB与AD重合,点M落在点N,用代数式表示线段AM扫过的平面部分的面积.(3)将三角形ABM顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外),请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角【答案】(1)2a ;(2)214b π或234b π;(3)见解析【解析】【分析】(1)根据平移的性质和平行四边形的面积计算即可;(2)根据扇形的面积计算即可;(3)根据旋转的性质画出图形得出旋转中心和角度即可.【详解】解:(1)2AD DC a •=答:线段AM 扫过的平面部分的面积为2a(2)三角形ABM 绕着点A 旋转,使得AB 与AD 重合,则三角形ABM 旋转的角度是90°或270°∴°2°90360AMN b S π⨯=扇形或°2°270360AMN b S π⨯=扇形 ∴214AMN S b π=扇形或234b π 答:扇形AMN 的面积为214b π或234b π(3)如图1,旋转中心:AB 边的中点为O ,顺时针180如图2,旋转中心:点B ,顺时针旋转90如图3,旋转中心:正方形对角线交点O ,顺时针旋转90【点睛】本题考查了旋转的性质,关键是根据旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角解答.。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30.【解析】【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可.【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥,解这个不等式,得56x ≤,答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件,根据题意,得 ()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=, 解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =,即a 的值是30.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.2.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.已知关于x的方程x2-(m+2)x+(2m-1)=0。
专题——几何综合2023二模·题型分类汇编【题目1】(2023东城二模)27.如图,在菱形ABCD中,∠BAD=60°,E是AB边上一点(不与A,B重合),点F与点A关于直线DE对称,连接DF.作射线CF,交直线DE于点P,设∠ADP=α.(1)用含α的代数式表示∠DCP;(2)连接AP,AF.求证:△APF是等边三角形;(3)过点B作BG⊥DP于点G,过点G作CD的平行线,交CP于点H.补全图形,猜想线段CH与PH之间的数量关系,并加以证明.27.如图,在ABC 中,边AB 绕点B 顺时针旋转α(0180α︒<<︒)得到线段BD ,边AC 绕点C 逆时针旋转180α︒−得到线段CE ,连接DE ,点F 是DE 的中点.(1)以点F 为对称中心,作点C 关于点F 的对称点G ,连接BG ,DG ,①依题意补全图形,并证明AC =DG ;②求证:DGB ACB ∠=∠;(2)60α=︒,且FHBC 于H ,直接写出用等式表示的FH 与BC 的数量关系.备用图EDCB27.如图,在△ABC 中,AB =AC ,∠BAC =2α(4590)α︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF ⊥AE 交射线AM 于点F .(1)①依题意补全图形;②求证:∠B =∠AFE ;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.备用图C BCB27.在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 边上(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90°,得到线段AE ,连接DE .(1)根据题意补全图形,并证明:∠EAC =∠ADC ;(2)过点C 作AB 的平行线,交DE 于点F ,用等式表示线段EF 与DF 之间的数量关系,并证明. 备用图27.如图,在等边△ABC 中,点D ,E 分别在CB ,AC 的延长线上,且BD =CE ,EB 的延长线交AD 于点F .(1)求∠AFE 的度数;(2)延长EF 至点G ,使FG =AF ,连接CG 交AD 于点H .依题意补全图形,猜想线段CH 与GH 的数量关系,并证明.备用图EDED2α27.如图,在△ABC 中,AB =AC ,∠ACB = ,BD 平分∠ABC 交 AC 于点 E ,点 F 是ED 上一点且∠EAF =α.(1)求∠AFB 的大小(用含α的式子表示);(2)连接FC .用等式表示线段FC 与FA 的数量关系,并证明.备用图DBDB【题目7】(2023 门头沟二模)27.如图,在△ABC 中,∠ACB =90,点D 在BC 延长线上,且DC =AC ,将△ABC 延BC 方向平移,使点C 移动到点D ,点A 移动到点E ,点B 移动到点F ,得到△EFD ,连接CE ,过点F 作FG ⊥CE 于G .(1)依题意补全图形; (2)求证:CG =FG ;(3)连接BG ,用等式表示线段BG ,EF 的数量关系,并证明.备用图27.如图,∠BAC =90°,AB =AC ,点D 是BA 延长线上一点,连接DC ,点E 和点B 关于直线DC 对称,连接BE 交AC 于点F ,连接EC ,ED ,DF .(1)依题意补全图形,并求∠DEC 的度数;(2)用等式表示线段EC ,ED 和CF 之间的数量关系,并证明.备用图27.如图,在△ABC 中,∠B =45 ,将线段AC 绕点A 逆时针旋转得到线段AD ,且点D 落在BC 的延长线上,过点D 作DE ⊥AC 于点E ,延长DE 交AB 于点F .(1)依题意补全图形.求证:∠BDF =12∠CAD ;(2)用等式表示线段CD 与BF 之间的数量关系,并证明.备用图【题目10】(2023 顺义二模)27.已知:∠ABC =120︒,D ,E 分别是射线BA ,BC 上的点,连接DE ,以点D 为旋转中心,将线段DE 绕着点D 逆时针旋转60︒,得到线段DF ,连接EF ,BF .(1)如图1,当BD =BE 时,求证:BF =2BD ;(2)当BD ≠BE 时,依题意补全图2,用等式表示线段BD ,BF ,BE 之间的数量关系,并证明. 图1 图2AA27.在等边△ABC 中,点D 是AB 中点,点E 是线段BC 上一点,连接DE ,∠DEB =α(3060)α︒<︒,将射线DA 绕点D 顺时针旋转α,得到射线DQ ,点F 是射线DQ 上一点,且DF =DE ,连接FE ,FC .(1)补全图形;(2)求∠EDF 度数;(3)用等式表示FE ,FC 的数量关系,并证明.备用图27.在әABC中,øACB=90ʎ,点D为BC边上一点,E为AC延长线上的一点,CE=CD,F为CB边上一点,EFʅ射线AD于点K,过点D作直线DGʅAB于G,交EF于点H,作øAGD的角平分线交AD于M,过点M作AB的平行线,交DG于点O,交BC于点Q,交EF于点N,MO=NO.(1)找出图中和øDHK相等的一个角,并证明;(2)判断EH㊁FN㊁MD的数量关系,并证明.27.△ABC 中,∠ACB =90°,AC =BC ,点D 为边AB 的中点,点E 在线段CD 上,连接AE ,将线段AE 绕点A 逆时针旋转90°得到线段AF ,连接CF .(1)如图1,当点E 与点D 重合时,求证:CF =AE ;(2)当点E 在线段CD 上(与点C ,D 不重合)时,依题意补全图2;用等式表示线段CF ,ED ,AD 之间的数量关系,并证明.图1 图2F。
一、旋转真题与模拟题分类汇编(难题易错题)1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.2.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=m=2﹣【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.3.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.【答案】(1)BD,CE的关系是相等;(2534172034173)1,7【解析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到PD AE =CDCE,进而得到53417;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到PB BEAB BD,进而得出63434,203417(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE=2234+=,AC AE∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴PD CD=,AE CE∴PD=534;17若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,2234AD AB+=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BE AB BD =,即334PB =, 解得PB=63434, ∴PD=BD+PB=34+63434=203417, 故答案为53417或203417; (3)如图3所示,以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大.如图3所示,分两种情况讨论:在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小. ①当小三角形旋转到图中△ACB 的位置时,在Rt △ACE 中,2253-,在Rt △DAE 中,225552+=∵四边形ACPB 是正方形,∴PC=AB=3,∴PE=3+4=7,在Rt △PDE 中,2250491DE PE -=-=,即旋转过程中线段PD 的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD 的最大值为7.故答案为1,7.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.4.如图1,在锐角△ABC 中,∠ABC=45°,高线AD 、BE 相交于点F .(1)判断BF 与AC 的数量关系并说明理由;(2)如图2,将△ACD 沿线段AD 对折,点C 落在BD 上的点M ,AM 与BE 相交于点N ,当DE∥AM时,判断NE与AC的数量关系并说明理由.【答案】(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.试题解析:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.5.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.6.如图1,ABCD和AEFG是两个能完全重合的平行四边形,现从AB与AE重合时开始,将ABCD固定不动,AEFG绕点A逆时针旋转,旋转角为α(0°<α<360°),AB=a,BC=2a;并发现:如图2,当AEFG旋转到点E落在AD上时,FE的延长线恰好通过点C.探究一:(1)在图2的情形下,求旋转角α的度数;探究二:(2)如图3,当AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;探究三:(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积最大的情形,S△BCF 33a2.【解析】试题分析:(1)由平行四边形的性质知∠D=∠B,AB=CD=a,可得∠D=∠DEC,由等角对等边知CD=CE,由AE=AB=a,AD=BC=2a,可得DE=CE,即可证得△CDE是等边三角形,∠D=60°,由两直线平行,同位角相等可得∠DAB=120°,即可求得α;(2)由旋转的性质以及∠B=60°,可得△ABE是等边三角形,由平行线的判定以及两组对边分别平行的四边形是平行四边形可证四边形ABEM是平行四边形,再由由一组邻边相等的平行四边形是菱形即可得证;(3)当点F到BC的距离最大时,△BCF的面积最大,由于点F始终在以A为圆心AF为半径的圆上运动,故当FG与⊙A相切时,点F到BC的距离最大,过点A作AH⊥BC于点H,连接AF,由题意知∠AFG=90°.由∠ABH=∠G=60°,AB=a,AG=2a,可得AH、AF的值.可求得点F到BC的最大距离.进而求得S△BCF的值.试题解析:(1)∵四边形ABCD是平行四边形,∴∠D=∠B,AB=CD=a,∵∠AEF=∠B,∠AEF=∠DEC,∴∠D=∠DEC,∴CD=CE,∵AE=AB=a,AD=BC=2a,∴DE=CE.,∴CD=CE=DE,∴△CDE是等边三角形,∴∠D=60°,∵CD∥AB,∴∠D+∠DAB=180°,∴∠DAB=120°,∴α=120°.;(2)四边形CDFM是菱形.证明:由旋转可得AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAG=∠BAE+∠GAE=60°+120°=180°,∴点G,A,B在同一条直线上,∴ME ∥AB,BE∥AM,∴四边形ABEM是平行四边形,∴AM=AB=ME,∴CD=DM=MF,∵CD ∥AB∥MF,∴四边形CDFM是平行四边形,∵∠D= 60°,CD=DM,∴△CDM是等边三角形,∴CD=DM,∴四边形CDFM是菱形;(3)存在△BCF的面积最大的情形.∵CB的长度不变,∴当点F到BC的距离最大时,△BCF的面积最大.∵点F始终在以A为圆心AF为半径的圆上运动,∴当FG与⊙A相切时,点F到BC的距离最大,如图,过点A作AH⊥BC于点H,连接AF,则∠AFG=90°.∵∠ABH=∠G=60°,AB=a,AG=2a,∴AH=AB×sin60°=32a,AF=AG×sin60°=3 a.∴点F到BC的最大距离为3a+ 3a=33a.∴S△BCF=12×2a×33a=33a2.点睛:此题考查了旋转的洗澡那个会、平行四边形的判定和性质、菱形的判定和性质,三角形的面积的求法,关键是运用旋转前后,图形的对应边相等、对应角相等的性质解题.7.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.【答案】40°.【解析】【分析】先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.【详解】∵CC′∥AB,∴∠A CC′=∠CAB=70°,∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°-70°-70°=40°,∴∠BAB′=40°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.9.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE≌△C1BF,∴BE=BF(2)解:四边形BC1DA是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A1=∠C1=30°,∵∠ABA1=∠CBC1=30°,∴∠ABA1=∠A1,∠CBC1=∠C,∴A1C1∥AB,AC∥BC1,∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.10.在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.(1)依题意补全图 1;(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为:.【答案】(1)详见解析;(2)①详见解析;②BP=AB.【解析】【分析】(1)根据要求画出图形即可;(2)①连接BD,如图2,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(2)①证明:连接 BD,如图 2,∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,∴AQ=AP,∠QAP=90°,∵四边形 ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠2.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在 Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在 Rt△BPD 中,DP2+BP2=BD2,又∵DQ=BP,BD2=2AB2,∴DP2+DQ2=2AB2.②解:结论:BP=AB.理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴。
