稳压电路仿真
- 格式:doc
- 大小:93.00 KB
- 文档页数:5
APFC直流稳压(AC/DC)电路仿真研究090607344 郑太锋指导教师刘继伦讲师内容摘要传统的整流变换电路(AC/DC)存在功率因数低、输入电流畸变的问题。
本文对常用的AC/DC变换电路进行了研究,设计了升压型APFC(Active Power Factor Correction,有源功率因数校正)电路模型和参数,并对模型进行了仿真。
结果显示,该电路具有提高功率因数、减小输入电流畸变的功能,对功率因数校正电路的设计有一定的参考价值。
关键词有源功率因数校正; AC/DC变换器; 电流环控制APFC直流稳压(AC/DC)电路仿真研究一绪论为了保证开关电源的输电流谐波能够达到谐波标准的要求,绿化电网环境,有源功率因数校正(Active Power Factor Correction,APFC)技术已经成为当今电力电子学领域十分活跃和颇具研究价值的热点。
直接接入电网的开关电源应用非常普遍,一般来说,其前置级AC/DC 变换部分都采用图1所示的二极管桥式整流加大容量电容滤波电路。
虽然输入的交流电压是正弦波行,但输入的交流电流却呈脉冲状,波形严重畸变,如图2所示。
图1AC/DC 整流电路图2输入电压,输入电流波形实践表明,在提高开关电源类装置的功率因数方面,有源功率因数校正(APFC)技术是应用最为广泛和行之有效的方法。
(一)功率因数及其校正方法根据电工学的基本理论,功率因数(Power Factor)定义为有功功率(P)和视在功率(S)的比值,用公式表示为:PF=(1-1)式中::输入电流基波有效值;:电网电流有效值,,其中,,,为输入电流各次谐波有效值;:输入电压基波有效值;:输入电流的波形畸变因数;:基波电压和基波电流的位移因数。
为畸变因数,表示基波电流有效值在总的输入电流有效值中所占的比例;为位移因数,表示输入电流与输入电压之间的相位差。
从本质上来讲,功率因数校正技术的目的是要使用电设备的输入端口针对交流电网呈现“纯阻性”,这样输入电流和电网电压为同频同相的正弦波,功率因数为1,没有谐波污染问题。
Proteus在模拟电路中仿真应用Proteus在很多人接触都是因为她可以对单片机进行仿真,其实她在模拟电路方面仿真能力也很强大。
下面对几个模块方面的典型带那路进行阐述。
第1部分模拟信号运算电路仿真1.0运放初体验运算,顾名思义,正是数学上常见的加减乘除以及积分微分等,这里的运算电路,也就是用电路来实现这些运算的功能。
而运算的核心就是输入和输出之间的关系,而这些关系具体在模拟电路当中都是通过运算放大器实现的。
运算放大器的符号如图1所示。
图1运算放大器符号输入端运算器都工作在线性区,故进行计算离不开工作在线性区的“虚短”和“虚断”这两个基本特点。
与之对应的,在Proteus中常常用到的放大器有如图2几种。
图2 Proteus中几种常见放大器上面几种都是有源放大器件,我们还经常用到理想无源器件,如图4所示,它的位置在“ Categor/ —“ Operational Amplifiers”一“ OPAMP”。
WMF En>n£aU<rni.All 后4事TCiC^M L L BI i CK€ +JW MTLal CowirtE )fci*C■»■*«■-Ura□■A^UI.E T“L・□IV^EHX J WJ? tirH-tcir^tdvinllpliUa 1>'I K IkchuicE H WSTFJ)C-> LFhE■ l L£riLLbki-XHHTA1EIZDi 4 TTMi. ■naatiriP TW»I li-wn- 血■4ri.出£・》」■!■ 3i iTfUr t LiLfFE 3ri*Uiijaf LM*icaiI TH TE *wi-r T B MUlrid.aTriMLEtlTE TTL 利au-i+a TTL ”啦Tvri. m. UH —・TTL ”F CM:I"TTL *><K TH ME nrL4i TIL U圧sr・・・E讣阳HIai-H-111 1IM LT fl-dTrcL^CT|livi ddliiJ :rh4JWE MUIHm[rtcXZUa. MJMlliYfliEF H K>艮册时Eri<T3W. F.ruvni:rhfnuo. ajuiKrraerh^wik KUl■価IF M T I-HEEMIM p.fJURjni:r BETA HJTJUKrn丁旧彌从BUUlBOffDI“欣甘駁屈MnNcri£<j£Mi p.mnmi:ruccu BJ.UIKJDI:ruour &uumncrtwuJUrrvw^f-P.mKnH:rienMij 乩:rttom WMMMlhiTfii:FBKldl HMMnN:ricnw P.TJIETE!:rt£3TAT即也仙MJMlliTfH卄崎昭El.mKnflErhTTTW ran Era:rhTKDTAMUlKm[rhTium BUiBhlTT^vru^in F.rjLiHjni:rhTWM MUI urnE4IA7H:KmS IE3:713:M<™毋啦Mil# 1E3:!1TR55 TE3:TO:■:耳]田4 unmTFscime- nnscur7U122ruji3IAKmmJUKIlun?3L0^lTUrill IFMFJUKI IEI:ICWtlTSUS? 即斗2盼OFMTIUK+ !