高观点数学 第三章课后作业
- 格式:docx
- 大小:176.59 KB
- 文档页数:6
新课程标准数学必修3第三章课后习题解答第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.说明:(4)是指落在6,23,9三个相邻区域的情况,而不是编号为6,7,8,9,四个区域.3、(1)25; (2)115; (3)35. 说明:本题假设在任何时间到达路口是等可能的. 习题3.3 B 组(P142) 1、设甲到达的时间为x ,乙到达的时间为y ,则0,24x y <<. 若至少一般船在停靠泊位时必须等待,则06y x <-<或06x y <-<,必须等待的概率为:22189711241616-=-=.2、D .第三章 复习参考题A 组(P145)1、56,16,23. 2、(1)0.548; (2)0.186; (3)0.266.3、(1)38; (2)14.4、(1)813; (2)726; (3)665. 5、分别计算两球均为白球的概率、均为红球的概率、均为黑球的概率,然后相加,得1223311166666636⨯⨯⨯++=⨯⨯⨯. 6、56. 说明:利用对立事件计算会比较简单. 第三章 复习参考题B 组(P146)1、第一步,先计算出现正面次数与反面次数相等的概率46328=. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于反面次数的概率为35(1)2816-÷=. 2、(1)是; (2)否; (3)否; (4)是.3、(1)45; (2)15; (3)25; (4)25. 说明:此题属于古典概型的一类“配对问题”,由于这里的数比较小,可以用列举法.4、参考教科书140页例4.。
第三章 中值定理与导数的应用1. 验证拉格朗日中值定理对函数x x f ln )(=在区间[]e ,1上的正确性。
解:函数()ln f x x =在区间[1,]e 上连续,在区间(1,)e 内可导,故()f x 在[1,]e 上满足拉格朗日中值定理的条件。
又xx f 1)(=',解方程,111,1)1()()(-=--='e e f e f f ξξ即得),1(1e e ∈-=ξ。
因此,拉格朗日中值定理对函数()ln f x x =在区间[1,]e 上是正确的。
2.不求函数)4)(3)(2)(1()(----=x x x x x f 的导数,说明方程0)('=x f 有几个实根,并指出它们所在的区间。
解:函数上连续,分别在区间[3,4][2,3],2],,1[)(x f 上在区间(3,4)(2,3),2),,1(可导,且(1)(2)(3)(4)0f f f f ====。
由罗尔定理知,至少存在),2,1(1∈ξ),3,2(2∈ξ),4,3(3∈ξ使),3,2,1( 0)(=='i f i ξ即方程'()0f x =有至少三个实根。
又因方程'()0f x =为三次方程,故它至多有三个实根。
因此,方程'()0f x =有且只有三个实根,分别位于区间(1,2),(2,3),(3,4)内。
3.若方程 01110=+++--x a x a x a n n n 有一个正根,0x 证明:方程0)1(12110=++-+---n n n a x n a nxa 必有一个小于0x 的正根。
解:取函数()1011nn n f x a x a xa x --=+++。
0()[0,]f x x 在上连续,在0(0,)x 内可导,且0(0)()0,f f x ==由罗尔定理知至少存在一点()00,x ξ∈使'()0,f ξ=即方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根。
高二数学上册3章课后强化练习题(有答案)3章章末归纳总结一、选择题1.已知cosα-π4=14,则sin2α的值为()A.3132B.-3132C.-78D.78答案]C解析]方法1:sin2α=cos(π2-2α)=2cos2(α-π4)-1=-78,故选C.方法2:cos(α-π4)=22cosα+22sinα=14两边平方得,12+12sin2α=116,∴sin2α=-78,故选C.2.若0A.aB.a>bC.abD.ab>2答案]A解析]sinα+cosα=2sinα+π4,sinβ+cosβ=2sinβ+π4,因为0点评]比较大小的一般方法是作差比较,在本题中作差比较法无疑是命题者给出的一个陷阱.本题若不用辅助公式先化简再比较大小是较难解答的.3.(08•重庆理)函数f(x)=sinx-13-2cosx-2sinx(0≤x≤2π)的值域是() A.-22,0]B.-1,0]C.-2,0]D.-3,0]答案]B解析]∵0≤x≤2π,f(x)=sinx-1(cosx-1)2+(sinx-1)2≥sinx-1|sinx-1|=-1,又f(0)=-1,∴选B.点评]本题求函数的值域显然不能用通性通法求解.改变一下系数,上述解法就不能应用.这类题目就属于“偏”,“难”,“怪”类,通过此题想提醒师生注意,平时尽量避免做这类练习,这不是我们训练的方向和高考命题的方向.偶尔遇到时,可依据题目特点,把思维发散开去看有何特殊方法技巧.4.设两个向量a=(λ+2,λ2-cos2α)和b=m,m2+sinα,其中λ、m、α为实数.若a=2b,则λm的取值范围是()A.-6,1]B.4,8]C.(-∞,1]D.-1,6]答案]A解析]∵2b=(2m,m+2sinα),a=2b,∴λ+2=2m,λ2-cos2α=m+2sinα,∴(2m-2)2-m=cos2α+2sinα,即4m2-9m=-3-sin2α+2sinα,又∵-sin2α+2sinα-3=-(sinα-1)2-2∈-6,-2],∴-6≤4m2-9m≤-2,解得14≤m≤2,∴12≤1m≤4,又∵λ=2m-2,∴λm=2-2m,∵-6≤2-2m≤1,∴-6≤λm≤1.二、填空题5.求值:sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)=________.答案]0解析]令α=θ+15°,则原式=sin(α+60°)+cos(α+30°)-3cosα=12sinα+32cosα+32cosα-12sinα-3cosα=0.6.已知A、B、C皆为锐角,且tanA=1,tanB=2,tanC=3,则A+B +C的值为________.答案]180°解析]∵tanA=1,tanB=2∴tan(A+B)=tanA+tanB1-tanAtanB=1+21-1×2=-3又tanC=3,∴tan(A+B+C)=tan(A+B)+tanC1-tan(A+B)tanC=-3+31-(-3)×3=0∵A、B、C都是锐角,∴0°故A+B+C=180°.三、解答题7.已知锐角α、β满足tan(α-β)=sin2β,求证:2tan2β=tanα+tanβ.分析]要证的结论中只有正切,因此化弦为切,顺理成章.解析]∵tan(α-β)=sin2β,tan(α-β)=tanα-tanβ1+tanαtanβ,sin2β=2sinβcosβ=2sinβcosβsin2β+cos2β=2tanβ1+tan2β,∴tanα-tanβ1+tanαtanβ=2tanβ1+tan2β.去分母整理得:tanα=3tanβ+tan3β1-tan2β.∴tanα+tanβ=3tanβ+tan3β+tanβ-tan3β1-tan2β=2×2tanβ1-tan2β=2tan2β.8.若2sinπ4+α=sinθ+cosθ,2sin2β=sin2θ,求证:sin2α+12cos2β=0.解析]由2sin(π4+α)=sinθ+cosθ得2cosα+2sinα=s inθ+cosθ,两边平方得2(1+sin2α)=1+sin2θ,即sin2α=12(sin2θ-1)①由2sin2β=sin2θ得,1-cos2β=sin2θ②将②代入①得sin2α=12(1-cos2β)-1]得sin2α=-12cos2β即sin2α+12cos2β=0.9.化简:2sin22α+3sin4α-4tan2αsin8α•1-tan22α(1+tan22α)2.