2023-2024学年九年级5月质量检查数学一、选择题(本大题共 10 小题,共30分)1.KN 95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN 95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m 的非油性颗粒.其中,0.0000003用科学记数法表示为( )A .60.310-´B .70.310-´C .6310-´D .7310-´2.下列计算正确的是( )A .234a a a +=B .()()33a a -=-C .()²²²a b a b -=-D .()222a b a b +=+3.下面是某同学在九年级期中测试中解答的几道填空题:()1若22x a =,则x a =;()2方程()211x x x -=-的根是0x =;()3若直角三角形的两边长为3和4,则第三边的长为5.其中答案完全正确的题目个数为( )A .0B .1C .2D .34.反比例函数 4m y x-=的图像的每一支上,y 随着x 的减小而增大,那么m 的取值范围( )A .4m >B .4m <C .0m <D .0m >5.不等式组23322322x x x -³ìïí+->ïî的解集在数轴上表示为( )A .B .C .D .6.如图河堤横断面迎水坡AB 的坡比1:3, 堤高6m BC =,则坡面AB 的长度是( )mA .8B .18C.D.7.如图,四边形ABCD 为O e 的内接四边形,AO BC ^,垂足为点E ,若130ADC Ð=°,则BDC Ð的度数为( )A .60°B .70°C .75°D .80°8.如图,在三角形ABC 中,D 、F 是AB 边上的点,E 是 AC 边上的点,DE BC ∥ ,EF DC P ,则下列式子中不正确的是( )A .AF AE AD AC =B .AD AE AB AC =C .EF AF CD FD =D .2AD AB AF =×9.已知抛物线C 1:y =﹣x 2+2mx +1(m 为常数,且m ≠0)的顶点为A ,与y 轴交于点C ;抛物线C 2与抛物线C 1关于y 轴对称,其顶点为B .若点P 是抛物线C 1上的点,使得以A 、B 、C 、P 为顶点的四边形为菱形,则m 为( )A .BC .D 10.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG =120∘.绕点o 旋转FOG Ð,分别交线段AB BC 、于DE 、两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S D D =;③四边形ODBE ④△BDE 周长的最小值为6,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题(本大题共 6 小题,共 18 分)11.函数1y=x 2-中,自变量x 的取值范围是 .12.点 (2, 1)P m m +-在坐标轴上, 则点 P 的坐标是13.清明缅怀英烈,某校计划组织540名学生外出祭奠.现有A ,B 两种不同型号的客车可供选择,在每辆车刚好满座的前提下,每辆B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租6辆(每辆车刚好满座),设A 型客车每辆坐x 人,则根据题意可列方程为14.已知扇形的弧长为6π,半径为3,则这个扇形的面积为 .15.如图,六边形ABCDEF 是圆O 的内接正六边形,设四边形 ABCE 的面积为1S ,ACE V 的面积为2S , 则12S S = .16.对于平面直角坐标系xOy 中的点 P 和图形M ,给出如下定义:若在图形M 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.当O e 的半径为2时,在点 11,02P æöç÷èø,212P æççè中,O e 的关联点是 ;点P 在直线y x =-上,若P 为O e 的关联点,则点 P 的横坐标x 的取值范围是.三、解答题(本大题共9题,共72分)17.计算: ()320241128-+-´18.给出6个整式:2x +,2x -,21x +,2,21x x +-,211--x x .(1)从上面的6个整式中选择2个合适的整式,组成一个分式;(2)从上面的6个整式中选择2个合适的整式进行乘法运算,使运算结果为一个不含有一次项的多项式,请你列出算式,并写出运算过程.19.关于x ,y 的方程组 321x y m x y n+=-ìí-=î的解满足1x y +=,求 42m n ¸的值.20. 如图在平面直角坐标系 xOy 中,直线 y =O 相交于A 、B 两点,且点 A 在x 轴上, 求弦AB 的长.21.如图,一架飞机以每小时900千米的速度水平飞行,某个时刻,从地面控制塔O (塔高300m )观测到飞机在A 处的仰角为30°,5分钟后测得飞机在B 处的仰角为45°,试确定飞机的飞行高度. 1.732=,结果精确到1km )22.如图,ABD D 中,ABD ADB Ð=Ð.(1)作点A 关于BD 的对称点C ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC ,DC ,连接AC ,交BD 于点O .①求证:四边形ABCD 是菱形;②取BC 的中点E ,连接OE ,若132OE =,10BD =,求点E 到AD 的距离.23.已知:在平面直角坐标系xOy 中,点A (-1,2)在函数m y x=(x<0)的图象上.(1)求m 的值;(2)过点A 作y 轴的平行线l ,直线2y x b =-+与直线l 交于点B ,与函数m y x=(x<0)的图象交于点C ,与y 轴交于点D .①当点C 是线段BD 的中点时,求b 的值;②当BC <BD 时,直接写出b 的取值范围.24.问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为 .问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在 BC、线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P→E→F→P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图① 图② 图③25.已知抛物线 ²y ax bx c =++(a 、b 、c 为常数, 且0a ¹)(1)已知抛物线的对称轴为 3x =,若抛物线与x 轴的两个交点的横坐标比为1:2,求这两个交点的坐标;(2)已知对于抛物线上的任意一点 (),x y n n ,点 ()4,x y -n n 也在此抛物线上,且 16²8²0a ac c -+=,若存在一点(),G m m 恰在该抛物线上,求a 的取值范围;(3)已知当1x >-时,y 随x 的增大而增大,且抛物线与直线1y ax c a=-+只有一个交点D ,若 OD >c 的取值范围.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:70.0000003310-=´故选:D【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.2.B【分析】本题考查了整式的加减运算,幂的乘方运算,完全平方公式,熟练掌握相关计算是解题的关键.根据整式的加减运算法则,幂的乘方运算法则,完全平方公式的运算法则,即得答案.【详解】A 、34a a a +=,所以选项A 错误,不符合题意;B 、计算正确,符合题意;C 、()²²2²a b a ab b -=-+,所以选项C 错误,不符合题意;D 、()2222a b a ab b +=++,所以选项D 错误,不符合题意;故选B .3.A【分析】根据一元二次方程的解法,以及勾股定理即可解答.【详解】(1)若x 2=a 2,则x =±a ,故错误;(2)方程2x (x−1)=x−1需要先移项再利用因式分解解方程得,x =12或x =1,故错误;(3)若直角三角形的两边长为3和4,则第三边的长为54为斜边的情况,故错误.故选:A .【点睛】本题考查了解一元二次方程的方法和勾股定理的应用.该题反映的三个问题是平时中解题过程中最容易犯的错误,应该特别注意.4.B【分析】本题考查了反比例函数图象的性质,根据题意得出40m ->,解不等式即可求【详解】解:∵在反比例函数4m y x -=图象的每一支上,y 都随x 的减小而增大,∴反比例函数4m y x-=图象在第一、三象限,∴40m ->,∴4m <,故选:B .5.A【分析】本题考查了一元一次不等式组的解法及数轴上表示不等式,熟悉掌握运算的法则是解题的关键.根据不等式组的运算法则进行运算求解即可.【详解】解:23322322x x x -³ìïí+->ïî①②由①可得:23x -³32x -³-1x -³1x £-,由②可得:322322x x +->3223x x +>-3232x x ->--5x >-,∴不等式的解集为:51x -<£-,故选:A .6.D【分析】本题考查了解直角三角形问题,勾股定理,根据迎水坡AB 的坡比为1:3得出1tan 3BAC Ð=,再根据6m BC =得出AC 的值,再根据勾股定理求解即可.【详解】由题意得1tan 3BAC Ð=,∴6318m tan BC AC BAC==´=Ð,∴AB==.故选:D.7.D【分析】根据圆内接四边形的性质得出∠ABC的度数,利用互余得出∠BAE的度数,进而利用垂径定理和圆周角定理解答即可.【详解】解:∵四边形ABCD为⊙O的内接四边形,∠ADC=130°,∴∠ABE=180°−130°=50°,∵AO⊥BC,∴∠AEB=90°,∴∠BAE=40°,∵AO⊥BC,∴BC=2BE,∴∠BDC=2∠BAE=80°,故选D.【点睛】本题主要考查的是圆内接四边形的性质、圆周角定理的应用,求得∠ABC的度数是解题的关键.8.C【分析】本题考查了相似三角形的判定和性质,平行线分线段成比例,通过证明ADC AFE△△∽以及平行线分线段成比例可求解.【详解】解:∵EF DCP,∴ADC AFE△△∽,∴AF AEAD AC=,EF AFCD AD=,∵DE BC∥,∴AD AE AB AC=,∴AD AEAB AC ADAF==,∴2AD AB AF=×,故只有C选项不正确故选:C.9.A【详解】易知:C (0,1),A (m ,m 2+1);若以A 、B 、C 、P 为顶点的四边形为菱形,则CP //AB ①,CP =AP ②;由①得:点P 与点C 纵坐标相同,将y =1代入C 1,得:x =0或x =2m ,即P (2m ,1);由②得:(2m )2=m 2+(m 2+1﹣1)2,即m 2=3,解得m 故选A .考点:二次函数综合题.10.C【详解】分析:连接BO ,CO ,可以证明△OBD ≌△OCE ,得到BD =CE ,OD =OE ,从而判断①正确;通过特殊位置,当D 与B 重合时,E 与C 重合,可判断△BDE 的面积与△ODE 的面积的大小,从而判断②错误;由△OBD ≌△OCE ,得到四边形ODBE 的面积=△OBC 的面积,从而判断③正确;过D 作DI ⊥BC 于I .设BD =x ,则BI =12x ,DI x BE =4-x ,IE = 342x -.在Rt △DIE 中,DE =△BDE 的周长=BD +BE +DE = 4+DE ,当DE 最小时,△BDE 的周长最小,从而判断出④正确.详解:连接BO ,CO ,过O 作OH ⊥BC 于H .∵O 为△ABC 的中心,∴BO =CO ,∠DBO =∠OBC =∠OCB =30°,∠BOC =120°.∵∠DOE =120°,∴∠DOB =∠COE .在△OBD 和△OCE 中,∵∠DOB =∠COE ,OB =OC ,∠DBO =∠ECO ,∴△OBD ≌△OCE ,∴BD =CE ,OD =OE ,故①正确;当D 与B 重合时,E 与C 重合,此时△BDE 的面积=0,△ODE 的面积>0,两者不相等,故②错误;∵O 为中心,OH ⊥BC ,∴BH =HC =2.∵∠OBH =30°,∴OH ∴△OBC 的面积=142´∵△OBD ≌△OCE ,∴四边形ODBE 的面积=△OBC 的面积③正确;过D 作DI ⊥BC 于I .设BD =x ,则BI =12x ,DI x .=4-x ,IE =BE -BI =342x -.在Rt △DIE 中,DE =x =2时,DE 的值最小为2,△BDE 的周长=BD +BE +DE =BE +EC +DE =BC +DE =4+DE ,当DE 最小时,△BDE 的周长最小,∴△BDE 的周长的最小值=4+2=6.故④正确.故选C .点睛:本题是几何变换-旋转综合题.考查了等边三角形的性质以及二次函数的性质.解题的关键是证明△OBD ≌△OCE .11.x 2¹【详解】解:由题意知:x -2≠0,解得x ≠2;故答案为x ≠2.12.()0,3-或()3,0##()3,0或()0,3-【分析】本题主要考查了直角坐标系,分类讨论,当点(2,1)P m m +-在y 轴上,得20m +=,可得2m =-;当点(2,1)P m m +-在x 轴上,得10m -=,即1m =,即可得到答案.【详解】解:当点(2,1)P m m +-在y 轴上,20m \+=,2m \=-,13m \-=-,∴点P 的坐标是()0,3-;当点(2,1)P m m +-在x 轴上,10m \-=,1m \=,23m \+=,∴点P 的坐标是()3,0;故答案为:()0,3-或者()3,0.13.540540615x x =++【分析】本题考查由实际问题抽象出分式方程,首先根据A 型客车每辆坐x 人,得每辆B 型客车每辆坐()15x +人,根据根据等量关系列出方程即可.【详解】解:A 型客车每辆坐x 人,∵B 型客车比每辆A 型客车多坐15人∴B 型客车每辆坐()15x +人∴根据题意的:540540615x x =++,故答案为540540615x x =++.14.9p 【分析】根据扇形的面积公式12扇形S lr =(l 为扇形的弧长,r 为扇形的半径)解答即可.【详解】解:∵扇形的弧长为6π,半径为3,∴12扇形S lr == 1632´p ´= 9p ,故答案为:9p .【点睛】本题考查求扇形的面积,熟记扇形的面积公式12扇形S lr ==2360n r p (l 为扇形的弧长,r 为半径,n 为圆心角的度数)是解答的关键.15.43【分析】本题考查了圆内接正多边形、全等三角形的判定,等边三角形的判定等知识.连接OA ,OB ,OC ,OE ,证明AOC COE AOE V V V ≌≌,得到AOC COE AOE S S S ==V V V ,证明ABC AOC ≌△△,得到ABC AOC COE AOE S S S S ===V V V V ,即可得到14AOC S S =V ,23AOC S S =V ,即可求出1243S S =.