□:£ZUKUZi- 713:IUW 购■:3l£rfi 1E3:tfjUTTI vurDTdT<也glPpH丄Ihil~iri-kil X・r帕心f—丄乩7・七7肌g h -希丹]暑hHil--tv-l>9il Opqr肛3hn臼m召奇lul~ir-lul Cf4r 皿------------ -1-------弧rfT. __…__ __________ F _________________«_____ _____ , _____ , _____32P. «B. IfiiJ-iff-lfijl lA. UG-tr«.i:inikl MpLi 右vr Wil, IP/w, 4-L2FIY-O J-SM". Hu^. C-0T-HA 0>wrMLrihhl A«fLi I I I-M:IG-dl 佃”斗・=Hia,L CshMMVU.hJ Li fi-u 宜Hi M O:i i ma) ■RP I I hwr 岭事jf. •刖IJ*T-K33LU llZi 丨皿心rlav ^W:. ITT-K53LU SifM Df-ir«.li Mid K NK. 0皿、Inr=i琴s. MfJtfiH. i-zaun. SW/JE. KT>MCF1T-T"r*<. b*4!^ SfWBi 涼!S I. *<1力lL4r-^iri^Ld>ii M“r,.i4ML JtagLsiLRT 口知上.:刖丿u. I0-H«jlLilfa~3H-rtEi k£iLQI [-lidrhLi-^a Jtafr]^-LKT dmr:. 3B¥|'U. ID-3ar) I L J B 3ir4iV E'^I T B LEkl 耳・I*・L I>X4L J^J JU L U*p-rarj-!.!* li EkSfiai Qi TaR Q> ^rraM kapl ■ fiaraF r4Cin«. ■! fibr^f 自I lit QD ijpwAiP心Aol> Istra Fraci EKC li ch'-Fnai 3if4C A:1 D[4riU»h] h<|d.i bin FraEi Elite II 9i 11:1 DpHaAl »h3 Mkl* TjrirEh-aei hiaih *忑・・」九「・、皿l^rrali kapl i (Tiara Pr-rmg ■! glr£f4q4 &rfi«! (D (i|xr4>.i mhlApfli favra Kf- ------- -■… 亠亠皿皿rtff.ni. ― ■“ 血JX5 1CKS ltoll-1ri-l*ll [旳□E-Kd.CI Uh] AH*CK£JM.CM€. hl卜tw-hd 】旳.U4M1 ta$3 ifLai-C IdiirBhiQj ifLaf 1711 I IVM L1^9*1 iftBi-B Hirra ■!■.■■ mi >.I4T A L ^HT<IT^II ICCM L Jh^JadLflrB ttia'ahBQj I J LHT ITU .i 日!wimr, a siAn, eiwi _iiri#r im.. Q>M留i■tiq心AppLi fur iMlr. l-llfflm. CK -Iff-IhlJIri-lhllCr<rs> iffl5U4如JAL 岛“秋iQh] AapLi Cur m.Cfe-irMi tad M^LI Eiftr ]|Utoplirin-1/0. ^nrV:i nd ・|>liFi>vr 5rt.ui-H-i«Ai Kikl A«|iLi fair•ir*.Iirt-i. :【!!■.ZWa ™■工!IB?ii55—. ”网Wu.卜泗SYi'ca. U-3Tf] IXAVu.才£却Z. «<3flFi -l^'u. *;新1 ffTJm, HEfl 3 Egei2¥l □钞f •即| 问酊卜的3P/u H-l±TPL4KB1 A*fLlElirtml ■iff-iul 计1“1 10PCt Frbi?»■III心F^r|riCh C*p-4rH.Li mJfw«oM hwrq'Jms 仏InrsuEfi £^rn*.i-?oi2 E-criuci!Df-drsti-M'riL rh1briA*l Mh.iSJx.! Hl・jh 乐J L^+urhlHi 小:rHi』THlift, jtti rL H 1-^I U□>L LHK* E^iLJiof Etwck -乩*4・taijlifa5LB.|14 ■■' ECV <£K1H IT IMC ii>M-iiLi -jrrf-u- hi]-±.B| IL-M I E - S E%al. LdaFfawWg 比^3::“世L B X aanJ JTIT, #■ T BTIIT ,FHari -u ■■ ~ hd… ErJ-.u>:»d JTtt. Lo* Fw P MErlAiEtd JTn,. Litr Fwaav F TH_Eiilq:+9 THT. Pr“iri4<i 耳田h£if*ul MfJifi u* hJ.. L-^UBB J jnt. hxMl ・■酹・內hii. BrJwcsJ JTtr. hnnBi "aLn 7-mr :I IKK^F U^-MM Qpirkh^uL te^LEi IF nth J3E1 Einlt 5T-KM*! .UICT-SBifiLCnurkl Fa.EvJ.. U■- - …h«L "tu4Swd- Lx«Erilal LuanA■.■■■! AapU jiiari iiw ■SririimAL ikpf^iEi I H4bQja-irljMMl JU^J L E I VLiMWJl>.i-n^ *v?li<avrtb gtrmiixr— taQilifudrLTfaliMal '■5«taM iJ r<!->■!> till_mT-丁障it. Gwwril l>r|Maq 2r和Pmc*心f<rr>T+ t|iri>.i4ul AafJaEi JTET-lijf'U. '^KrirtlTrrpjGiiJFET*丁峠GtfHi al lu-paaa O^rM Ml 1M4L W矶■ ilk TTTT lajiiLL a]JiRpli fiirrelk JTZT lRfi>.i h]AapLi Ei*r- _ |£1 iM^LI EiMLn J1TT-3M4I. H ・|>1山”Ln Jhi3R. JW-S RITS L paii 比lejlifavrLn l-M3-i UdK# FvT-M-i >l|iia-hi^-iul g^Ltitr ■!■讣JR J Cq^it Eval. Lva lai E4:, Mhi*h]:>M*hLii»al J^3 = Cl* ■■ilk 1TTT ]K*«LE ■*I r ■-r» wr T >”R 0 A .-i J rr«!*,F»*w.L« Fmc; fmc,r«».Elii z l 图4理想无源放大器件的位置1.1比例运算电路与加法器这种运算电路是最基本的其他电路都可以由它进行演变。