解析]原式=2sin22α+3sin4α-2sin8α•2tan2α1+tan22α•1-tan22α1+tan22α=2sin22α+3sin4α-2sin8α•2sin2αcos2αcos22α+sin22α•cos22α-sin22αcos22α+sin22α=2sin22α+3sin4α-2sin8α•sin4α•cos4α=2sin22α+3sin4α-1=3sin4α-cos4α=232sin4α-12cos4α=2sin4α-π6.点评](1)在变形过程中注意到式子的结构与三角公式的形式对应起来,以进行合理的搭配,从而直接运用公式,而非盲目地套用公式(如将sin22α降次处理虽然也可以,但不如上面的解法流畅,从而减少了变形的中间环节,也减小了出错率).(2)三角变换的基本思想是:①降次(化次数较高的三角函数为次数较低的三角函数,一般运用公式cos2α=1+cos2α2,sin2α=1-cos2α2),这必然会引起角的倍数的增大(单角化为倍角));②统一函数名称(化多种三角函数为单一的三角函数);③统一角(化多角为单一角,减少角的种类).10.向量a=(cos23°,cos67°),向量b=(cos68°,cos22°).(1)求a•b;(2)若向量b与向量m共线,u=a+m,求u的模的最小值.解析](1)a•b=cos23°•cos68°+cos67°•cos22°=cos23°•sin22°+sin23°•cos22°=sin45°=22.(2)由向量b与向量m共线知存在实数λ,使m=λb,∴u=a+m=a+λb=(cos23°+λsin22°,sin23°+λcos22°),|u|2=(cos23°+λsin22°)2+(sin23°+λcos22°)2=1+λ2+2λ(sin20°cos23°+cos22°sin23°)=λ2+2λ+1=λ+222+12,∴当λ=-22时,|u|有最小值22.。
⾼等数学李伟版课后习题答案第三章习题3—1(A )1.判断下列叙述是否正确,并说明理由:(1)函数的极值与最值是不同的,最值⼀定是极值,但极值未必是最值;(2)函数的图形在极值点处⼀定存在着⽔平的切线;(3)连续函数的零点定理与罗尔定理都可以⽤来判断函数是否存在零点,⼆者没有差别;(4)虽然拉格朗⽇中值公式是⼀个等式,但将()f ξ'进⾏放⼤或缩⼩就可以⽤拉格朗⽇中值公式证明不等式,不过这类不等式中⼀定要含(或隐含)有某函数的两个值的差.答:(1)不正确.最值可以在区间端点取得,但是由于在区间端点处不定义极值,因此最值不⼀定是极值;⽽极值未必是最值这是显然的.(2)不正确.例如32x y =在0=x 点处取极值,但是曲线在点)00(,却没有⽔平切线.(3)不正确.前者是判断)(x f 是否有零点的,后者是判断)(x f '是否有零点的.(4)正确.⼀类是明显含有)()(a f b f -的;另⼀类是暗含着)()(0x f x f -的. 2.验证函数2)1(e x y -=在区间]20[,上满⾜罗尔定理,并求出定理中的ξ.解:显然2)1(e x y -=在闭区间]20[,上连续,在开区间)20(,内可导,且e )2()0(==y y ,于是函数2)1(ex y -=在区间]20[,上满⾜罗尔定理的条件,2)1(e )1(2)(x x x y ---=',由0)(='ξy ,有0e )1(22)1(=---ξξ,得1=ξ,∈ξ)20(,,所以定理的结论也成⽴.3.验证函数1232-+=x x y 在区间]11[,-上满⾜拉格朗⽇中值定理,并求出公式中的ξ.解:显然1232-+=x x y 在闭区间]11[,-连续,在开区间)11(,-内可导,于是函数1232-+=x x y 在区间]11[,-上满⾜拉格朗⽇中值定理的条件,26)(+='x x y ,2)1(1)1()1(=----y y ,由)()1(1)1()1(ξy y y '=----,有226=+ξ,得0=ξ,∈ξ)11(,-,所以定理的结论也成⽴.4.对函数x x x f cos )(+=、x x g cos )(=在区间]20[π,上验证柯西中值定理的正确性,并求出定理中的ξ.解:显然函数x x x f cos )(+=、x x g cos )(=在闭区间]20[π,上连续,在开区间)20(π,内可导,且x x f sin 1)(-=',x x g sin )(-=',在区间)20(π,内0)(≠'x g ,于是函数x x x f cos )(+=、x x g cos )(=在区间]20[π,上满⾜柯西定理的条件,⼜21)0()2/()0()2/(πππ-=--g g f f ,由)()()0()2/()0()2/(ξξππg f g g f f ''=--,有ξξπsin sin 121--=-,即πξ2sin =,由于∈ξ)20(π,,得πξ2arcsin=,所以定理的结论也成⽴.5.在)(∞+-∞,内证明x x cot arc arctan +恒为常数,并验证2cot arc arctan π≡+x x .证明:设x x x f cot arc arctan )(+=,显然)(x f 在)(∞+-∞,内可导,且-+='211)(x x f 0112≡+x,由拉格朗⽇定理的推论,得在)(∞+-∞,内x x cot arc arctan +恒为常数,设C x f ≡)(,⽤0=x 代⼊,得2π=C ,所以2cot arc arctan π≡+x x .6.不求出函数2()(4)f x x x =-的导数,说明0)(='x f 有⼏个实根,并指出所在区间.解:显然2()(4)f x x x =-有三个零点20±==x x ,,⽤这三点作两个区间]20[]02[,、,-,在闭区间]02[,-上)(x f 连续,在开区间)02(,-内)(x f 可导,⼜0)0()2(==-f f 于是)(x f 在]02[,-满⾜罗尔定理,所以⾄少有∈1ξ)02(,-,使得0)(1='ξf ,同理⾄少有∈2ξ)20(,,使得0)(2='ξf ,所以0)(='x f ⾄少有两个实根.⼜因为)(x f 是三次多项式,有)(x f '时⼆次多项式,于是0)(='x f 是⼆次代数⽅程,由代数基本定理,得0)(='x f ⾄多有两个实根.综上,0)(='x f 恰有两个实根,且分别位于区间)02(,-与)20(,内.7.证明下列不等式:(1)对任何实数b a ,,证明cos cos a b a b -≤-;(2)当0>x 时,x x xx<+<+)1ln(1.证明:(1)当b a =时,cos cos a b a b -≤-显然成⽴.当b a <时,取函数x x f cos )(=,显然)(x f 在闭区间][b a ,上连续,在开间)(b a ,内可导,由拉格朗⽇定理,有∈ξ)(b a ,,使得))(()()(b a f b f a f -'=-ξ,即)(sin cos cos b a b a -?-=-ξ,所以)()(sin cos cos b a b a b a -≤-?-=-ξ.当b a >时,只要将上⾯的区间][b a ,换为][a b ,,不等式依然成⽴.所以,对任何实数b a ,,都有cos cos a b a b -≤-.(2)取函数)1ln()(t t f +=,当0>x 时,函数)1ln()(t t f +=在闭区间]0[x ,上连续,在开区间)0(x ,内可导,根据拉格朗⽇定理,有∈ξ)0(x ,,使得ξξ+='1)(xf .因为x <<ξ0,则x xx x x =+<+<+0111ξ,所以x x x x <+<+)1ln(1. 8.若函数)(x f 在区间),(b a 具有⼆阶导数,且)()()(321x f x f x f ==,其中21x x a <<b x <<3,证明在区间)(3,1x x 内⾄少有⼀点ξ,使得0)(=''ξf .证明:根据已知,函数)(x f 在区间][21x x ,及][32x x ,上满⾜罗尔定理,于是有∈1ξ)(21x x ,,∈2ξ)(32x x ,(其中21ξξ<),所得0)(1='ξf ,0)(2='ξf .再根据已知及)()(21ξξf f '=',函数)(x f '在区间][21ξξ,上满⾜罗尔定理,所以有∈ξ)(21ξξ,?)(3,1x x ,所得0)(=''ξf ,即在区间)(3,1x x 内⾄少有⼀点ξ,使得0)(=''ξf .习题3—1(B )1.在2004年北京国际马拉松⽐赛中,我国运动员以2⼩时19分26秒的成绩夺得了⼥⼦组冠军.试⽤微分中值定理说明她在⽐赛中⾄少有两个时刻的速度恰好为18. 157km/h (马拉松⽐赛距离全长为42.195km ).