【详解】解:如图,连接OA ,OB ,OC ,OE ,∵六边形ABCDEF 是圆O 的内接正六边形,∴OA OC OE ==,3602221206AOC COE AOE AOB BOC °Ð=Ð=Ð=Ð=Ð=´=°,∴AOC COE AOE V V V ≌≌,∴AOC COE AOE S S S ==V V V .∵,60OA OB OC AOB BOC ==Ð=Ð=°,∴,AOB BOC V V 都是等边三角形,∴OA OB AB OC BC ====,即OA BA OC BC ==,,又∵AC AC =,∴ABC AOC ≌△△,∴ABC AOC S S =△△,∴ABC AOC COE AOE S S S S ===V V V V ,即14AOC S S =V ,23AOC S S =V ,∴1243S S =.故答案为:4316. 2Px ££x ££【分析】本题主要考查了一次函数的性质,两点间的距离公式,正确理解题目给出的定义是解答本题的关键.由题意得,只需在以O 为圆心,半径为1和3两圆之间即可,由2OP 的值可知2P 为O e 的关联点;设点P 的坐标为(),P a a -,求出点P 到O 点的距离,根据关联点的定义可知,13OP ££,求解即可.【详解】①112OP =,21OP ==,点1P 与O e 的最小距离为132122-=>,点2P 与O e 的最小距离为211-=,∴O e 的关联点为2P .设点P 的横坐标为a ,∵点P 在直线y x =-上,∴(),P a a -,OP ==∵P 为O e 的关联点,∴13OP ££,∴13£,同时平方得:2129a ££,整理得:21922a ££,当292a =时,解得:1a =,2a =当212a =时,解得:1a =2a =如图:∴P 横坐标范围是x ££x ££故答案为:2P ,x ££x ££17.1-【分析】本题考查了立方根,算术平方根以及实数的混合运算,根据相应的运算法则计算即可.【详解】()320241128-+-´()()1118383=-+-´--´-()()11133=-+---´1=-.18.(1)选择两个整式为:2x +,2x -,组成的分式为:22x x +-(2)选择两个整式为:2x +,2x -,222(2)(2)24x x x x +-=-=-【分析】本题考查整式的运算.(1)根据题意,选择两个整式组成一个分式即可;(2)根据题意,选择的两个整式乘法运算不含1次项即可.【详解】(1)解:选择两个整式为:2x +,2x -,组成的分式为:22x x +-;(2)选择两个整式为:2x +,2x -其乘法运算:22(2)(2)2x x x +-=-24x =-.19.8【分析】本题考查了根据二元一次方程组的解的情况求参数,同底数幂除法,幂的乘方.将方程组中两个方程相减,得到2221x y m n +=--,即()221m n x y -=++,由1x y +=求出23m n -=,再根据幂的乘方与同底数幂的除法即可求解.【详解】解:321x y m x y n +=-ìí-=î①②,①-②,得2221x y m n +=--,∴()221m n x y -=++,∵1x y +=,∴22113m n -=´+=,∴2238422222m n m n m n -¸=¸===.20.【分析】过O 作OE AB ^于C ,根据垂径定理可得12AC BC AB ==,可求2OA =,OD =AD =OAC DAO V V ∽,由相似三角形性质可求AC =即可.【详解】解:过O 作OE AB ^于C ,如图,∵AB 为弦,∴AC =∵直线y O 相交于A ,B 两点,∴当0y =0=,解得2x =-,∴2OA =,∴当0x =时,y =∴OD =在Rt AOD V 中,由勾股定理AD ===∵90ACO AOD Ð=Ð=°,CAO OAD Ð=Ð,∴OAC DAO V V ∽,∴AC AO AO AD =,即2AO AC AD ===∴2AB AC ==故答案为:【点睛】本题考查垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.21.飞机的飞行高度约为103 km【分析】首先根据飞机的速度与时间算出AB 的长度,再过点O 作OD ⊥AB ,垂足为D ,设OD =x 千米,由∠OBD =45°,可得BD =OD =x 千米,则AD =(x +75)千米,再利用三角函数可算出x 的值,进而可得到CD 的长.【详解】解:由题意得:()59007560AB km =´=过点O 作OD AB ^,垂足为D设,OD xkm =在Rt OBD D 中,45OBD Ð=°Q BD OD xkm\==在Rt OAD D 中,()75 ,AD AB BD x km =+=+60AOD Ð=°tan AD AOD ODÐ=Q75x x +\解得102.5x km »().102.50.3103()CD OD OC km \=+=+»答:飞机的飞行高度约为103 km .【点睛】此题主要考查了解直角三角形的应用−仰角俯角问题,解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.22.(1)见解析;(2)①见解析:②12013.【分析】(1)过点A 做BD 的垂线交BD 于点M ,在AM 的延长线上截取AM CM =,即可求出所作的点A 关于BD 的对称点C ;(2)①利用ABD ADB Ð=Ð,AC BD ^得出BO DO =,利用AO CO =,以及AC BD ^得出四边形ABCD 是菱形;②利用OE 为中位线求出AB 的长度,利用菱形对角线垂直平分得出OB 的长度,进而利用Rt AOB D 求出AO 的长度,得出对角线AC 的长度,然后利用面积法求出点E 到AD 的距离即可.【详解】(1)解:如图:点C 即为所求作的点;(2)①证明:∵ABD ADB Ð=Ð,AC BD ^,又∵AO AO =,∴ABO ADO D @D ;∴BO DO =,又∵AO CO =,AC BD^∴四边形ABCD 是菱形;②解:∵四边形ABCD 是菱形,∴AO CO =,BO DO =,AC BD^又∵10BD =,∴=5BO ,∵E 为BC 的中点,∴CE BE =,∵AO CO =,∴OE 为ABC D 的中位线,∵132OE =,∴13AB =,∴菱形的边长为13,∵AC BD ^,=5BO在Rt AOB D 中,由勾股定理得:222AO AB BO =-,即:AO =,∴12224AC =´=,设点E 到AD 的距离为h ,利用面积相等得:12410132h ´´=,解得:12013h =,即E 到AD 的距离为12013.【点睛】本题考查了对称点的作法、菱形的判定以及菱形的面积公式的灵活应用,牢记菱形的判定定理,以及对角线乘积的一半等于菱形的面积是解决本题的关键.23.(1)m = -2;(2)①b =3;②b > -3.【分析】(1)把A (-1,2)代入解析式即可求解;(2)①根据题意知点B 的横坐标为-1,点D 的横坐标为0,由于点C 是BD 的中点,利用中点坐标公式即可求得点C 的横坐标,代入2y x=-中可求得点C 的坐标,代入函数 2y x b =-+中,即可求解;②先利用①的方法求得BC =BD 即点B 是CD 的中点时b 的值,观察图象,即可求得b 的取值范围.【详解】(1)把A (-1,2)代入函数m y x=(x<0)中,∴ 2m =-;(2)① 如图,根据题意知:点B 的横坐标为-1,点D 的横坐标为0,∵点C 是BD 的中点,∴点C 的横坐标为10122-+=-, 把12x =-代入函数2y x=-中,得y = 4,∴点C 的坐标为(12-,4), 把点C 的坐标为(12-,4)代入函数 2y x b =-+中,得:1422b æö=-´-+ç÷èø,解得:3b =;② 当点B 是CD 的中点时,BC =BD ,此时,点B 的横坐标为-1,点D 的横坐标为0,设点C 的横坐标为x ,∴012x +=-,解得:2x =-,把2x =-代入函数2y x=-中,得y = 1,∴点C 的坐标为(2-,1),把点C 的坐标为(2-,1)代入函数 2y x b =-+中,得:()122b =-´-+,解得:3b =-;观察图象,当3b >-时,BC <BD ,故答案为:3b >-.【点睛】本题考查了待定系数法求一次函数和反比例函数的解析式,一次函数与反比例函数图象交点情况,中点坐标公式的应用,解题关键是正确读图、识图、观察图象,利用数形结合思想解决问题.24.(1)5;(2)18;(3)(-9)km .【详解】【分析】(1)如图(1),设外接圆的圆心为O ,连接OA , OB ,根据已知条件可得△AOB 是等边三角形,由此即可得半径;(2)如图(2)所示,连接MO 并延长交⊙O 于N ,连接OP ,显然,MN 即为MP 的最大值,根据垂径定理求得OM 的长即可求得MN 的最大值;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP",则P´P"即为最短距离,其长度取决于PA的长度,根据题意正确画出图形,得到点P的位置,根据等边三角形、勾股定理等进行求解即可得PE+EF+FP的最小值.【详解】(1)如图(1),设外接圆的圆心为O,连接OA,OB,∵O是等腰三角形ABC的外心,AB=AC,∴∠BAO=∠OAC=12∠BAC=11202´°=60°,∵OA=OB,∴△AOB是等边三角形,∴OB=AB=5,故答案为5;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MP≤OM+OP=OM+ON=MN,ON=13,OM5,MN=18,∴PM的最大值为18;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P "即为最短距离,其长度取决于PA 的长度,如图(4),作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得PA最短的点,∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC =BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC =∴∠ABO =90°,AO =PA =-∠P´AE =∠EAP ,∠PAF =∠FAP ",∴∠P´AP "=2∠ABC =120°,P´A =AP ",∴∠AP´E =∠AP "F =30°,∵P´P "=2P´Acos ∠AP´E=9,所以PE +EF +FP 的最小值为9km .【点睛】本题考查了圆的综合题,涉及到垂径定理、最短路径问题等,正确添加辅助线、灵活应用相关知识是解题的关键.25.(1)()2,0,()4,0(2)18a ³-,且0a ¹(3)5c >或c 【分析】(1)设这两个交点的横坐标为1x ,2x ,根据题意有12123212x x x x +=´ìïí=ïî,即可求得这两个交点的坐标;(2)先得出抛物线对称轴为:004222x x b x a +-=-==,即有4b a =-,再由221680a ac c -+=,可得4c a =,即抛物线解析式为:²44y ax ax a =-+,根据点(),G m m 恰在该抛物线²44y ax ax a =-+上,可得²44am am a m -+=,且方程有实数根,再根据方程的判别式可得结论;(3)根据抛物线的性质可得:012a b a>ìïí-£-ïî,从而得:20b a ³>,由抛物线与直线1y ax c a =-+相切于点D ,可知()210ax b a x a+-=+,有两个相等实数根,可求得2b a -=,进而可求得点D 坐标,由勾股定理得()()222222111211O c c c a a a a D -æö=+--+=++-ç÷èø,令1t a =,则12t ³,则()()2222211OD t c t c -=+-+,化为顶点式为:()22211222c c OD t --æö++÷ø=çè,由于该抛物线开口向上,且顶点横坐标为12c -,根据OD >28OD >,结合二次函数的图象与性质进行分类讨论即可.【详解】(1)设这两个交点的横坐标为1x ,2x ,根据题意,得:12123212x x x x +=´ìïí=ïî,解得:1224x x =ìí=î,∴这两个交点的坐标为()2,0,()4,0;(2)∵点 (),x y n n ,点 ()4,x y -n n 都在此抛物线上,∴抛物线对称轴为:004222x x b x a +-=-==,∴4b a =-,∵221680a ac c -+=,∴()240a c -=,∴4c a =,∴抛物线解析式为:²44y ax ax a =-+,∵点(),G m m 恰在该抛物线²44y ax ax a =-+上,∴²44am am a m -+=,方程有实数根,整理:()²4140am a m a -++=,∴()241440a a a éù-+-´³ëû,解得:18a ³-,∵0a ¹,∴a 的取值范围为:18a ³-,且0a ¹;(3)由题意得:抛物线在1x >-时,y 随x 的增大而增大,∴抛物线开口向上,∴012a b a>ìïí-£-ïî,∴20b a ³>,∵抛物线2y ax bx c =++与直线1y ax c a=-+相切于点D ,设切点坐标为()12,D x y ,联立方程组,得:21y ax bx c y ax c a ì=++ïí=-+ïî,整理,得:()210ax b a x a +-=+,即()2041b a a a D ´=-=-,且11b a x x a -+=-,1121x x a×=,∴()240b a --=,∴2b a -=或2b a -=-(舍去),即2b a =+,∴112b a x x a a-+=-=-,则111x x a ==-,根据点D 在直线1y ax c a =-+上有:11,1D c a a æö---+ç÷èø,∵20b a ³>,∴220a a +³>,∴02a <£,∵11,1D c a a æö---+ç÷èø,∴()()222222111211O c c c a a a a D -æö=+--+=++-ç÷èø,令1t a =,则12t ³,则()()2222211OD t c t c -=+-+,化为顶点式为:()22211222c c OD t --æö++÷ø=çè,由于该抛物线开口向上,且顶点横坐标为12c -,∵OD >∴28OD >,①若1122c ->,即2>c ,当12c t -=时,最小值22(1)82c OD -=>,解得:5c >或3c <-,∴5c >;②若1122c -£,即2£c ,当12t =时,有最小值()22211128222c c OD --æö++>ç=÷èø,c <∴c <综上所述,5c >或c <【点睛】本题主要考查了二次函数的图象与性质,一元二次方程的根与系数的关系,方程的判别式,勾股定理等知识,理解直线与抛物线相切的几何意义,是解答本题的关键.。