大学毕业设计(论文)任务书设计(论文)题目数字式稳压电源的MULTISIM仿真与实现学生姓名 * * 系别电子信息工程系专业通信工程班级 ********* 指导教师* * *职称教授联系电话 *************** 教师单位 ******** 下任务日期__ ____年____月____日摘要在当代电子业迅猛发展,电力电子技术的不断创新,电源技术尤其是数控电源技术是一门实践性很强的技术,服务于各行各业。
数字电源器件必须包含可配置控制器内核,再加上一个能作为DC/DC或AC/DC电源转换应用的集成PWM控制器,器件内部以数字形式执行回路转换功能,通常认为如果可以进行通信,数字电源通过串行接口扩展了监测和控制功能,使电源设计更简单、更灵活,数字式稳压电源与传统稳压电源电路相比,具有操作方便、电压稳定度高的特点。
目前,数字式直流稳压电源是电子技术常用的设备之一,广泛应用于教学、科研等领域。
在数据通信设备中,通常主板需要36到40个电压轨;在计算行业,一个主板上各种ASIC、存储器和处理器芯片组通常需要的电压轨超过20个。
这种复杂的电源系统需要对各种参数进行精细的诊断、控制和监控,而这些功能是模拟电源所不能实现的。
传统的解决方案通过增加分离的微控制器的方法对于降低系统成本、功耗、板子面积都不利,而数字电源的高度集成、设计灵活的特点能解决这些设计需求。
“数字电源提供了目前模拟设计所不具备的新特性,如通信、诊断、易于升级、实时监控等,系统设计人员可用这些新特性来提高电源性能。
本文研究数字稳压电源的控制电路、D/A转换电路、输出电路、数字显示电路等硬件电路的设计,完成电路仿真软件,并实现电路硬件调试与测试[1]。
【关键词】:数显控制D/A转换ABSTRACTThe rapid development of the modern electronic industry, innovation in power electronics technology, power technology, especially in a digitally controlled power technology is a very practical technology services to all industries. Digital power devices must be included to configure the controller kernel, plus a conversion applications as DC / DC or AC / DC power supply integrated PWM controller, the device internal loop conversion functions performed in digital form, usually think that if we can communicate. The digital power monitoring and control functions via the serial interface expansion and power supply design is simpler, more flexible, digital power supply compared with the conventional power supply circuit is easy to operate high voltage stability characteristics. At present, the digital DC power supply is one of the electronic equipment is widely used in teaching, research and other fields.In the data communications equipment, usually the motherboard voltage rails of 36-40; in the computing industry, a variety of motherboard ASICs, memory and processor chipsets usually need more than 20 rails. This complex power system need arious parameters fine diagnosis, control and monitoring, these features can not be achieved by the analog power. Traditional solutions to reduce system costs by increasing the separation of the micro-controller, power consumption, board area are unfavorable, while the digital power, highly integrated and flexible design features to address these design requirements Digital power analog design do not have new features, such as communication, diagnosis, easy to upgrade, real-time monitoring, system designers can use these new features to improve power performance.