解:设该运动员在时刻t 时跑了)(t s s =(km ),此刻才速度为)()(t s t v v '==(km/h ),为解决问题的需要,假定)(t s 有连续导数.设起跑时0=t ,到达终点时0t t =,则3238888889.20≈t ,对函数)(t s 在区间]0[0t ,上⽤拉格朗⽇定理,有00t <<ξ,所得)()(0)0()(00ξξv s t s t s ='=--,⽽15706.183238888889.2195.420)0()(00≈=--t s t s km/h ,所以157.1815706.18)(>≈ξv .对)(t v 在区间]0[ξ,及][0t ,ξ上分别使⽤连续函数的介值定理(注意,0)0(=v0)(0=t v ,则数值18. 157分别介于两个区间端点处函数值之间),于是有)0(1ξξ,∈,)0(2,ξξ∈,使得157.18)(1=ξv ,157.18)(2=ξv,这表明该运动员在⽐赛中⾄少有两个时刻的速度恰好为18. 157km/h .2.若函数)(x f 在闭区间][b a ,上连续,在开区间),(b a 内可导,且0)(>'x f ,证明⽅程0)(=x f 在开区间),(b a 内⾄多有⼀个实根.证明:采⽤反证法,若⽅程0)(=x f 在开区间),(b a 有两个(或两个以上)不同的实根21x x <,即0)()(21==x f x f ,根据已知函数)(x f 在][21x x ,上满⾜罗尔定理,于是有∈ξ)()(21b a x x ,,?,使得0)(='ξf ,与在开区间),(b a 内0)(>'x f ⽭盾,所以⽅程0)(=x f 在开区间),(b a 内⾄多有⼀个实根.(注:本题结论也适⽤于⽆穷区间) 3.证明⽅程015=-+x x 只有⼀个正根.证明:设1)(4-+=x x x f ()(∞+-∞∈,x ),则014)(4>+='x x f ,根据上题结果,⽅程015=-+x x 在)(∞+-∞,内⾄多有⼀个实根.取闭区间]10[,,函数1)(4-+=x x x f 在]10[,上连续,且01)0(<-=f ,01)1(>=f ,由零点定理,有)10(,∈ξ,使得0)(=ξf ,从⽽⽅程015=-+x x 在)0(∞+,内⾄少有⼀个实根.综上,⽅程015=-+x x 只有⼀个正根,且位于区间)10(,内. 4.若在),(+∞-∞内恒有k x f =')(,证明b kx x f +=)(.证明:(⽅法1)设函数kx x f x F -=)()(,则0)()(≡-'='k x f x F ,根据拉格朗⽇定理的推论)(x F 恒为常数,设C kx x f x F ≡-=)()(,⽤0=x 代⼊,得)0(f C =,记b f =)0(,则b C kx x f x F ==-=)()(,所以b kx x f +=)(.(⽅法2)记b f =)0(,∈?x ),(+∞-∞,若0=x ,则满⾜b kx x f +=)(;若0≠x ,对函数)(t f 以x t t ==,0为端点的闭区间上⽤拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f f x f ξ,即kx b x f =-)(,所以b kx x f +=)(.5.若函数)(x f 在区间)0(∞+,可导,且满⾜0)()(2≡-'x f x f x ,1)1(=f ,证明x x f =)(.证明:设函数xx f x F )()(=(∈x )0(∞+,),则xx x f x f x x x x f x x f x F 2)()(22/)()()(-'=-'=',由0)()(2≡-'x f x f x ,得0)(≡'x F ,根据拉格朗⽇定理的推论)(x F 恒为常数,设C xx f x F ==)()(,⽤1=x 代⼊,且由1)1(=f ,得1=C ,所以1)()(==xx f x F ,即x x f =)(.6.证明下列不等式(1)当0>x 时,证明x x+>1e ;(2)对任何实数x ,证明x x arctan ≥.证明:(1)取函数t t f e )(=(]0[x t ,∈)显然函数)(t f 在区间]0[x ,上满⾜拉格朗⽇定理,则有∈ξ)0(x ,,使得)0)(()0()(-'=-x f f x f ξ,即x xξe 1e =-,所以 x x x+>+=1e 1e ξ.(2)当0=x 时,显然x x arctan ≥.当0≠x 时,取函数t t f arctan )(=,对)(t f 在以x t t ==,0为端点的闭区间上⽤拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f f x f ξ,即21arct an ξ+=xx ,所以x x x <+=21arctan ξ.综上,对任何实数x ,都有x x arctan ≥.7.若函数)(x f 在闭区间[1-,1]上连续,在开区间(1-,1)内可导,M f =)0((其中0>M ),且M x f <')(.在闭区间[1-,1]上证明M x f 2)(<.证明:对∈?x [1-,1],当0=x 时,M M f 2)0(<=,.不等式成⽴.当0≠x 时,根据已知,函数)(t f 在以x t t ==,0为端点的区间上满⾜拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f fx f ξ,即x f M x f )()(ξ'=-,所以,M x f x f +'=)()(ξ,从⽽M M f M x f M x f x f 2)()()()(<+'≤+'≤+'=ξξξ.综上,在闭区间[1-,1]上恒有M x f 2)(<.8.若函数)(x f 在闭区间]0[a ,上连续,在开区间)0(a ,内可导,且0)(=a f ,证明在开区间)0(a ,内⾄少存在⼀点ξ,使得0)()(='+ξξξf f .证明:设函数)()(x xf x F =(∈x ]0[a ,),则0)(0)0(==a F F ,,再根据已知,函数)(x F 在区间],0[a 满⾜罗尔定理,则有∈ξ)0(a ,,使得0)(='ξf .⽽)()()(ξξξξf f f '+=',于是0)()(='+ξξξf f .所以,在开区间)0(a ,内⾄少存在⼀点ξ,使得0)()(='+ξξξf f .习题3—2(A )1.判断下列叙述是否正确?并说明理由(1)洛必达法则是利⽤函数的柯西中值定理得到的,因此不能利⽤洛必达法则直接求数列极限;(2)凡属“00”,“∞∞”型不定式,都可以⽤洛必达法则来求其的极限值;(3)型如””,“”,“”,“”,““0100∞∞-∞∞?∞型的不定式,要想⽤洛必达法则,需先通过变形.⽐如“0?∞”型要变型成为“00”,“∞∞”型,”,”,““00∞-∞””,““01∞∞型要先通过变型,转化为“0?∞”型的不定式,然后再化为基本类型.答:(1)正确.因为数列是离散型变量,对它是不能求导的,要想对数列的“不定式”极限使⽤洛必达法则,⾸先要根据“海涅定理”将数列极限转换为普通函数极限,然后再使⽤洛必达法则.(2)不正确.如0sin 1sinlim 20=→xx x x (00型)、1cos sin lim -=-+∞→x x x x x (∞∞型)、11lim 2=++∞→x x x (∞∞型)都不能⽤洛⽐达法则求得极限值.(3)正确.可参见本节3.其他类型的不定式极限的求法,但是“∞-∞”型通常是直接化为“00”,“∞∞”型. 2.⽤洛必达法则求下列极限:(1)x x x --→e 1ln lim e ;(2)11lim 1--→n m x x x (0≠mn );(3)x x x 5tan 3sin limπ→;(4)2e e cos 1lim 0-+--→x x x x;(5)1sec tan 2lim0-→x x x x ;(6)xxx 3tan tan lim 2/π→;(7)x x x 2cot lim 0→;(8)x x x cot arc lim +∞→;(9))sin 11(lim 0x x x -→;(10)111lim()ln 1x x x →--;(11)xx x tan 0lim +→;(12))1ln(1)(lim x x x ++∞→;(13)21)(cos lim x x x →;(14)nn n ln lim∞→;解:(1)e11/1lim e 1ln lime e -=-=--→→x x x x x .