一、旋转 真题与模拟题分类汇编(难题易错题)1.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α=度;发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.【答案】(1)60或240;(2) AC=BD ,理由见解析;(3)13+12或1312;(4)PC 的最大值=3,PC 的最小值31. 【解析】分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值31.详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°. 故答案为60或240;(2)结论:AC =BD ,理由如下:如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,OA OBCOA DOB CO OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC =BD ;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH=32.在Rt△AOH中,AH=22OA OH-=132,∴BD=AC=CH+AH=1132+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为1312+或1312-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.2.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.3.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=23,∴△BDE的最小周长=CD+4=23+4;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.4.如图①,在ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB重合,得到△QCB,连接PQ.(1)求证:△PCQ是等边三角形;(2)如图②,当点P在线段EB上运动时,△PBQ的周长是否存在最小值?若存在,求出△PBQ周长的最小值;若不存在,请说明理由;(3)如图③,当点P在射线AM上运动时,是否存在以点P、B、Q为顶点的直角三角形?若存在,求出此时t的值;若不存在,请说明理由.(1)(2)(3)【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.【解析】分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;(3)根据点的移动的距离,分类讨论求解即可.详解:(1)∵旋转∴△PCE≌△QCB∴CP=CQ,∠PCE =∠QCB,∵∠BCD=120°,CE平分∠BCD,∴∠PCQ=60°,∴∠PCE +∠QCE=∠QCB+∠QCE=60°,∴△PCQ为等边三角形.(2)存在∵CE平分∠BCD,∴∠BCE=60 ,∵在平行四边形ABCD 中,∴AB∥CD∴∠ABC=180°﹣120°=60°∴△BCE为等边三角形∴BE=CB=4∵旋转∴△PCE≌△QCB∴EP=BQ,∴C△PBQ=PB+BQ+PQ=PB+EP+PQ=BE+PQ=4+CP∴CP⊥AB时,△PBQ周长最小当CP⊥AB时,CP=BCsin60°=∴△PBQ周长最小为4+(3)①当点B与点P重合时,P,B,Q不能构成三角形②当0≤t<6时,由旋转可知,∠CPE=∠CQB,∠CPQ=∠CPB+∠BPQ=60°则:∠BPQ+∠CQB=60°,又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°∴∠CBQ=180°—60°—60°=60°∴∠QBP=60°,∠BPQ<60°,所以∠PQB可能为直角由(1)知,△PCQ为等边三角形,∴∠PBQ=60°,∠CQB=30°∵∠CQB=∠CPB∴∠CPB=30°∵∠CEB=60°,∴∠ACP=∠APC=30°∴PA=CA=4,所以AP=AE-EP=6-4=2÷=s所以t=212③当6<t<10时,由∠PBQ=120°>90°,所以不存在④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,而∠BPC>0°,∴∠BPQ>60°∴∠BPQ=90°,从而∠BCP=30°,∴BP=BC=4所以AP=14cm所以t=14s综上所述:t 为2s 或者14s 时,符合题意。
2023年江苏省常州市前黄实验学校中考二模数学试题学校:___________姓名:___________班级:___________考号:___________A.5B.【答案】BA.3【答案】C【分析】根据正方体展开图的特点,将正方体展开,然后利用勾股定理求解即可.【点睛】本题主要考查了勾股定理的实际应用,正确将正方体展开,利用勾股定理进行求解是解题的关键.7.若二次函数225=++y x xA.14B.825【答案】B【分析】设小正方形边长为1,由平行线的性质得到QTY=∠∠【详解】解:设小正方形边长为∵线段PQ恰好将这个图形分成面积相等的两个部分,∴111052PQMS+=⨯=△,∴115 2PM QM⋅+=,1【点睛】本题主要考查了求一个角的正切值,正确根据面积法求出键.二、填空题9.若式子x 1x 2+-在实数范围内有意义,则【答案】1x ≥-且2x ≠/2x ≠且【分析】根据二次根式的被开方数大于等于【详解】解:由题意,得:x +∴1x ≥-且2x ≠;∴x 的取值范围是1x ≥-且x ≠【答案】1023-+-/2310【分析】根据矩形和平行四边形的性质可得:=====,AD BC A D'AB CD CD'4【答案】(3932y x x =-+<≤【分析】作QD AB ⊥,分点Q 由直角三角形的性质表示出【详解】解:∵90C ∠=︒,由题意知6BQ x =-,∵90C ∠=︒,3cm AC BC ==,∴190452B BAC ∠=∠=⨯︒=︒,∴QDB 为等腰直角三角形,【答案】455【分析】根据点到直线的距离,垂线段最短,所以当等积法,求出OP 的长即可.【详解】解:∵直线y =当0x =时,4y =;当y ∴()()2,0,0,4A B ,∴==OA 2,OB 4,∴222425AB =+=,∵直线24y x =-+与直线∴直线BC 即为直线y =∵点到直线的距离,垂线段最短,∴当OP BC ⊥时,OP 的值最小,过点O 作OP BC ⊥,交BC【答案】83【分析】连接,AC AP ,由菱形的性质可知点G ,过点P 作PH AB ⊥定理求出CG 长度,再证明四边形求解即可.【详解】如图,连接,AC AP ∵四边形ABCD 是菱形中,∴4,AB BC D ABC ==∠=∠∴ABC 是等边三角形,过点C 作CG AB ⊥于点G 则CG PH =,【答案】1772【分析】根据勾股定理分别求出OA 二个、第三个三角形的面积,总结规律,根据规律解答即可.【详解】解:第1个三角形的面积由勾股定理得,221112OA =+=,则第2个三角形的面积1212=⨯⨯【答案】2105/2105【分析】连接DO ,OF 到DFO ∠的度数,再根据折叠的性质可知共线,然后根据勾股定理,即可求得用解直角三角形,即可求解.【详解】解:如图:连接 四边形ABCD 是正方形,将DC DA ∴=,DC DF =DA DF ∴=,在DAO 与DFO 中,DA DF OA OF DO DO =⎧⎪=⎨⎪=⎩(SSS DAO DFO ∴≌V V三、解答题19.计算或化简:(1)这50名学生视力的众数为______,中位数为______(2)求这50名学生中,视力低于4.7的人数占被抽查总人数的百分比;(3)若该校九年级共有400名学生,请估计该校九年级学生中,视力不低于【答案】(1)4.9,4.8(2)视力低于4.7的人数占被抽查总人数的16%(3)估计该校九年级学生中,视力不低于4.8的人数为【分析】(1)根据条形图确定出现次数最多的数据,即可求出众数,将数据排序后,找到第25个和第26个数据,两个数据的平均数即为中位数;(2)利用频数除以总数,进行求解即可;(3)利用样本估计总量即可得解.【详解】(1)解:由条形图可知,视力为4.9的学生的人数最多,故众数为第25个和第26个数据分别为:4.8,4.8,故中位数为:故答案为:4.9,4.8;(2)解:1340.1616% 50++==;∴视力低于4.7的人数占被抽查总人数的16%;(3)解:1012632140027250+++++⨯=(人);答:估计该校九年级学生中,视力不低于4.8的人数为【点睛】本题考查条形统计图,中位数,众数,利用样本估计总量.从条形图中有效的获取信息,熟练掌握众数和中位数的确定方法,是解题的关键.由树状图可知一共有8种等可能性的结果数,结果数有2种,∴掷出这三枚硬币所得数字之和是2的概率为【点睛】本题主要考查了求频率,树状图法求解概率,正确画出树状图是解题的关键.23.如图,把矩形纸片ABCD沿EF折叠后,使得点落在边AD上的点G处,连接CF.(1)判断四边形GECF的形状,并说明理由;【点睛】本题主要考查了矩形与折叠,勾股定理,菱形的性质与判定,等腰三角形的性质与判定等等,灵活运用所学知识是解题的关键.24.某同学眼睛距地面高度1.7旗杆顶部D 的仰角为22︒,在护旗手结束走正步的点又测量得到A ,B 两点间的距离是【答案】21.7米【分析】延长EF 交CD 于G ,在求出DG 的长,进而可求出求旗杆【详解】解:延长EF 交CD 于1.7CG AE ==米.∵22,45DEF DFG ︒︒∠=∠=,∴在Rt DGF △中,DG GF =,在Rt DGE △中,tan 22DG EG ︒=∴ 2.5tan 22DG EG DG =≈︒,∵EG GF EF -=,∴2.530DG DG -=,解得20DG =,则20 1.721.7DC DG CG =+=+=(1)求证:BC 是O 的切线;(2)求EF 的长.【答案】(1)见解析(2)1655【分析】(1)根据题意可得OA AB =根据相似三角形的性质可得BOA ∠(2)过点O 作OG BF ⊥于点G 平分FBE ∠,则BD EF ⊥,DF =解.【详解】(1)证明:∵2OA =,∴OA AB AB AC=,∵90OAB ∠=︒,∴90OAB BAC ∠=∠=︒,∴OAB BAC ∼,;∴BOA CBA ∠∠=,∵+90OBA BOA ∠∠︒=,∴+90OBA ABC ∠∠︒=,即90OBC ∠=︒,∵OG BF ⊥,90OAB ∠=︒,弦BF ∴BG AB =,∵OB OB =,∴()Rt Rt HL BOG BOA ≌,∴GBO ABO ∠∠=,∵BF BE =,即BFE △为等腰三角形,∴BD EF ⊥,DF DE =,∵2OA =,4AB =,∴22+25OB OA AB ==,在Rt ABO △中,sin OA OBA OB ∠=在Rt BDE △中,sin DE DBE BE ∠=∴855DE =,∴1655EF =.【点睛】本题主要考查切线的判定与性质、相似三角形的判定与性质、等腰三角形的性质、垂径定理,熟练运用相关知识答题时解题关键.26.【问题提出】(1)如图①,在Rt ABC △中,90B Ð=°,3AB =则BP 的最小值为______;由垂线段最短可知,当∵90,ABC ∠=︒∴2AC =AB +∵2ABC S AB =⋅ ∴AB BC BP AC ⋅=故答案为:125;(2)作点E 关于直线∵E ,E '关于直线∴PE PE '=,∴PB PE PB +=+∴,,B P E '共线,∴此时PB PE +最小,最小值为∵90,B BC ∠=︒=∴45ACB ∠=︒,∵点E 是BC 的中点,∴1CE =,∴ACE ACB '∠=∠∴90BCE '∠=︒,在Rt BCE '△中,22BE BC CE ''=+∴PB PE +的最小值为(3)作C 关于AD ∵C ,N 关于AB 对称,C ,∴,CE NE CF MF ==,∴CE EF CF NE EF ++=+∵,,,N E F M 共线,∴此时CE EF FC ++的值最小,∵60A ∠=︒,90B Ð=°,∠∴60ADC ∠=︒(3)【拓展延伸】如图3,P 在坐标平面内,记P 为图形S ,线段AB 记为图形与(),h S T 的值;(4)【思维提升】如图4,(A -图形S ,线段AB 记为图形T ,图形13(3)图形S 的(),60O ︒旋转变换得到图形设图形S '的圆心为点P ',连接OP 由旋转的性质可得:=60P OP '∠∴P OP '△是等边三角形,∴1==32OH OP ,=90P HO '∠︒∴22=63=33P H '-,(4)图形S 的(),60O ︒旋转变换得到图形故答案为:23.【点睛】本题考查了新定义、旋转的性质、平面直角坐标系中点的特征、等边三角形的性质、相似三角形的判定与性质、直角三角形的性质和勾股定理,熟练掌握旋转的性质和理解新定义解题的关键.28.已知:如图,抛物线2y mx =直线AE :y x b =+交x 轴于E 点,交(1)求抛物线的解析式;(2)若Q 为抛物线上一点,连接,QE QA ,设点Q 的横坐标为S ,求S 与t 函数关系式;(不要求写出自变量t 的取值范围)(3)在(2)的条件下,点M 在线段QA 上,点N 是位于Q 、E∴()2,43Q t t t ++,∴2,OB t BQ t =-=∵()()0,3,3,0A E -∴3,3OA BE ==--∴AQBO S S S =-△梯形()(23432t t +++⨯=23922t t =+,即23922S t t =+;(3)当3152S ==当5x =时,8y =,∴()5,8Q -,设直线AQ 的解析式为:∴8530k b b=-+⎧⎨=+⎩,解得∴直线AQ 的解析式为:。
一、旋转真题与模拟题分类汇编(难题易错题)1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE ,交MD 于点G ,∵点M 为AF 的中点,点N 为EF 的中点,∴MN ∥AE ,MN=AE ,由已知得,AB=AD=BC=CD ,∠B=∠ADF ,CE=CF ,又∵BC+CE=CD+CF ,即BE=DF ,∴△ABE ≌△ADF ,∴AE=AF ,在Rt △ADF 中,∵点M 为AF 的中点,∴DM=AF ,∴DM=MN ,∵△ABE ≌△ADF ,∴∠1=∠2,∵AB ∥DF ,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM ,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN ∥AE ,∴∠DMN=∠DGE=90°,∴DM ⊥MN .所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3)55;(4)BD=101143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE 22AB BE +2263+52)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD 125125. (4)∵m =6,n =2∴CE =3,CD 2,AB 22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD 22BC CD +224222+()()10. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,∴AM=5,AE=22AM ME=57,由(2)可知DBAE=223,∴BD=21143.故答案为210或2114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.3.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt △IHM ≌Rt △IJN 知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x ,则IQ=QN=2x 、QJ=3x ,根据IJ=IQ+QJ 求出x 即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可. (1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB 与DC 重合,得到折痕EF ∴PB=PC∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处 ∴PB=BC ∴PB=PC=BC∴△PBC 是正三角形: (2)证明:①如图∵矩形AHIJ ∴∠H=∠J=90° ∵△MNJ 是等边三角形 ∴MI=NI在Rt △MHI 和Rt △JNI 中MI NIMH NJ=⎧⎨=⎩ ∴Rt △MHI ≌Rt △JNI (HL ) ∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN , ∴∠HIM=∠JIN , ∵∠HIJ=90°、∠MIN=60°, ∴∠HIM=∠JIN=15°, 由QI=QN 知∠JIN=∠QNI=15°, ∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,22=3QN NJ -x , ∵IJ=6cm ,∴2x+3x=6,∴x=12-63,即NJ=12-63(cm ). (3)分三种情况: ①如图:设等边三角形的边长为b ,则0<b≤6, 则tan60°=3=2a b , ∴a=3b , ∴0<b≤63=33; ②如图当DF 与DC 重合时,DF=DE=6, ∴a=sin60°×DE=32=33 当DE 与DA 重合时,a=63sin603==︒ ∴33a <3 ③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643cos303==︒∴a>43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.4.