【Key words】Digital Control D/A converter目录前言 (1)第一章Multisim仿真软件的介绍与操作 (2)第一节Multisim仿真软件的基本操作 (2)一、Multisim的概述 (2)二、Multisim软件的特点 (3)三、Multisim的结构 (4)第二节Multisim仿真软件绘制电路图 (5)一、对元件的操作 (5)二、绘图的基本操作 (7)第三节本章小结 (8)第二章数字式稳压电源基础知识与原理分析 (9)第一节稳压电源概述 (9)一、电器释义 (9)二、发展历史 (9)三、交流稳压电源 (10)四、直流稳压电源 (10)五、电源用途 (11)第二节数字式直流稳压电源概述 (11)一、数字式直流稳压电路 (11)二、直流稳压电源电路组成 (11)三、数字部分 (22)四、直流稳压电源的技术指标 (22)第三节本章小结 (24)第三章电路设计 (25)第一节设计目的和主要参数 (25)一、设计目的 (25)二、主要参数 (25)第二节设计步骤 (26)一、电路图设计 (26)第三节电路设计 (27)一、控制电路的设计 (27)二、数显电路的设计 (27)三、数模转换和输出电路的设计 (27)四、电路原理整体图 (27)第四节本章小结 (28)第四章仿真与结果分析 (29)第一节各部分电路仿真分析 (29)一、数显电路的仿真实现 (29)二、数字电路的控制部分 (30)三、数模转换电路的仿真实现 (30)四、输出电路的仿真实现 (31)第二节输出电压的稳压仿真分析 (31)第三节本章小节 (32)结论 (34)致谢 (35)参考文献 (36)附件 (37)一、英文原文 (37)二、英文翻译 (41)前言EDA技术发展迅猛,已在科研、产品设计与制造及教学等各方面都发挥着巨火的作用。
Saber常见电路仿真实例一稳压管电路仿真 (2)二带输出钳位功能的运算放大器 (3)三5V/2A的线性稳压源仿真 (4)四方波发生器的仿真 (7)五整流电路的仿真 (10)六数字脉冲发生器电路的仿真 (11)七分频移相电路的仿真 (16)八梯形波发生器电路的仿真 (17)九三角波发生器电路的仿真 (18)十正弦波发生器电路的仿真 (20)十一锁相环电路的仿真 (21)一稳压管电路仿真稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。
下面就介绍一个简单例子,仿真电路如下图所示:在分析稳压管电路时,可以用TR分析,也可以用DT分析。
从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。
因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示:从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。
需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输出足以超出稳压管工作范围的电流。
二带输出钳位功能的运算放大器运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压.对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:从仿真结果可以看出,当输入电压超出一定范围时,输出电压被钳位.输出上限时6.5V,下限是-6.5V.电路的放大倍数A=-5.注意:1.lm258n_3是Saber中模型的名字,_3代表了该模型是基于第三级运算放大器模板建立的.2.Saber软件中二极管器件级模型的名字头上都带字母d,所以d1n5233a代表1n5233的模型.三5V/2A的线性稳压源仿真下图所示的电路利用78L05+TIP33C完成了对78L05集成稳压器的扩展,实现5V/2A 的输出能力。
电子技术软件仿真报告组长:组员:电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源1.实验目的(1)研究单相桥式整流、电容滤波电路的特性。
(2)掌握串联型晶体管稳压电源主要技术指标的测试方法。
2.实验原理电子设备一般都需要直流电源供电。
除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。
直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。
电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。
但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。
在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。