(2)==----→→1111lim 11lim n m x nm x nx mx x x nm.(3)=-?-==→→22)1(535sec 53cos 3lim 5tan 3sin limx x x x x x ππ53-.(4)=+=-=-+--→-→-→x x x x x x x x x x x x e e cos lim e e sin lim 2e e cos 1lim00021.(5)===-=-→→→→xxx x x x x x x x x x x x tan 4lim tan sec 4lim 1sec 2lim 1sec tan 2lim002004. (6) =---=-=?=→→→→x xx x xx x x x x x x x x sin 3sin 3lim cos 3cos lim )cos 3cos 3sin sin (lim 3tan tan lim2/2/2/2/ππππ3.(7)===→→→x x x x x x x x 2sec 21lim 2tan lim 2cot lim 200021.(8)=+=-+-==+∞→+∞→+∞→+∞→22221lim /1)1/(1lim 1/cot arc lim cot arc lim xx x x x x x x x x x x 1.(9)=-=-=-=-=-→→→→→2sin lim 21cos lim sin lim sin sin lim )sin 11( lim 002000xx x x x x x x x x x x x x x x x 0.(10)xx x x x x x x x x x x x /)1(ln /11lim ln )1(ln 1lim )11ln 1(lim 111-+-=---=--→→→=+=-+-=→→2ln 1lim 1ln 1lim11x x x x x x x 21.(11)设xxy tan =,则x x y ln tan ln =,因为0lim /1/1lim /1ln lim ln lim ln tan lim ln lim 0200=-=-====++++++→→→→→→x xxx x x x x x y x x x x x x ,所以, ==+→0tan 0e lim xx x 1.(12)设)1ln(1)(x x y +=,则)1ln(ln 21)1ln(ln ln x xx x y +=+=,因为 21)11(lim 21)1/(1/1lim 21)1ln(ln lim 21ln lim =+=+=+= +∞→+∞→+∞→+∞→x x x x x y x x x x ,所以 ==++∞→21)1ln(1e )(lim x x x e .(13)设21)(cos x x y =,则2cos ln ln x xy =,因为 21cos 2sin lim cos ln lim ln lim 0200-=-==→→→x x x x x y x x x ,所以==-→2 110e )(cos lim 2x x x e1.(14)根据海涅定理,====+∞→+∞→+∞→∞→xxx xx nn x x x n 2lim2/1/1limln limln lim0.3.验证极限xx xx x cos 2sin 2lim -+∞→存在,并说明不能⽤洛必达法则求得.解:=-+=-+=-+∞→∞→0102/)cos 2(1/)(sin 2lim cos 2sin 2limx x x x x x x x x x 2.因为极限xxx x x x x x sin 21cos 2lim )cos 2()sin 2(lim++='-'+∞→∞→不存在,因为此极限不能⽤洛必达法则求得.4.验证极限x x x x sin )/1sin(lim 20→存在,并说明不能⽤洛必达法则求得.解:=?=?=→→→011sin lim sin lim sin )/1sin(lim0020xx x x x x x x x x 0.因为极限xx x x x x x x x cos )/1sin()/1sin(2lim)(sin ])/1sin([lim 020-=''→→不存在,因为此极限不能⽤洛必达法则求得.习题3—2(B )1.⽤洛必达法则求下列极限:(1)311lnarctan 2limx x xx x -+-→;(2)xx x x 30sin arcsin lim -→(3))tan 11(lim 220xx x -→;(4)]e )11[(lim -+∞→xx x x ; (5) 260)sin (lim x x xx →;(6)n n nn b a )2(lim +∞→(00>>b a ,).解:(1)原式30)1ln()1ln(arctan 2limx x x x x -++-=→=--=--+-+=→→)1(34lim 3111112lim 40220x x x x x x x 34-.(2)原式2220220301311lim 31/11lim arcsin lim xx x x x x x x x x x ---=--=-=→→→=-=--=→→22022032/lim 311lim xx x x x x 61-.(3)原式30022220tan lim tan lim tan tan lim xxx x x x x x x x x x x -?+=-=→→→ ==-=-=→→→22022030tan lim 3231sec lim 2tan lim 2x x xx x x x x x x 32.(4)令t x 1=,则原式21010)1ln()1()1(lim e )1(lim tt t t t t t t t tt ++-+=-+→→ =+-=-+-=++-=→→→t t t t t t t t t t t )1ln(lim 2e 21)1ln(1lim e )1ln()1(lim e 002 02 e -.(5)令6)sin (x x x y =,则2sin ln 6ln x x xy =,因为 30200sin cos lim 3)sin cos 2sin /6(lim ln lim xxx x x x x x x x x y x x x -=-?=→→→ 13sin lim 320-=-=→x x x x ,所以==-→160e )sin (lim x x xx e 1.(6)令=n x nn nb a )2(+,则]2ln )[ln(ln -+=n n n b a n x ,再令x t 1=,因为 tb a b a x x t t t xx x n n 2ln )ln(lim ]2ln )[ln(lim ln lim 011-+=-+=→+∞→∞→ ab b a ba b b a a t t t t t ln 2ln ln ln ln lim 0=+=++=→,所以==+∞→abnn nn b a ln e )2(lim ab .2.当0→x 时,若)(e )(2c bx ax x f x ++-=是⽐2x ⾼阶的⽆穷⼩,求常数c b a 、、.解:根据已知,有0)(e lim220=++-→x c bx ax x x ,由分母极限为零,则有分⼦极限也为零,于是01)]([e lim 2x =-=++-→c c bx ax x ,得1=c ,此时02)2(e lim )(e lim 0220=+-=++-→→x b ax x c bx ax x x x x ,再由分⼦极限为零,同样得1=b ,进⽽022122e lim 2)12(e lim )(e lim 00220=-=-=+-=++-→→→a a x ax x c bx ax x x x x x x ,得21=a ,所以1121===c b a ,,时,当0→x 时,)(e )(2c bx ax x f x ++-=是⽐2x ⾼阶的⽆穷⼩.3.若函数)(x f 有⼆阶导数,且2)0(,1)0(,0)0(=''='=f f f ,求极限2)(limxxx f x -→.解:1)0(210)0()(lim 2121)(lim )(lim002=''=-'-'=-'=-→→→f x f x f x x f x x x f x x x .(注:根据题⽬所给条件,不能保证)(x f ''连续,所以只能⽤⼀次洛⽐达法则,再⽤⼆阶导数的分析定义)习题3—3(A )1.判断下列叙述是否正确?并说明理由:(1)只要函数在点0x 有n 阶导数,就⼀定能写出该函数的泰勒多项式.