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.5.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG=12OB=12×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=12t.∵∠BAC=90°,∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=12t,AF=MG=2,∴EC=4﹣12t,BE=OF=t+2,∴S △BCE =12EC •BE =12(4﹣12t )(t +2)=﹣14t 2+32t +4; S △ABC =12•AB •AC =12•216t +•21162t +=14t 2+4,∴S =S △BEC +S △ABC =32t +8. 当A 与O 重合,C 与F 重合,如图2,此时t =0,当C 与E 重合时,如图3,AG =EF ,即12t =4,t =8,∴S 与t 之间的函数关系式为:S =32t +8(0≤t ≤8); (III )如图1,易得△ABO ∽△CAF ,∴AB AC =OB AF =OA FC =2,∴AF =2,CF =12t ,由勾股定理得:AC =22AF CF +=22122t +()=2144t +,BC =22BE EC +=221242t t ++-()()=21544t +(),∴BC +AC =( 5+1)2144t +,∴当t =0时,BC +AC 有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.6.(10分)已知△ABC 和△ADE 是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 中点,连结DF 、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).【解析】试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.7.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO 并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.四边形OANM②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S=S△OCT-S△MN T,进而得出答案.四边形OCMN试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,可以得出当P是MN的中点时S四边形MOFG=S△MON.∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.∴当点P是MN的中点时S△MON最小.(2)分两种情况:①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.延长OC、AB交于点D,易知AD = 6,S△OAD=18 .由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.∴.② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .则T点的坐标为(9,0).∴S△OCT=×9×=.由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.从而 NP1=P1M1,MM1=2PP1=4.∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.综上所述:截得四边形面积的最大值为10.考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.8.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE ,AD ⊥BE .(2) AD=BE ,AD ⊥BE .(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.9.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
一、旋转真题与模拟题分类汇编(难题易错题)1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF.(1)求证:四边形ABEF是菱形;(2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.2.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.3.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.【详解】(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD和△BAE中,∵AB ACBAE CADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△BAE,∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴AEAB =ADAC=2,∴△ABE∽△ACD;②∵△ABE∽△ACD,∴∠AEB=∠CDA.∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.【点睛】本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.4.如图①,在ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB重合,得到△QCB,连接PQ.(1)求证:△PCQ是等边三角形;(2)如图②,当点P在线段EB上运动时,△PBQ的周长是否存在最小值?若存在,求出△PBQ周长的最小值;若不存在,请说明理由;(3)如图③,当点P在射线AM上运动时,是否存在以点P、B、Q为顶点的直角三角形?若存在,求出此时t的值;若不存在,请说明理由.(1)(2)(3)【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.【解析】分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;(3)根据点的移动的距离,分类讨论求解即可.详解:(1)∵旋转∴△PCE≌△QCB∴CP=CQ,∠PCE =∠QCB,∵∠BCD=120°,CE平分∠BCD,∴∠PCQ=60°,∴∠PCE +∠QCE=∠QCB+∠QCE=60°,∴△PCQ为等边三角形.(2)存在∵CE平分∠BCD,∴∠BCE=60 ,∵在平行四边形ABCD 中,∴AB∥CD∴∠ABC=180°﹣120°=60°∴△BCE为等边三角形∴BE=CB=4∵旋转∴△PCE≌△QCB∴EP=BQ,∴C△PBQ=PB+BQ+PQ=PB+EP+PQ=BE+PQ=4+CP∴CP⊥AB时,△PBQ周长最小当CP⊥AB时,CP=BCsin60°=∴△PBQ周长最小为4+(3)①当点B与点P重合时,P,B,Q不能构成三角形②当0≤t<6时,由旋转可知,∠CPE=∠CQB,∠CPQ=∠CPB+∠BPQ=60°则:∠BPQ+∠CQB=60°,又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°∴∠CBQ=180°—60°—60°=60°∴∠QBP=60°,∠BPQ<60°,所以∠PQB可能为直角由(1)知,△PCQ为等边三角形,∴∠PBQ=60°,∠CQB=30°∵∠CQB=∠CPB∴∠CPB=30°∵∠CEB=60°,∴∠ACP=∠APC=30°∴PA=CA=4,所以AP=AE-EP=6-4=2÷=s所以t=212③当6<t<10时,由∠PBQ=120°>90°,所以不存在④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,而∠BPC>0°,∴∠BPQ>60°∴∠BPQ=90°,从而∠BCP=30°,∴BP=BC=4所以AP=14cm所以t=14s综上所述:t为2s或者14s时,符合题意。
一、旋转真题与模拟题分类汇编(难题易错题)1.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S 30334+【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22=4,AD AC∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=17,5∴BH =175, ∴H (175,3). (3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,最小值=12•DE •DK =12×3×(5-34)=30334-,当点D 在BA 的延长线上时,△D ′E ′K 的面积最大,最大面积=12×D ′E ′×KD ′=12×3×(3430334+ 30334-S 30334+ 【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.3.如图1,菱形ABCD ,AB 4=,ADC 120∠=,连接对角线AC 、BD 交于点O ,()1如图2,将AOD 沿DB 平移,使点D 与点O 重合,求平移后的A'BO 与菱形ABCD 重合部分的面积.()2如图3,将A'BO 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1四边形为菱形,ADC 120∠=,ADO 60∠∴=,ABD ∴为等边三角形,DAO 30∠∴=,ABO 60∠=,∵AD//A′O , ∴∠A′OB=60°,EOB ∴为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.4.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.5.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=+,236x=-(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.6.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO 并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.四边形OANM②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S=S△OCT-S△MN T,进而得出答案.四边形OCMN试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,可以得出当P是MN的中点时S四边形MOFG=S△MON.∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.∴当点P是MN的中点时S△MON最小.(2)分两种情况:①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.延长OC、AB交于点D,易知AD = 6,S△OAD=18 .由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.∴.② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .则T点的坐标为(9,0).∴S△OCT=×9×=.由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.从而 NP1=P1M1,MM1=2PP1=4.∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.综上所述:截得四边形面积的最大值为10.考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.7.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.【答案】(1)=;(2)成立,证明见解析;(3)135°.【解析】【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可.【详解】(1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=22,在△PEA中,PE2=(22)2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.8.在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.(1)依题意补全图 1;(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为:.【答案】(1)详见解析;(2)①详见解析;②BP=AB.【解析】【分析】(1)根据要求画出图形即可;(2)①连接BD,如图2,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(2)①证明:连接 BD,如图 2,∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,∴AQ=AP,∠QAP=90°,∵四边形 ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠2.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在 Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在 Rt△BPD 中,DP2+BP2=BD2,又∵DQ=BP,BD2=2AB2,∴DP2+DQ2=2AB2.②解:结论:BP=AB.理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴。