图7.18.2所示为分立元件组成的串联型稳压电源的电路图。
其整流部分为单相桥式整流、电容滤波电路。
稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。
整个稳压电路是一个具有电压串联负反馈的闭环系统。
其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。
由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。
当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。
在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。
基于Multisim的直流稳压电源设计Multisim2001是电子电路设计与仿真方面的EDA软件。
由于Multisim2001的最强大功能是用于电路的设计与仿真,因此称这种软件叫做虚拟电子实验室或电子工作平台。
在任一台计算机上,利用Multisim2001均可以创建《电子技术基础》虚拟实验室,从而改变传统的教学模式,学生可把学到的《电子技术基础》知识,应用Multisim2001电路仿真软件进行验证。
例如串联型直流稳压电源的设计,该系统是由整流、滤波和稳压三部分组成,桥式整流电路加上电容滤波后,使输出的波形更平滑,稳压部分,一般有四个环节:调整环节、基准电压、比较放大器和取样电路。
当电网电压或负载变动引起输出电压Uo变化时,取样电路将输出电压Uo的一部分馈送给比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿Uo的变化,从而维持输出电压慕本不变。
1. 直流稳压电源设计设计并制作串联型直流稳压电源,其输出电压UO=10V,输出调整范围为8~12V,额定输出电流IL=100 mA,电网电源波动±10%,稳压系数Sr<0.05,输出电阻RO=0.05。
工作温度为25~40℃。
1.1 初选电路根据设计题目要求,输出电流为100mA较大,所以选用由两个三极管组成的复合管,从稳压调节范围考虑,选择带有可变电阻器的取样电路,由此初选一个电路原理图如图1,通过参数计算和仿真测试,再重新考虑所选电路,使之满足要求。
最后在调试过程中进一步确定电路及元件参数。
1.2 元件参数选择1.2.1 整流滤波电路采用桥式整流,电容滤波电路。
为了保证调整管始终工作在放大区,需要有一定的管压降,根据计算得出U1=15V。
考虑到IL=100mA,加上通过R6、稳压管VZ的电流(取10mA),取样电路的电流(取20mA)。
经过整流二极管的电流ID=130mA。
免费电路图仿真软件LTspice一简介(中文教程)打开之后的LTspice?电路仿真原理图(audioamp.asc):免费电路图仿真软件LTspice三原理图的绘制(中文教程)欢迎转载,转载请说明出处-DPJ?关键字:PSpice?仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真,原理图绘1.?????LTspice电路图仿真菜单和功能命令2.?????LTspice?电路图原理图绘制LTspcie仿真原理图绘制鼠标操作:左键:选择操作,执行操作,和普通windows应用一样的中间:滚动放大和缩小右键:进入菜单执行菜单选项,在画图连线,选择等操作的时候右键可以终止操作LTspcie仿真原理图绘制常规操作:放大,缩小,最优视图,移动,复制,镜像,旋转参看LTspice电路图仿真菜单和功能命令LTspcie仿真原理图绘制添加基本器件:添加基本的器件主要包括电阻,电容,电感,二极管和符号(GND)可以在Edit菜单里面添加,也可以直接点击图标添加相应的器件。
LTspcie选取ICLTspcie仿真原理图绘制添加电源,负载和信号源:点击添加IC器件图标进入库文件选择对话框,如下图选择电源,负载,还是信号源。
选择好电源,负载,或者信号源,右键进行设置(下面以电压源进行设置)选择Voltage,确定后,点击电压源,右键,选择高级,就进入各种信号源或者电源的设置,如下图:spice ,1.1.?????LTspice?电路图仿真设置对话框:LTspice 进行所有的配置(AC ,DC ,瞬态,噪音等)都是通过右键菜单:Edit?simulation?CMD 进入。
如下图:进入之后,就进入了电路图仿真配置对话框:2.。
Maxim?time?stem :最大时间间隔(这个参数直接关系到精度和计算的时间,1uS 和1nS 计算量差1000倍),参看FFT 的差别(1uS 和10nS 的区别),如果配置精度达到一定程度,再提高精度意义不是很大,所以要衡量时间和精度问题。
基于PSpice的升压型开关稳压电源设计与仿真唐卫斌【摘要】介绍并分析了升压型开关变换器的拓扑结构及其仿真波形,以及PWM 电流模式的不稳定性及其解决办法。
借助仿真软件PSpice设计了一款以UC2843为核心的升压开关稳压电源。
整个电路易调试、工作稳定、高可靠性、成本低。