⼀个函数的泰勒多项式永远都不会与这个函数恒等,⼆者相差⼀个不恒为零的余项;(2)⼀个函数在某点附近展开带有拉格朗⽇余项的n 阶泰勒公式是它的n 次泰勒多项式加上与该函数的n 阶导数有关的所谓拉格朗⽇型的余项;(3)在应⽤泰勒公式时,⼀般⽤带拉格朗⽇型余项的泰勒公式⽐较⽅便.答:(1)前者正确,其根据是泰勒多项式的定义;后者不正确.当)(x f 本⾝是⼀个n 次多项式时,有0)(≡x R n ,这时函数的泰勒多项式恒等于这个函数.(2)不正确.拉格朗⽇型的余项与函数)(x f 的1+n 阶导数有关.(3)不正确.利⽤泰勒公式求极限时就要⽤带有⽪亚诺余项的泰勒公式,⼀般在对余项进⾏定量分析时使⽤带拉格朗⽇型余项的泰勒公式,在对余项进⾏定性分析时使⽤带⽪亚诺型余项的泰勒公式.2.写出函数x x f arctan )(=的带有佩亚诺型余项的三阶麦克劳林公式.解:因为211)(x x f +=',)1(2)(2x x x f +-='',322)1(62)(x x x f ++-=''',于是 2)0(0)0(1)0(0)0(-='''=''='=f f f f ,,,,代⼊到)(!3)0(!2)0()0()0()(332x o x f x f x f f x f +'''+'+'+=中,得 )(3arctan 33x o x x x +-=. 3.按1-x 的乘幂形式改写多项式1)(234++++=x x x x x f .解:因为1234)(23+++='x x x x f ,2612)(2++=''x x x f ,624)(+='''x x f ,24)()4(=x f ,更⾼阶导数都为零,于是,,,20)1(10)1(5)1(=''='=f f f 30)1(='''f ,24)0()4(=f ,将其带⼊到)()1(!4)1()1(!3)1()1(!2)1()1)(1()1()(44)4(32x R x f x f x f x f f x f +-+-'''+-'+-'+=中,得 432)1()1(5)1(10)1(105)(-+-+-+-+=x x x x x f(其中5)5(4)1(!5)()(-=x f x R ξ恒为零). 4.将函数1)(+=x xx f 在1x =点展开为带有佩亚诺型余项的三阶泰勒公式.解:因为111)(+-=x x f ,则2)1(1)(+='x x f ,3)1(2)(+-=''x x f ,4)1(6)(+='''x x f ,于是83)1(41)0(41)1(21)1(='''-=''='=f f f f ,,,,将其带⼊到 ))1(()1(!3)1()1(!2)1()1)(1()1()(332-+-'''+-'+-'+=x o x f x f x f f x f 中,得))1((16)1(8)1(41211332-+-+---+=+x o x x x x x . 5.写出函数xx x f e )(=的带有拉格朗⽇型余项的n 阶麦克劳林公式.解:因为)(e )()(k x x f x k +=(1321+=n n k ,,,,,)(参见习题2.5(B )3),于是,k fk =)0()((n k ,,,,210=),=+=++1)1()!1()()(n n n x n x f x R θ1)!1(e )1(++++n x x n x n θθ,将其带⼊到)(!)0(!2)0()0()0()()(2x R x n f x f x f f x f n nn +++'+'+= ,得 132)!1(e )1()!1(!2e +++++-++++=n x n xx n x n n x x x x x θθ )10(<<θ.6.将函数xx f 1)(=按(1)x +的乘幂展开为带有拉格朗⽇型余项的n 阶泰勒公式.解:因为1)(!)1()(+-=k k k xk x f,于是!)1()(k f k -=-(13210+=n n k ,,,,,,), 1211211)1()1()1()1()!1()!1()1()1()!1()()(+++++++++-=+++-=++=n n n n n n n n n x x n n x n f x R ξξξ,将其代⼊到中)()1(!)1()1(!2)1()1)(1()1()()(2x R x n f x f x f f x f n n n ++-+++-'++-'+-= ,得2112)1()1()1()1()1(11++++-++--+-+--=n n n nx x x x x ξ(ξ介于1-与x 之间).习题3—3(B )1.为了修建跨越沙漠的⾼速公路,测量员测量海拔⾼度差时,必须考虑地球是⼀个球体⽽表⾯不是⽔平,从⽽对测量的结果加以修正.(1)如果R 表⽰地球的半径,L 是⾼速公路的长度.证明修正量为R RLR C -=sec . (2)利⽤泰勒公式证明3422452R L R L C +≈.(3)当⾼速公路长100公⾥时,⽐较(1)和(2)中两个修正量(地球半径取6370公⾥).证明:(1)由αR L =,有R L =α,⼜在直⾓三⾓形ODB 中,CR R+=αcos ,于是R C R L+==1s e cs e c α,由此得R RLR C -=sec .(2)先将x x f sec )(=展开为4阶麦克劳林公式,为此求得x x x f tan sec )(=',x x x x f 32s e c t a n s e c )(+='',x x x x x f tan sec 5tan sec )(33+=''',x x x x x x f5234)4(s e c 5t a n s e c 18tan sec )(++=,,,,,,5)0(0)0(1)0(0)0(1)0()4(=='''=''='=f f f f f 于是 )(245211sec 442x R x x x +++=;当1<2245211sec x x x ++≈,取R L x =,得442224521sec RL R L R L ++≈,于是≈-=R R L R C sec 3422452R L R L +.(3)按公式R RLR C -=sec计算,得修正量为785010135.0)1(≈C ,按公式3422452RL R L C +≈计算,得修正量为785009957.0)2(≈C ,它们相差⼤约为000000178.0)2()1(≈-C C .2.写出函数212e)(x x f -=的带佩亚诺型余项的n 2阶麦克劳林公式.解:由)(!!3!21e 32nn tt o n t t t t ++++++= ,令22x t -=,得 )]2(!2)1(!62!42!221[e eee223624222122n n n nn x x x o n x x x x +?-++?-?+?-==--)(]!)!2()1(!!6!!4!!21[e 22642n n n x o n x x x x +-++-+-= ,按规律,由于nx2项的后⼀项为22+n x,所以余项也可以⽤)(12+n xo .3.写出函数x x f 2sin )(=的带⽪亚诺型余项的m 2阶麦克劳林公式.解:x x 2cos 2121sin 2-=)2()!2()2()1(!6)2(!4)2(!2)2(1[2121222642m m mn x o m x x x x +-++-+--=)()!2(2)1(4523122121642m m m m x o x m x x x +-+-+-=-- ,同上⼀题,余项也可以⽤)(12+m x o .(注意:像2、3题⽤变量代换写泰勒公式的⽅法只使⽤于带有佩亚诺型余项的泰勒公式,不适⽤带有拉格朗⽇型余项的泰勒公式,否则得到的余项不再是拉格朗⽇型余项) 4.应⽤三阶泰勒公式计算下列各数的近似值,并估计误差:(1)330;(2)18sin .解:(1)取函数31)(x x f +=,展开为三阶麦克劳林公式,有31154323)1(3108159311)(x xx x x x x f θ+?-+-+=+=,3339/11332730+?=+=,现取9/1=x ,)59049572912711(3303+-+≈,误差为54431089.19310-?R , 10725.3)000085.0001372.0037037.01(3)59049572912711(3303=+-+≈+-+≈;(2)⽤x sin 的麦克劳林公式,取1018π==x ,得53)10(!5)cos()10(!311018sin πθππx +-=,则3)10(!311018sin ππ-≈,误差为5531055.2)10(!51-?