山东省东营市河口区一中2025届高考数学二模试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x ∈N |x 2<8x },B ={2,3,6},C ={2,3,7},则()AB C ⋃=( )A .{2,3,4,5}B .{2,3,4,5,6}C .{1,2,3,4,5,6}D .{1,3,4,5,6,7}2.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( ) A .–10B .14-C .–18D .–203.已知定义在[)1,+∞上的函数()f x 满足()()33f x f x =,且当13x ≤≤时,()12f x x =--,则方程()()2019f x f =的最小实根的值为( )A .168B .249C .411D .5614.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .552,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( ) A 25B 45C .3D .46.已知函数()ln af x x a x =-+在[]1,e x ∈上有两个零点,则a 的取值范围是( ) A .e ,11e ⎡⎤-⎢⎥-⎣⎦B .e ,11e ⎡⎫⎪⎢-⎣⎭C .e ,11e ⎡⎫-⎪⎢-⎣⎭D .[)1,e - 7.若i 为虚数单位,则复数112iz i+=+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限8.已知实数,x y 满足约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则3z x y =+的最小值为( )A .-5B .2C .7D .119.若31nx x ⎛⎫+ ⎪⎝⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85B .84C .57D .5610.如图所示程序框图,若判断框内为“4i <”,则输出S =( )A .2B .10C .34D .9811.已知函数()2x f x x x ln a ⎛⎫=- ⎪⎝⎭,关于x 的方程f (x )=a 存在四个不同实数根,则实数a 的取值范围是( )A .(0,1)∪(1,e )B .10e ⎛⎫ ⎪⎝⎭,C .11e ⎛⎫ ⎪⎝⎭,D .(0,1)12.设()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且21()()(1)2x f x g x x ++=+-,则(1)(1)f g -=( ) A .1-B .0C .1D .3二、填空题:本题共4小题,每小题5分,共20分。
一、旋转真题与模拟题分类汇编(难题易错题)1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.2.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题3.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;故答案为:AD=BE+DE.(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD=112+×6=2,∴AE=AD+DE=2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.5.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG=12OB=12×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=12t.∵∠BAC=90°,∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=12t,AF=MG=2,∴EC=4﹣12t,BE=OF=t+2,∴S△BCE=12EC•BE=12(4﹣12t)(t+2)=﹣14t2+32t+4;S△ABC=12•AB•AC=1214t2+4,∴S=S△BEC+S△ABC=32t+8.当A与O重合,C与F重合,如图2,此时t=0,当C与E重合时,如图3,AG=EF,即1 2t=4,t=8,∴S与t之间的函数关系式为:S=32t+8(0≤t≤8);(III)如图1,易得△ABO∽△CAF,∴ABAC=OBAF=OAFC=2,∴AF=2,CF=12t,由勾股定理得:ACBC∴BC+AC=(),∴当t=0时,BC+AC有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.6.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.7.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.8.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+3+3m,在Rt△EBH中,sin∠EBH=3+36226EHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,9.如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10.△ADP沿点A旋转至△ABP′,连接PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【答案】(1)证明见解析;(2)∠BPQ=45°.【解析】【分析】(1)根据旋转的性质可知,△APD≌△AP′B,所以AP=AP′,∠PAD=∠P′AB,因为∠PAD+∠PAB=90°,所以∠P′AB+∠PAB=90°,即∠PAP′=90°,故△APP′是等腰直角三角形;(2)根据勾股定理逆定理可判断△PP′B是直角三角形,再根据平角定义求出结果.【详解】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)∵△APP′是等腰直角三角形,∴22,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴10,在△PP′B中,2,2,10,∵2)2+(22=10)2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点睛】本题主要考查了旋转的性质、等腰三角形的判定与性质、勾股定理及逆定理的综合运用,有一定难度,关键是明确旋转的不变性.10.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③【答案】图②中OD+OE=2OC成立.证明见解析;图③不成立,有数量关系:OE-OD =2OC【解析】试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC 与OD、OE的关系;最后转化得到结论.试题解析:图②中OD+OE=2OC成立.证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.有△CPD≌△CQE,∴DP=EQ,∵OP=OD+DP,OQ=OE-EQ,又∵OP+OQ=2OC,即OD+DP+OE-EQ=2OC,∴OD+OE=2OC.图③不成立,有数量关系:OE-OD2OC过点C分别作CK⊥OA,CH⊥OB,∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,∴CK=CH,∠CKD=∠CHE=90°,又∵∠KCD与∠HCE都为旋转角,∴∠KCD=∠HCE,∴△CKD≌△CHE,∴DK=EH,∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,由(1)知:OC,∴OD,OE,OC满足OC.点睛:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.。
一、旋转真题与模拟题分类汇编(难题易错题)1.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【答案】(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.试题解析:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.2.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC ,PB=CB ,得出PB=PC=CB 即可;(2)①利用“HL”证Rt △IHM ≌Rt △IJN 即可得;②IJ 上取一点Q ,使QI=QN ,由Rt △IHM ≌Rt △IJN 知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x ,则IQ=QN=2x 、QJ=3x ,根据IJ=IQ+QJ 求出x 即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可. (1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB 与DC 重合,得到折痕EF ∴PB=PC∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处 ∴PB=BC ∴PB=PC=BC∴△PBC 是正三角形: (2)证明:①如图∵矩形AHIJ ∴∠H=∠J=90° ∵△MNJ 是等边三角形 ∴MI=NI在Rt △MHI 和Rt △JNI 中MI NIMH NJ=⎧⎨=⎩ ∴Rt △MHI ≌Rt △JNI (HL ) ∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN , ∴∠HIM=∠JIN , ∵∠HIJ=90°、∠MIN=60°, ∴∠HIM=∠JIN=15°, 由QI=QN 知∠JIN=∠QNI=15°, ∴∠NQJ=30°,设NJ=x,则IQ=QN=2x,QJ=22=3QN NJ-x,∵IJ=6cm,∴2x+3x=6,∴x=12-63,即NJ=12-63(cm).(3)分三种情况:①如图:设等边三角形的边长为b,则0<b≤6,则tan60°=3=2ab,∴a=32b,∴0<b≤63=33;②如图当DF与DC重合时,DF=DE=6,∴a=sin60°6333当DE与DA重合时,a=63sin603==︒∴33a<3③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643cos303==︒∴a>43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.3.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(339);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题4.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.(1)如图①,若旋转角为60°时,求BB′的长;(2)如图②,若AB′∥x轴,求点O′的坐标;(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)252)点O′8545);(3)点P′的坐标为(﹣83,365.【解析】分析:(1)由点A、B的坐标可得出AB的长度,连接BB′,由旋转可知:AB=AB′,∠BAB′=60°,进而可得出△ABB′为等边三角形,根据等边三角形的性质可求出BB′的长;(2)过点O′作O′D⊥x轴,垂足为D,交AB′于点E,则△AO′E∽△ABO,根据旋转的性质结合相似三角形的性质可求出AE、O′E的长,进而可得出点O′的坐标;(3)作点A关于x轴对称的点A′,连接A′O′交x轴于点P,此时O′P+AP′取最小值,过点O′作O′F⊥y轴,垂足为点F,过点P′作PM⊥O′F,垂足为点M,根据旋转的性质结合解直角三角形可求出点O′的坐标,由A、A′关于x轴对称可得出点A′的坐标,利用待定系数法即可求出直线A′O′的解析式,由一次函数图象上点的坐标特征可得出点P的坐标,进而可得出OP 的长度,再在Rt △O ′P ′M 中,通过解直角三角形可求出O ′M 、P ′M 的长,进而可得出此时点P ′的坐标.详解:(1)∵点A (0,4),点B (﹣2,0),∴OA =4,OB =2,∴AB. 在图①中,连接BB ′.由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB(2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E . ∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,AE AO ='O E BO ='AO AB,即4AE ='2O E∴AE=5,O ′E=5,∴O ′D=5+4,∴点O ′的坐标为(55,+4). (3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,如图3所示. 由旋转可知:AO ′=AO =4,∠O ′AF =240°﹣180°=60°,∴AF =12AO ′=2,O ′FAO∴点O ′(﹣6).∵点A (0,4),∴点A ′(0,﹣4).设直线A ′O ′的解析式为y =kx +b ,将A ′(0,﹣4)、O ′(﹣6)代入y =kx +b ,得:46b b =-⎧⎪⎨-+=⎪⎩,解得:4k b ⎧=⎪⎨⎪=-⎩,∴直线A ′O ′的解析式为y =x ﹣4. 当y =0x ﹣4=0,解得:x =,∴点P0),∴OP =O ′P在Rt △O ′P ′M 中,∠MO ′P ′=60°,∠O ′MP ′=90°,∴O ′M =12O ′P′=5,P ′M=′P ′=65,∴点P ′的坐标为(﹣,6+65365,).点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB ′的长;(2)通过解直角三角形求出AE 、O ′E 的长;(3)利用两点之间线段最短找出当O ′P +AP ′取得最小值时点P 的位置.5.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记ACBC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE 总是等边三角形 【解析】 【分析】(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FPMC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,ACBC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FPMC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴DM FPMC PB=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE ,∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC ,AC BC=tan30°, ∴k=tan30°=33, ∴当k 为3时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.6.已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD .探究下列问题:(1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ; (2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD= ; (3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.7.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.8.