%The topology structure and simulation waves of the boost-switch-power are introduced and analyzed. The unsteady characteristic of the PWM circular mode is presented and its solution is given. A commonly used boost- switch-power with the UC2843 as it core is designed using the and it has the advantages of stable operation, high reliability popular PSpice software. The circuit is easy to debug and low cost.【期刊名称】《电子科技》【年(卷),期】2012(025)001【总页数】4页(P27-30)【关键词】PSpice软件;升压变换器;开关电源;UC2843【作者】唐卫斌【作者单位】西安电子科技大学研究生院,陕西西安710071/陕西商洛学院物理与电子信息工程系,陕西商洛726000【正文语种】中文【中图分类】TP303.320世纪50年代,美国宇航局以小型化、重量轻为目标,为搭载火箭开发了开关电源。
在半个多世纪的发展过程中,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代由传统技术设计制造的连续工作的线性电源,并广泛用于电子、电气设备中。
免费电路图仿真软件LTspice 一简介(中文教程)欢迎转载,转载请说明出处-DPJ关键字:PSpice 仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真1. LTspice 电路仿真软件简介LTspice 电路图仿真软件简介(支持PSpice和Spice库的导入)LTspiceIV 是一款高性能Spice III 仿真器、电路图捕获和波形观测器,并为简化开关稳压器的仿真提供了改进和模型。
我们对Spice 所做的改进使得开关稳压器的仿真速度极快,较之标准的Spice 仿真器有了大幅度的提高,从而令用户只需区区几分钟便可完成大多数开关稳压器的波形观测。
这里可下载的内容包括用于80% 的凌力尔特开关稳压器的Spice 和Macro Model,200 多种运算放大器模型以及电阻器、晶体管和MOSFET 模型。
在电路图仿真过程中,其自带的模型往往不能满足需求,而大的芯片供应商都会提供免费的SPICE模型或者PSpice模型供下载,LTspice可以把这些模型导入LTSPICE中进行仿真。
甚至一些厂商已经开始提供LTspice模型,直接支持LTspice的仿真。
这是其免费SPICE 电路仿真软件LTspice/SwitcherCADIII所做的一次重大更新。
这也是LTspice 电路图仿真软件在欧洲,美国和澳大利亚,中国广为流传的根本原因。
LTspice IV 具有专为提升现有多内核处理器的利用率而设计的多线程求解器。
另外,该软件还内置了新型SPARSE 矩阵求解器,这种求解器采用汇编语言,旨在接近现用FPU (浮点处理单元) 的理论浮点计算限值。
当采用四核处理器时,LTspice IV 可将大中型电路的仿真速度提高3 倍,同等设置的精度,电路仿真时间远远小于PSpice的计算时间(本来你要等待3个小时,现在一个小时就结束了)。
功能强大而且免费使用仿真工具,何乐而不为呢?这里不是贬低pspice软件,cadence的Pspice软件具有更加丰富的配置和应用,可以进行更加繁多的电路仿真和设置,因为大多数工程师不需要非常复杂的应用,所以,免费的LTspice可以满足基本的应用。
低压基准电压源电路的仿真分析毕业设计摘要参考电压源电路是模拟集成电路及电气电子设备的基本组成单元。
一个应用广泛的基本电路。
我们所说的参考电压源,就是能够提供高稳定性的基准电源的电路,它们之间的参考电压和电源,工艺参数,温度的变化关系是非常小的。
然而,它的温度稳定性和抗噪声性能够影响到整个电路系统。
该系统的精度在很大程度上取决于内部或外部的基准精度。
如果没有一个满足要求的参考电路,它不就能正确和有效的实现系统设定的性能。
本文的目的是基于双极晶体管基准源的TL431可调稳压器集成电路的仿真与分析。
本文首先介绍了基准电压源的国内外发展现状以及趋势。
然后详细介绍基准电压源电路的基本结构以及基本的原理,并对几种不同的双极型基准电压源电路做以简单的介绍。
其次对电路仿真软件进行介绍,最后运用电路仿真软件specture对TL431串联集成稳压基准电路进行仿真并详细分析其结果。
仿真分析的类型主要有直流工作点分析,交流分析,傅里叶分析,噪声分析,噪声系数分析,失真分析,直流扫描分析,灵敏度分析,参数扫描分析,温度扫描分析等。
仿真分析结果显示,基准电压源电路具有较高的稳定性,电压源的直流输出电平比较稳定,而且这个直流电平对电源电压和温度不敏感。
关键词:基准电压源,TL431,仿真分析,Specture,温度系数AbstractThe reference voltage source is a basic module of the very wide range of applications in the design of analog integrated circuits. What we call the reference voltage source is able to power provide high stability of the baseline power to the circuit, this relationship between the picture reference and the power, process parameters and temperature is very small, however, its import temperature stability and resistance to noise performance of with the accuracy and