≈<≤πR3090.030899.000517.031416.018sin ≈=-≈.5.利⽤泰勒公式求下列极限:(1)642/012/e cos lim 2x x x x x +--→;(2)x x x x x x x sin )1(sin e lim 20+-→.解:(1)原式64636426 642012/)](!32821[)](!62421[lim xx x o x x x x o x x x x ++?-+--+-+-=→ 3607)(360/7lim 6660=+=→x x o x x .(2)原式3233220)](6/)][(2/1[lim x x x x o x x x o x x x --+-+++=→ 31)(3/lim3330=+=→x x o x x .6.设函数)(x f 在区间][b a ,上有⼆阶连续导数,证明:有)(b a ,∈ξ使得)(4)()2(2)()(2ξf a b b a f b f a f ''-=+-+.证明:将函数)(x f y =在20ba x +=点展开为⼀阶泰勒公式,有 20000)(!2)())(()()(x x f x x x f x f x f -''+-'+=η.(η介于x 与0x 之间)分别⽤b x a x ==、代⼊上式,得 201000)(!2)())(()()(x a f x a x f x f a f -''+-'+=η 4)(!2)(2)2()2(21b a f b a b a f b a f -''+-+'++=η(21b a a +<<η),202000)(!2)())(()()(x b f x b x f x f b f -''+-'+=η 4)(!2)(2)2()2(22a b f a b b a f b a f -''+-+'++=η(b b a <<+22η),上两式相加,得]2)()([4)()2(2)()(212ηηf f a b b a f b f a f ''+''-++=+,由)(x f ''连续,根据习题1-7(B )4,得)(2)()(21ξηηf f f ''=''+''()(b a ,∈ξ),于是,)(4)()2(2)()(2ξf a b b a f b f a f ''-++=+,所以,有)(b a ,∈ξ使得)(4)()2(2)()(2ξf a b b a f b f a f ''-=+-+. 7.若函数)(x f 有⼆阶导数,0)(>''x f ,且1)(lim=→xx f x ,⽤泰勒公式证明x x f ≥)(. 证明:由函数)(x f 可导,及1)(lim=→xx f x ,得1)0(0)0(='=f f ,,将)(x f 展开为⼀阶麦克劳林公式,有22)()(x f x x f ξ''+=(ξ介于0与x 之间),由0)(>''x f ,得x x f x x f ≥''+=22)()(ξ.8.设函数)(x f 在区间]20[,上⼆次可微,)2()0(f f =,且M x f ≤'')(,对任何]20[,∈x ,证明M x f ≤')(.证明:对任何∈x ]20[,,将函数)(t f y =在x t =点展开为⼀阶泰勒公式,有 2)(!2)())(()()(x t f x t x f x f t f -''+-'+=ξ.(ξ介于x 与t 之间)分别⽤20==t t 、代⼊上式,得 21!2)()()()0(x f x x f x f f ξ''+'-=,(x <<10ξ)(1) 22)2(!2)()2)(()()2(x f x x f x f f -''+-'+=ξ,(22<<ξx )(2)(2)-(1),并由条件)2()0(f f =,有 ])()2)(([21)(202122x f x f x f ξξ''--''+'=,即])()2)(([41)(2122x f x f x f ξξ''--''-=',所以M x x M x x M x f =+-?≤+-≤'222])2[(4])2[(4)(.习题3—4(A )1.下列叙述是否正确?并按照你的判断说明理由:(1)设函数()f x 在区间[,]a b 上连续,在(,)a b 内可导,那么()f x 在区间[,]a b 上单调增加(减少)的充分必要条件是对任意的(,)x a b ∈,0)(>'x f (0)(<'x f );(2)函数的极⼤值点与极⼩值点都可能不是唯⼀的,并且在其驻点与不可导点处均取得极值;(3)判定极值存在的第⼀充分条件是根据驻点两侧导数的符号来确定该驻点是否为极值点,第⼆充分条件是根据函数在其驻点处⼆阶导数的符号来判定该驻点是否为极值点;(4)在区间I 上连续的函数,其最⼤值点或最⼩值点⼀定是它的极值点.答:(1)不正确.如3x y =在]11[,-上单调增加,⽽032≥='x y .(2)前者正确,后者不正确.驻点与不可导点是取得极值必要条件不是充分条件,如函数3x y =有驻点0=x ,⽽3x y =在0=x 点不取极值;⼜如函数3x y =有不可导点0=x ,⽽3x y =在0=x 点也不取极值.(3)前者不正确,后者正确.第⼀充分条件对连续函数的不可导点也适⽤.(4)不正确.函数的最⼤(⼩)值点可以是闭区间端点,这时的最值点就不是极值点. 2.证明函数x x x f arcsin )(-=在]11[,-上单调减少.解:在开区间)11(,-内,0111)(2≤--='xx f ,且等号只在0=x 点成⽴,所以)(x f 在开区间)11(,-内单调减少,⼜因为函数x x x f arcsin )(-=在区间]11[,-的左、右端点处分别右连续、左连续,所以x x x f arcsin )(-=在]11[,-上单调减少. 3.求下列函数的单调区间和极值:(1)323y x x =-;(2)xx y 12+=;(3)3232x x y +?=;(4)2exy x =;(5)x x y -+=)1ln(;(6))1ln(2-=x y .解:(1)定义域为)(∞+-∞,,)2(3632-=-='x x x x y ,由0='y ,得驻点0=x ,2=x ,函数没有不可导点.单增区间为:)2[]0(∞+-∞,、,,单减区间为:]20[,,极⼤值为:0)0(=y ,极⼩值为:4)2(-=y .(2)定义域为)0()0(∞+-∞,,,221xx y -=',由0='y ,得驻点1±=x ,在定义域内函数没有不可导点.单增区间为:)1[]1(∞+--∞,、,,单减区间为:]10()01[,、,-,极⼤值为:2)1(-=-y ,极⼩值为:2)1(=y .(3)定义域为)(∞+-∞,,2233)1(2xx y ?+=',由0='y ,得驻点1-=x ,不可导点0=x .单增区间为:)1[∞+-,,单减区间为:]1(--∞,,⽆极⼤值,极⼩值为:1)1(-=-y .(4)定义域为)0()0(∞+-∞,,,3)2(e xx y x -=',由0='y ,得驻点2=x ,在定义域内函数没有不可导点.单增区间为:、,)0(-∞)2[∞+,,单减区间为:]20(,,⽆极⼤值,极⼩值为:4/e )2(2=y .(5)定义域为)1(∞+-,,xxy +-='1,由0='y ,得驻点0=x ,在定义域内函数没有不可导点.单增区间为:]01(,-,单减区间为:)0[∞+,,极⼤值为:0)0(=y ,⽆极⼩值.(6)定义域为)1()1(∞+--∞,,,122-='x xy ,在定义域内0≠'y ,且没有不可导点.单增区间为:)1(∞+,,单减区间为:)1(--∞,,既⽆极⼤值,也⽆极⼩值.4.求下列函数在指定区间的最⼤值M 和最⼩值m :(1)163)(24+-=x x x f ,]20[,∈x ;(2)11)(+-=x x x f ,]40[,∈x .解:(1))1(121212)(23-=-='x x x x x f ,由0)(='x f ,得1=x (10-==x x ,都不在)20(,内),⽐较数值25)2(2)1(1)0(=-==f f f ,,,得163)(24+-=x x x f 在。