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;(2)当=60°时(如图1),该图()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.【答案】(1)120°;(2)C;(3)△的周长不变.【解析】【分析】(1)根据等边三角形的中心角为120°可直接求解;(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长==.【详解】解:(1)120°.如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;(2)C(3)△的周长不变;理由如下:连接AA′,∵,∴,∴,∴,∴,同理,,∴△的周长=.即考点:正多边形与圆,圆周角定理9.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD m·BP时,请直接写出PE与PF的数量关系.【答案】(1)PE=PF;(2)①成立,理由参见解析;②;③PE=2PF,理由参见解析;PE=(m-1)·PF.【解析】试题分析:(1)可利用角平分线性质定理得到PE=PF;(2)①成立,可用角边角定理判定△AOF≌△DOE,从而得到PE=PF;②要想求出EF的长,关键要求出OE的长,由∠DOM15°可得∠AEO=45+15=60º,作OH⊥AD于H,若正方形的边长为2,则OH=1,可算出EH==,∴OE=,∵△EOF是等腰直角三角形,∴EF即可求出;③构建相似三角形,过P点作PH⊥AB,PK⊥AD ,垂足为H、K,则四边形AHPK为矩形,△PHB和△PKD都是等腰直角三角形,是相似的,∵BD3BP,∴可算出HP:PK的值,然后通过△FHP∽△PKE得到PE与PF的关系.由前面的思路可得出当BD=m·BP时,BD:PD=(m-1):1,∴PE:PF=(m-1):1,从而确定PE与PF的数量关系.试题解析:(1)∵四边形ABCD是正方形,∴∠OAF=∠OAE=45º,又∵PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,PE仍等于PF,∵四边形ABCD是正方形,∴∠OAF=∠ODE=45º,OA=OD,又∵∠AOF和∠DOE都是∠AOE的余角,∴∠AOF=∠DOE,∴△AOF≌△DOE(ASA),∴OE=OF,即PE=PF;②作OH⊥AD于H,由∠DOM15°可得∠AEO=45+15=60º,∠HOE=30°,若正方形的边长为2,则OH=1,在Rt△HEO中,可算出EH==,∴OE=,∵△EOF是等腰直角三角形,∴EF=OE=×=;③构建相似三角形,过P点作PH⊥AB,PK⊥AD ,垂足为H、K,则四边形AHPK为矩形,∵∠PHB=∠PKD=90°∠PBH=∠PDK=45°,∴△PHB∽△PKD,∴,∵BD=3BP,∴=,∵∠HPF+∠FPK=90°∠KPE+∠FPK=90°,∴∠HPF=∠KPE,又∵∠PHF=∠PKE=90°,∴△PHF∽△PKE,∴=,即PE="2PF" ;当BD=m·BP时,BD:PD=(m-1):1,△PHF∽△PKE,PE:PF=BD:PD=(m-1):1,∴PE=(m-1)·PF.考点:1.正方形性质;2.三角形相似的判定;3.旋转性质;4.探索线段的数量关系规律.10.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③【答案】图②中OD+OE2OC成立.证明见解析;图③不成立,有数量关系:OE-OD 2OC【解析】试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC 与OD、OE的关系;最后转化得到结论.试题解析:图②中OD+OE2成立.证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.有△CPD≌△CQE,∴DP=EQ,∵OP=OD+DP,OQ=OE-EQ,又∵OP+OQ2OC,即OD+DP+OE-EQ2,∴OD+OE2OC.图③不成立,有数量关系:OE-OD2OC过点C分别作CK⊥OA,CH⊥OB,∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,∴CK=CH,∠CKD=∠CHE=90°,又∵∠KCD与∠HCE都为旋转角,∴∠KCD=∠HCE,∴△CKD≌△CHE,∴DK=EH,∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,由(1)知:2OC,∴OD,OE,OC满足2OC.点睛:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.。
一、旋转真题与模拟题分类汇编(难题易错题)1.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG ,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.2.如图所示,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC 的延长线交BD 于点P .(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.【答案】(1)BD,CE的关系是相等;(2)53417或203417;(3)1,7【解析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到PD AE =CDCE,进而得到PD=53417;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到PB BEAB BD,进而得出PB=63434,PD=BD+PB=203417;(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE=2234AC AE +=,∵∠PDA=∠AEC ,∠PCD=∠ACE , ∴△PCD ∽△ACE , ∴PD CDAE CE =, ∴PD=53417; 若点B 在AE 上,如图2所示:∵∠BAD=90°, ∴Rt △ABD 中,BD=2234AD AB +=,BE=AE ﹣AB=2,∵∠ABD=∠PBE ,∠BAD=∠BPE=90°,∴△BAD ∽△BPE , ∴PB BEAB BD=,即2334PB =, 解得PB=63434, ∴PD=BD+PB=34+63434=203417, 故答案为53417或203417; (3)如图3所示,以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大. 如图3所示,分两种情况讨论:在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小. ①当小三角形旋转到图中△ACB 的位置时,在Rt△ACE中,CE=2253-=4,在Rt△DAE中,DE=225552+=,∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=7,在Rt△PDE中,PD=2250491DE PE-=-=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.故答案为1,7.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.3.如图,正方形ABCD中,点E是BC边上的一个动点,连接AE,将线段AE绕点A逆时针旋转90°,得到AF,连接EF,交对角线BD于点G,连接AG.(1)根据题意补全图形;(2)判定AG与EF的位置关系并证明;(3)当AB=3,BE=2时,求线段BG的长.【答案】(1)见解析;(2)见解析;(3)5 2.【解析】【分析】(1)根据题意补全图形即可;(2)先判断出△ADF≌△ABE,进而判断出点C,D,F共线,即可判断出△DFG≌△HEG,得出FG=EG,即可得出结论;(3)先求出正方形的对角线BD,再求出BH,进而求出DH,即可得出HG,求和即可得出结论.【详解】(1)补全图形如图所示,(2)连接DF,由旋转知,AE=AF,∠EAF=90°,∵四边形ABCD是正方形,∴AB∥CD,AD=AB,∠ABC=∠ADC=BAD=90°,∴∠DAF=∠BAE,∴△ADF≌△ABE(SAS),∴DF=BE,∠ADF=∠ABC=90°,∴∠ADF+∠ADC=180°,∴点C,D,F共线,∴CF∥AB,过点E作EH∥BC交BD于H,∴∠BEH=∠BCD=90°,DF∥EH,∴∠DFG=∠HEG,∵BD是正方形ABCD的对角线,∴∠CBD=45°,∴BE=EH,∵∠DGF=∠HGE,∴△DFG≌△HEG(AAS),∴FG=EG∵AE=AF,∴AG⊥EF;(3)∵BD是正方形的对角线,∴22,由(2)知,在Rt△BEH中,22,∴2由(2)知,△DFG≌△HEG,∴DG=HG,∴HG=12DH=22,∴BG=BH+HG=22+22=522.【点睛】此题是四边形综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,作出辅助线是解本题的关键.4.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(2)612;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF =EF ,DH =HC ,∴FH =12EC ,FH ∥EC ,∴FG =FH ,∵∠ADB +∠ADM =180°,∴∠AEC +∠ADM =180°,∴∠DMC +∠DAE =180°,∴∠DME =120°,∴∠BMC =60° ∴∠GFH =∠BOH =∠BMC =60°,∴△GHF 是等边三角形,故答案为:等边三角形. (2)如图2中,连接AF 、EC .易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1,∴AF 2221-3,在Rt △ABF 中,BF 22AB AF -6,∴BD =CE =BF ﹣DF 61,∴FH =12EC =612. (3)存在.理由如下.由(1)可知,△GFH 是等边三角形,GF =12BD ,∴△GFH 的周长=3GF =32BD ,在△ABD中,AB =a ,AD =b ,∴BD 的最小值为a ﹣b ,最大值为a +b ,∴△FGH 的周长最大值为32(a +b ),最小值为32(a ﹣b ).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.5.如图1,菱形ABCD ,AB 4=,ADC 120∠=,连接对角线AC 、BD 交于点O ,()1如图2,将AOD 沿DB 平移,使点D 与点O 重合,求平移后的A'BO 与菱形ABCD 重合部分的面积.()2如图3,将A'BO 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1四边形为菱形,ADC 120∠=,ADO 60∠∴=,ABD ∴为等边三角形,DAO 30∠∴=,ABO 60∠=,∵AD//A′O , ∴∠A′OB=60°,EOB ∴为等边三角形,边长OB 2=,∴重合部分的面积:3434⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.6.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.7.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.【答案】(1)=;(2)成立,证明见解析;(3)135°.【解析】【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可.【详解】(1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=2在△PEA中,PE2=(22)2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.8.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。
一、旋转真题与模拟题分类汇编(难题易错题)1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=12MC,∴EG=CG.(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.3.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3cm,∴△BDE的最小周长=CD3;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.5.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.6.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.7.如图1,ABCD和AEFG是两个能完全重合的平行四边形,现从AB与AE重合时开始,将ABCD固定不动,AEFG绕点A逆时针旋转,旋转角为α(0°<α<360°),AB=a,BC=2a;并发现:如图2,当AEFG旋转到点E落在AD上时,FE的延长线恰好通过点C.探究一:(1)在图2的情形下,求旋转角α的度数;探究二:(2)如图3,当AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;探究三:(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积最大的情形,S△BCF =332a2.【解析】试题分析:(1)由平行四边形的性质知∠D=∠B,AB=CD=a,可得∠D=∠DEC,由等角对等边知CD=CE,由AE=AB=a,AD=BC=2a,可得DE=CE,即可证得△CDE是等边三角形,∠D=60°,由两直线平行,同位角相等可得∠DAB=120°,即可求得α;(2)由旋转的性质以及∠B=60°,可得△ABE是等边三角形,由平行线的判定以及两组对边分别平行的四边形是平行四边形可证四边形ABEM是平行四边形,再由由一组邻边相等的平行四边形是菱形即可得证;(3)当点F到BC的距离最大时,△BCF的面积最大,由于点F始终在以A为圆心AF为半径的圆上运动,故当FG与⊙A相切时,点F到BC的距离最大,过点A作AH⊥BC于点H,连接AF,由题意知∠AFG=90°.由∠ABH=∠G=60°,AB=a,AG=2a,可得AH、AF的值.可求得点F到BC的最大距离.进而求得S△BCF的值.试题解析:(1)∵四边形ABCD是平行四边形,∴∠D=∠B,AB=CD=a,∵∠AEF=∠B,∠AEF=∠DEC,∴∠D=∠DEC,∴CD=CE,∵AE=AB=a,AD=BC=2a,∴DE=CE.,∴CD=CE=DE,∴△CDE是等边三角形,∴∠D=60°,∵CD∥AB,∴∠D+∠DAB=180°,∴∠DAB=120°,∴α=120°.;(2)四边形CDFM是菱形.证明:由旋转可得AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAG=∠BAE+∠GAE=60°+120°=180°,∴点G,A,B在同一条直线上,∴ME ∥AB,BE∥AM,∴四边形ABEM是平行四边形,∴AM=AB=ME,∴CD=DM=MF,∵CD ∥AB∥MF,∴四边形CDFM是平行四边形,∵∠D= 60°,CD=DM,∴△CDM是等边三角形,∴CD=DM,∴四边形CDFM是菱形;(3)存在△BCF的面积最大的情形.∵CB的长度不变,∴当点F到BC的距离最大时,△BCF的面积最大.∵点F始终在以A为圆心AF为半径的圆上运动,∴当FG与⊙A相切时,点F到BC的距离最大,如图,过点A作AH⊥BC于点H,连接AF,则∠AFG=90°.