performance of the entire circuit system. The accuracy of the system to a large extent depends on the begin is accuracy of the internal or external reference, there is no one to meet the requirements of the is reference circuit, it can not correct and effective system of pre-set performance. The purpose of this paper is based on bipolar transistors reference TL431 adjustable voltage regulator IC is simulation and analysis.At the beginning of this article, first introduced the development status and trends of the reference voltage source at home and abroad. And then details the basic structure of the reference voltage source circuit and the basic principle, and several different bipolar voltage reference circuit with a simple introduction. Second, the circuit simulation software mulisim .Finally, the circuit simulation software specture TL431 series integrated voltage regulator reference circuit simulation and detailed analysis of the results. Simulation analysis of the main types of DC operating point analysis, AC analysis, Fourier analysis, noise analysis, noise figure, distortion analysis, DC sweep analysis, sensitivity analysis, Parameter Sweep analysis, temperature scanning.Simulation and analysis of simulation results show that the voltage reference circuit has a high stability of the DC voltage source output level is relatively stable, and the DC level is not sensitive to the supply voltage and temperature.Keywords:reference voltage source ,the TL431 ,simulation ,Specture ,temperature coefficient目录1. 绪论 (4)1.1 国内外研究现状与发展趋势 (5)1.2 课题研究的目的意义 (6)1.3 本文的主要内容 (7)2. 基准电压源电路和偏置的电流源电路 (7)2.1基准电压源的结构 (7)2.1.1 直接采用电阻和管分压的基准电压源 (7)2.1.2有源器件与电阻串联所组成的基准电压源 (8)2.1.3双极型三管能隙基准源 (10)2.1.4 双极型二管能隙基准源 (12)2.2V的温度特性 (14)BE2.3 对温度不敏感的偏置 (14)2.4 对电源不敏感的偏置 (18)本章小结 (20)3. 高精度可调式精密稳压集成电路TL431的工作原理与运用 (21)3.1精密稳压器TL431的内部结构 (21)3.2 TL431的工作原理与参数 (22)3.2.1 TL431的具体工作原理 (22)3.2.2 TL431的特点和参数 (26)3.3 TL431的典型运用电路 (26)3.3.1 基准电压源电路 (26)3.3.2 恒流源电路 (27)3.3.3 电压比较器电路 (28)3.3.4电压监视器电路 (29)3.4 TL431应用所注意的事项 (30)本章小结 (30)4. 高精度可调式精密稳压电路TL431的仿真 (31)4.1 Candence以及Specture仿真器的介绍 (31)4.2 整体电路的仿真 (32)4.2.1 直流特性仿真 (32)4.2.2瞬态特性仿真 (34)4.2.3温度特性的仿真 (34)4.2.4 电源抑制比仿真 (35)4.2.5开环电压增益仿真 (36)4.2.6 应用电路的仿真 (37)本章小结 (38)结论 (39)致谢 (40)参考文献 (41)1. 绪 论基准电压源(Reference Voltage )是指在模拟电路、混合信号电路中用作电压基准的参考电压源,它具有很多的优点,典型的是相对较高的精度和稳定度。