课后导练基础达标1.小明往下面的靶子上投石子,最容易投中黑色区的是( )答案:B2.一只小狗在如图所示的方砖上走来走去,最终停在条形方砖上的概率是( )A.81 B.97 C.92 D.167 解析:小狗在方砖上走来走去可理解为随机,且停在每块小方砖上是等可能的, 所以μΩ=9,μA =2, ∴P=92. 答案:C3.如图,假设你在圆上随机撒一粒黄豆,则黄豆落在阴影部分的概率为( )A.π21 B.π1 C.π2 D.π3 解:设圆的半径为1,则S 圆=π,S 阴影=21×1×1=21,∴P=π21=圆阴影S S . 答案:A4.在线段[0,3]上任取一点,则此点坐标不小于2的概率是( ) A.31 B.21 C.32 D.97 答案:A5.取一根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是( ) A.21 B.31 C.41D.不确定 解析:从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,其基本事件有无限多个,显然不能用古典概型计算,可考虑运用几何概型计算.如图,记剪得两段绳长都不小于1 m 为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31,所以事件A 发生的概率P (A )=31.(本题在后面还有其他解法) 答案:B6.已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上车的概率是( ) A.101 B.91 C.111 D.81解析:准确找出“两长度”,套用相应公式;试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=110. 答案:A7.在区间[-1,1]上随机地任取两个数x 、y ,则满足x 2+y 2<41的概率是( ) A.16π B.8π C.4π D.2π 解:由条件知:-1≤x≤1,-1≤y≤1,∴点(x ,y)落在边长为2的正方形内部及边界上,即Ω={(x,y)|-1≤x≤1,-1≤y≤1},∴μΩ=4. 记事件A={(x,y)|x 2+y 2<41},则μa =4π,∴P(A)=16πμμ=ΩA . 答案:A8.如下图,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是___________.解析:“随机”才具有“等可能性”,属于几何概型;由几何概型的计算公式得P=94=大正方形的面积小正方形的面积.答案:94 9.设有一均匀的陀螺,其圆周的一半上均匀地刻上区间[0,1]上的诸数字,另一半上均匀地刻上区间[1,3]上的数字,旋转它,当它停下时,其圆周上触及桌面的刻度位于[23,21]上的概率等于____________.解析:由题意,设事件A=“陀螺停止时,其圆周上触及桌面的刻度位于[23,21]”,它是几何概型,P (A )=83]3,1[]23,1[21]1,0[]1,21[21=∙+∙. 答案:83 10.如下图,在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解析:记F ={作射线OC ,使∠AOC 和∠BOC 都不小于30°},作射线OD 、OE 使∠AOD=30°,∠AOE=60°.当OC 在∠DOE 内时,使∠AOC 和∠BOC 都不小于30°,则P(F)=319030=. 综合运用11.如右图,在直角坐标系内,射线OT 落在60°的终边上,任作一条射线OA ,则射线落在∠xOT 内的概率是____________.解析:根据射线OA 的任意性找出试验的全部结果构成的区域长度;记事件A 为“射线OA 落在∠xOT 内”,因为∠xOT=60°,周角为360°,故P (A )=6136060=︒︒. 答案:61 12.如图,在半径为1的半圆内,放置一个边长为21的正方形ABCD ,向半圆内任投一点,该点落在正方形内的概率为___________.解析:几何概型问题的概率与形状、位置无关,本题只与面积有关;S 正=41)21(2=,S 半圆=21212ππ=⨯,由几何概型的计算公式得P=ππ21241==半圆正S S . 答案:π2113.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色、黑色、蓝色、红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少? 解析:在该试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.如图所示,记“射中黄心”为事件B ,由于中靶点随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率为P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.即射中黄心的概率是0.01.拓展探究14.在区间[0,1]上任取三个实数x,y,z ,事件A={(x,y,z)|x 2+y 2+z 2<1}. (1)构造出此随机事件对应的几何图形; (2)利用该图形求事件A 的概率. 解析:(1)如图所示,构造单位正方体为事件空间Ω,以O 为球心,以1为半径在第一卦限的81球即为事件A.(2)P (A )=611348133ππ=⨯⨯⨯.。
编写人 审稿人 201 年 月 日XX 中学高一数学校本作业(12)几何概型班级:__________ 姓名:__________ 成绩:__________1(2012湖北文10)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )(A)112-π (B)1π (C )21-π (D )2π2(2012北京文3)与(2012·北京高考理科·T2)相同设不等式组表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(A )4π (B )22π- (C )6π (D )44π-3(2012辽宁文11)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为( ) (A)16 (B)13 (C)23 (D)454(2012辽宁理10)在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( ) (A) 16 (B) 13 (C) 23 (D) 455(2013陕西理5)如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是 ( )A . 14π- B. 12π- C . 22π- D. 4π 6 (2013湖南文9).已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为21,则AD AB=( ) A.12 B.14C.2D.47.(2012湖北理8)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
1.设复数z 满足(1-i)z =2i ,则z =( )A .-1+iB .-1-iC .1+iD .1-i解析:选A.由题意得z =2i 1-i=2i·(1+i )2=-1+i. 2.若复数z =2i +21+i,其中i 是虚数单位,则复数z 的模为( ) A.22B.2 C . 3 D .2 解析:选B.由题意,得z =2i +21+i =2i +2(1-i )(1+i )(1-i )=1+i ,复数z 的模|z |=12+12= 2. 3复数z =(1+2i )21-i对应的点在复平面的第( )象限. A .四 B .三 C .二 D .一解析:选C .z =(1+2i )21-i =-3+4i 1-i=(-3+4i )(1+i )(1-i )(1+i )=-7+i 2=-72+12i , 故z 对应的点在复平面的第二象限.4.i 是虚数单位,复数7+i 3+4i=( ) A .1-i B .-1+i C .1725+3125i D .-177+257i 解析:选A.7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i )=25-25i 25=1-i ,故选A. 5.