∵∠ABH=∠G=60°,AB=a,AG=2a,∴AH=AB×sin60°3,AF=AG×sin60°3 a.∴点F到BC3a+ 32a=332a.∴S△BCF=12×2a×332a=332a2.点睛:此题考查了旋转的洗澡那个会、平行四边形的判定和性质、菱形的判定和性质,三角形的面积的求法,关键是运用旋转前后,图形的对应边相等、对应角相等的性质解题.8.如图1,O为直线AB上一点,过点O作射线OC,AOC30∠=,将一直角三角板()M30∠=的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.()1将图1中的三角板绕点O以每秒5的速度沿逆时针方向旋转一周.如图2,经过t秒后,ON落在OC边上,则t=______秒(直接写结果).()2如图2,三角板继续绕点O以每秒5的速度沿逆时针方向旋转到起点OA上.同时射线OC也绕O点以每秒10的速度沿逆时针方向旋转一周,①当OC转动9秒时,求MOC∠的度数.②运动多少秒时,MOC35∠=?请说明理由.【答案】(1)6;(2)①45;②11秒或25秒,理由见解析. 【解析】【分析】(1)因为∠AOC=30°,所以ON 落在OC 边上时,三角板旋转了30°,即可求出旋转时间;(2)在整个旋转过程中,可以看做这样一个追及问题更容易理解,即:ON 绕点O 以每秒5°的速度沿逆时针方向旋转,同时射线OC 也绕O 点以每秒10°的速度沿逆时针方向旋转; ①9秒时,∠NOC=45°,而OC 旋转了90°,所以∠MOC 的度数就是45°;②∠MOC=35°时,应分OC 与OM 重合前35°与重合后35°两种情况考虑,分别进行求解即可.【详解】()1AOC 30∠=,而三角板每秒旋转5,∴当ON 落在OC 边上时,有5t 30=,得t 6=,故答案为6;()2①当OC 转动9秒时,COA 30109120∠=+⨯=, 而MOA 309059165∠=++⨯=,又MOC MOA COA ∠∠∠=-,即:MOC 16512045∠=-=,答:当OC 转动9秒时,MOC ∠的度数为45;②设OC 运动起始位置为射线OP(如图1),运动t 秒时,MOC 35∠=,则MOP 905t ∠=+,COP 10t ∠=,当MOC 35∠=时,有()905t 10t 35+-=或()10t 905t 35-+=,得t 11=或t 25=,因为三角板与射线OC 都只旋转一周,所以不考虑再次追及的情况,故当运动11秒或25秒时,MOC 35∠=.【点睛】本题考查的是用方程的思想解决角的旋转的问题,找准等量关系,正确列出一元一次方程是解题的关键.。
一、旋转真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=2,∴OM=2﹣x,∵OM2+BN2=MN2.∴(42﹣x)2+x2=(2x)2,解得x=﹣22+26或﹣22﹣26(舍弃)∴MN=﹣42+46.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.2.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.3.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.4.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.∴∠CFE=∠A+∠ABD=45°.(2)如图,连接CD、DF.∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF∥BD,EF=BD.∴四边形BDFE是平行四边形,EF= CD.∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.∴△AEF≌△FCD(AAS).∴AE=CF.(3)△CEF是等腰直角三角形,证明如下:如图,过点E作EG⊥CF于G,∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.∵∠A=300,∠AGE=90°,∴.∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=∠FEG=90°.∴△CEF是等腰直角三角形.考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.5.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN .∵∠AEF=∠AFE ,∴△HEM ∽△HFN ,∴,∵EH=FH ,∴,且∠MHN=∠HFN=60°,∴△MHN ∽△HFN ,∴△MHN ∽△HFN ∽△MEH ,在△HMN 中,∠MHN=60°,根据三角形中大边对大角,∴要MN 最小,只有△HMN 是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN ∴MN ∥EF ,∵△AEF 为等边三角形,∴MN 为△AEF 的中位线,∴MN min =EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.6.小明合作学习小组在探究旋转、平移变换.如图△ABC ,△DEF 均为等腰直角三角形,各顶点坐标分别为A (1,1),B (2,2),C (2,1),D (2,0),E (22, 0),F (32,2-).(1)他们将△ABC 绕C 点按顺时针方向旋转450得到△A 1B 1C .请你写出点A 1,B 1的坐标,并判断A 1C 和DF 的位置关系;(2)他们将△ABC 绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2y 22x bx c =++上.请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC 绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.【答案】解:(1)222222b c 0{3232222c +=+=⎝⎭. A 1C 和DF 的位置关系是平行.(2)∵△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,∴①当抛物线经过点D 、E 时,根据题意可得:(222222b c 0{2222b c 0++=++=,解得b 12{c =-=∴2y 12x =-+②当抛物线经过点D 、F时,根据题意可得:22c 0{c ++=+=⎝⎭,解得b 11{c =-=∴2y 11x =-+③当抛物线经过点E 、F时,根据题意可得:(22c 0{b c 222++=⎛++= ⎝⎭,解得b 13{c =-=∴2y 13x =-+ (3)在旋转过程中,可能有以下情形:①顺时针旋转45°,点A 、B 落在抛物线上,如答图1所示, 易求得点P 坐标为(0,12). ②顺时针旋转45°,点B 、C 落在抛物线上,如答图2所示, 设点B′,C′的横坐标分别为x 1,x 2,易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b . 联立y=x 2与y=x+b 得:x 2=x+b ,即2x x b 0--=,∴1212x x 1x x b +==-,. ∵B′C′=1,∴根据题意易得:12x x 2-=,∴()2121x x 2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-. ∴21x x 08-+=,解得x =或x =. ∵点C′的横坐标较小,∴2x 4=.当2x 4=时,23y x 8-==.∴P ③顺时针旋转45°,点C 、A 落在抛物线上,如答图3所示, 设点C′,A′的横坐标分别为x 1,x 2.易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b =-+. 联立y=x 2与y x b =-+得:2x x b =-+,即2x x b 0+-=,∴1212x x 1x x b +=-=-,.∵C′A′=1,∴根据题意易得:12x x 2-=,∴()2121x x 2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-.∴21x x 08++=,解得2x 4-+=x 或2x 4-=.∵点C′的横坐标较大,∴2x 4-=.当2x 4-+=时,23y x 8-==.∴P ). ④逆时针旋转45°,点A 、B 落在抛物线上.因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示,与③同理,可求得:P ). ⑥逆时针旋转45°,点C 、A 落在抛物线上,如答图5所示,与②同理,可求得:P ).综上所述,点P 的坐标为:(0,12),(24-,38-),P (24-+,38-,(24+,38+).【解析】(1)由旋转性质及等腰直角三角形边角关系求解.(2)首先明确△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,然后分三种情况进行讨论,分别计算求解.(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A 和点B 、点B 和点C 、点C 和点D 三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解. 考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.7.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;2CD. 【解析】试题分析:(1)①如图1,证明AC=OC 和OC=OE 可得结论;②根据勾股定理可得:AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A 、D 、O 、C 四点共圆,得∠ACD=∠AOB ,同理得:∠EFO=∠EDO ,再证明△ACO ≌△EOF ,得OE=AC ,AO=EF ,根据勾股定理得:AC 2+OC 2=FO 2+OE 2=EF 2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD ,则AD=OD 证明△ACD ≌△OED ,根据△CDE 是等腰直角三角形,得CE 2=2CD 2,等量代换可得结论(OC ﹣OE )2=(OC ﹣AC )2=2CD2,开方后是:OC﹣AC=CD.试题解析:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题8.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。
一、旋转真题与模拟题分类汇编(难题易错题)1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.2.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)422)b=8;(3)ab=32.【解析】试题分析:(1)由正方形ABCD的边长为4,可得AC=2,∠ACB=45°.再CE=a=2∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;(2)通过证明△ACF∽△ECA,即可得;(3)通过证明△ACF∽△ECA,即可得.试题解析:(1)∵正方形ABCD的边长为4,∴AC=2,∠ACB=45°.∵CE=a=42,∴∠CAE=∠AEC=452︒=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42;(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC.又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CFEC CA=,∴42442=,∴CF=8,即b=8.(3)ab=32.提示:由(2)知可证△ACF∽△ECA,∴∴AC CFEC CA=,∴4242a=,∴ab=32.3.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.【详解】(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD和△BAE中,∵AB ACBAE CADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△BAE,∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴AEAB =ADAC=2,∴△ABE∽△ACD;②∵△ABE∽△ACD,∴∠AEB=∠CDA.∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.【点睛】本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.4.如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=42,∠CBE=30°,求DE的长.【答案】(1)答案见解析;(226+【解析】试题分析:(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,即可得到结论;(2)连接CD,DF,证得△BCE≌△ACF,根据全等三角形的性质得到BE=CF,CE=AF,证得△DEF是等腰直角三角形,根据等腰直角三角形的性质得到EF2DE,EF=CE+BE,进而得到DE的长.试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△ACF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBE(AAS);(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△CAF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAF(AAS);∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵BE CFEBD FCDBD CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF2DE,∴EF=CE+CF=CE+BE.∵CA=CB,∠ACB=90°,AB=42,∴BC=4.又∵∠CBE=30°,∴CE=12BC=2,BE=3CE=23,∴EF=CE+BE=2+23,∴DE=2=2232=2+6.点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.5.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=236x=(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.6.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.7.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故22【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值=PB-PE=5-32, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.8.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。