Saber常见电路仿真实例一稳压管电路仿真 (2)二带输出钳位功能的运算放大器 (3)三5V/2A的线性稳压源仿真 (4)四方波发生器的仿真 (7)五整流电路的仿真 (10)六数字脉冲发生器电路的仿真 (11)七分频移相电路的仿真 (16)八梯形波发生器电路的仿真 (17)九三角波发生器电路的仿真 (18)十正弦波发生器电路的仿真 (20)十一锁相环电路的仿真 (21)一稳压管电路仿真稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。
下面就介绍一个简单例子,仿真电路如下图所示:在分析稳压管电路时,可以用TR分析,也可以用DT分析。
从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。
因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示:从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。
需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输出足以超出稳压管工作范围的电流。
二带输出钳位功能的运算放大器运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压.对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:从仿真结果可以看出,当输入电压超出一定范围时,输出电压被钳位.输出上限时6.5V,下限是-6.5V.电路的放大倍数A=-5.注意:1.lm258n_3是Saber中模型的名字,_3代表了该模型是基于第三级运算放大器模板建立的.2.Saber软件中二极管器件级模型的名字头上都带字母d,所以d1n5233a代表1n5233的模型.三5V/2A的线性稳压源仿真下图所示的电路利用78L05+TIP33C完成了对78L05集成稳压器的扩展,实现5V/2A 的输出能力。
multisim模拟仿真实验⼀、实验⽬的和要求(1)学习⽤multisim 进⾏模拟电路的设计仿真 (2)掌握⼏种常见的实⽤电路原理图⼆、实验内容和原理2.1测量放⼤电路仿真分析在multisim11中画出如下电路原理图。
如图所⽰为测量放⼤电路,采⽤两级放⼤,前级采⽤同相放⼤器,可以获得很⾼的输⼊阻抗;后级采⽤差动放⼤器,可获得⽐较⾼的共模抑制⽐,增强电路的抗⼲扰能⼒。
该电路常常作为传感器放⼤器或测量仪器的前端放⼤器,在微弱信号检测电路设计中应⽤⼴泛。
电路的电压放⼤倍数理论计算为)1(94367R R R R R A u++=将电路参数代⼊计算:630)101001001(10300=++=uA2.2电压-频率转换电路仿真分析给出⼀个控制电压,要求波形发⽣电路的振荡频率与控制电压成正⽐,这种通过改变输⼊电压的⼤⼩来改变输出波形频率,从⽽将电压参数转换成频率参量电路成为电压—频率转换电路(VCO ),⼜称压控振荡器。
在multisim11中创建如图所⽰的电压-频率转换电路的电路原理图。
电路中,U1是积分电路,U2是同相输⼊迟滞⽐较器,它起开关左右;U3是电压跟随电流,输⼊测试电压U1。
电路的输出信号的振荡频率与输⼊电压的函数关系为Zi CU R R U R T f 31421==2.3单电源功率放⼤电路仿真分析在许多电⼦仪器中,经常要求放⼤电路的输出机能够带动某种负载,这就要求放⼤电路有⾜够⼤的输出功率,这种电路通称为功率放⼤器,简称“功放”。
⼀般对功放电路的要求有:(1)根据负载要求提供所需要的输出功率;(2)功率要⾼(3)⾮线性失真要⼩(4)带负载的能⼒强。
根据上述这些要求,⼀般选⽤⼯作在甲⼄类的共射输出器构成互补对称功率放⼤电路。
单电源功放电路中指标计算公式如下:功率放⼤器的输出功率:Lo oR U P = 直流电源提供的直流功率:CO CC E I U P ?=电路效率:%100?=EoP P η实验电路原理图如下:2.4直流稳压电源仿真分析在所以电⼦电路和电⼦设备中,通常都需要电压稳定的直流电源供电。
稳压电路的仿真
元件列表:
名称关键词、型号类别参数
交流电源alternator 50Hz、310V
变压器TRAN-2P2S transformers 初始线圈电感系数(primary inductance) 设为590H
1K电阻RES resistors
二极管1N4007 diode
电解电容cap-elec capacitors 47u 电容cap capacitors
稳压二极管1N4733A diodes
三端稳压集成器7805 analog ICs
地在左侧工具栏找
电压探头在左侧工具栏找
示波器
在左侧工具栏找
交流电压表
直流电压表
仿真实验内容
1、稳压管。
注意稳压二极管的极性。
题1.1、测量出变压后的交流电压值,截图放下面:
题1.2、测量出整流后的波形图,截图放下面:
题1.3、测量出整流后的电压值,说明整流后的电压值与变压后的电压值U2的关系:题1.4、测量出滤波后的波形图,截图放下面:
题1.5、改变滤波电容值,说明滤波电容值对滤波效果的影响:
题1.6、使用1N4733A稳压管稳压,其稳压值多少?
题1.7、已知稳压管电流为49mA,试粗略估算电路中限流电阻值的大小。
题1.8、改变稳压管电路中的负载电阻为100欧,其电压变为多少?
2、7805集成稳压器的稳压电路。
题2.1、三端稳压器的输入电压为多少?输出电压为多少?
题2.2、该电路中换成7812可否实现稳压?如果不可以,应该改变哪里使其实现正常稳压?题2.3、改变7805稳压电路中负载电阻为100欧,其电压值为多少?说明了什么问题?
附加:1.稳压二极管稳压电路如图(7)所示,已知u = sinωtV , 稳压二极管的稳压值UZ =6V,RL=2kΩ,R =1.2kΩ。
试求:S1 、S2断开时,UI=?;若S1 和S2 都闭合时,IO=?,IR=?,和IZ=?。