下面是关于复数z =2-1+i的四个命题,其中真命题为( ) p 1:|z |=2;p 2:z 2=2i ;p 3:z 的共轭复数为1+i ;p 4:z 的虚部为-1.A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 4解析:选C .z =2-1+i =2(-1-i )(-1+i )(-1-i )=-2-2i 2=-1-i , 所以|z |=2,z 的虚部为-1,所以p 1错误,p 4正确.z 2=(-1-i)2=(1+i)2=2i ,所以p 2正确. z 的共轭复数为z =-1+i ,所以p 3错误.所以选C .6.i 是虚数单位,-5+10i 3+4i=________(用a +b i 的形式表示,其中a ,b ∈R ). 解析:-5+10i 3+4i =(-5+10i )(3-4i )(3+4i )(3-4i )=-15+20i +30i +409+16=1+2i. 答案:1+2i7.已知复数2-a i i=1-b i ,其中a ,b ∈R ,i 是虚数单位,则|a +b i|=________. 解析:由2-a i i=1-b i ,得 2-a i =i(1-b i)=i -b i 2=b +i ,所以b =2,-a =1,即a =-1,b =2,所以|a +b i|=|-1+2i|= 5. 答案: 58.设z 1=a +2i ,z 2=3-4i ,且z 1z 2为纯虚数,则实数a 的值为________. 解析:设z 1z 2=b i(b ∈R 且b ≠0), 所以z 1=b i·z 2,即a +2i =b i(3-4i)=4b +3b i.所以⎩⎪⎨⎪⎧a =4b ,2=3b ,所以a =83. 答案:839.计算:(1)(1-i)(-12+32i)(1+i);(2)2+3i 3-2i;(3)(2-i)2. 解:(1)法一:(1-i)(-12+32i)(1+i) =(-12+32i +12i -32i 2)(1+i) =(3-12+3+12i)(1+i) =3-12+3+12i +3-12i +3+12i 2 =-1+3i.法二:原式=(1-i)(1+i)(-12+32i) =(1-i 2)(-12+32i) =2(-12+32i) =-1+3i.(2)2+3i 3-2i =(2+3i )(3+2i )(3-2i )(3+2i )=(2+3i )(3+2i )(3)2+(2)2=6+2i +3i -65=5i 5=i. (3)(2-i)2=(2-i)(2-i)=4-4i +i 2=3-4i.10.已知复数z =3+b i(b ∈R ),且(1+3i)·z 为纯虚数.(1)求复数z .(2)若w =z 2+i,求复数w 的模|w |. 解:(1)(1+3i)·(3+b i)=(3-3b )+(9+b )i.因为(1+3i)·z 为纯虚数,所以3-3b =0,且9+b ≠0,所以b =1,所以z =3+i.(2)w =3+i 2+i =(3+i )·(2-i )(2+i )·(2-i )=7-i 5=75-15i , 所以|w |= (75)2+(-15)2 = 2.[高考水平训练]1.已知复数z =1-i ,则z 2-2z z -1=( ) A .2i B .-2i C .2 D .-2解析:选B.法一:因为z =1-i ,所以z 2-2z z -1=(1-i )2-2(1-i )1-i -1=-2-i=-2i. 法二:由已知得z -1=-i ,从而z 2-2z z -1=(z -1)2-1z -1 =(-i )2-1-i=2i =-2i. 2.若复数z 1=-1+a i ,z 2=b -3i ,a ,b ∈R ,且z 1+z 2与z 1·z 2均为实数,则z 1z 2=________. 解析:因为z 1=-1+a i ,z 2=b -3i ,所以z 1+z 2=b -1+(a -3)i ,z 1·z 2=3a -b +(3+ab )i.因为z 1+z 2与z 1·z 2均为实数, 所以⎩⎨⎧ a -3=0,3+ab =0,解得⎩⎨⎧a =3,b =-1. 所以z 1=-1+3i ,z 2=-1-3i ,所以z 1z 2=-1+3i -1-3i =(-1+3i )2(-1-3i )(-1+3i )=-12-32i. 答案:-12-32i 3.已知z -1z +1为纯虚数,且(z +1)(z +1)=|z |2,求复数z . 解:由(z +1)(z +1)=|z |2⇒z +z =-1.①由z -1z +1为纯虚数, 得z -1z +1+z -1z +1=0⇒z ·z -1=0.② 设z =a +b i ,代入①②,得a =-12,a 2+b 2=1.∴a =-12,b =±32. ∴z =-12±32i. 4.已知1+i 是方程x 2+bx +c =0的一个根(b ,c 为实数).(1)求b ,c 的值;(2)试判断1-i 是否为方程的根.解:(1)∵1+i 是方程x 2+bx +c =0的根,∴(1+i)2+b (1+i)+c =0,即(b +c )+(2+b )i =0,∴⎩⎪⎨⎪⎧ b +c =0,2+b =0,∴⎩⎪⎨⎪⎧ b =-2,c =2.(2)由(1)知方程为x 2-2x +2=0,把1-i 代入方程左边得x 2-2x +2=(1-i)2-2(1-i)+2=0,显然方程成立.∴1-i 也是方程的一个根.。
第三章 线性方程组习题解答1.用消元法解下列方程组:⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++12343212231453543215432154321543214321x x x x x x x x x x x x x x x x x x x x x x x x ⑵⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x⑶⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x ⑷⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ⑸⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+++43212523223124321432143214321x x x x x x x x x x x x x x x x ⑹⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-++=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x 解:⑴对它的增广矩阵作初等行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------00101000000000020*********1001001110000000000200212300101201001110007770005750212300104531213410215470213450212300104531111121311141311121112231104531即⎪⎪⎩⎪⎪⎨⎧=+-=--=+=-0022214235441x x x x x x x ,得⎪⎪⎩⎪⎪⎨⎧--====+=k x x k x x k x 220153421 k 为任意常数 ⑵无解⑶0,6,3,84321===-=x x x x⑷任意43432431,,17201719,1713173x x x x x x x x -=-=⑸无解 ⑹651,671,651434241x x x x x x +=-=+=2.把向量β表成4321αααα,,,的线性组合:⑴()()()()()1,1-1-11-1,1-11-1-,1,11,1,1,111,2,14321,,,,,,,,,,=====ααααβ ⑵()()()()()1-1-1,00,0,1,11,3,1,21,0,1,11,0,0,04321,,,,,,=====ααααβ 解:⑴令44332211ααααβk k k k +++=得方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++,1,1,2,14321432143214321k k k k k k k k k k k k k k k k 解得,41,41,41,454321-=-===k k k k 所以432141414145ααααβ--+=⑵仿上,可得31-ααβ=3.证明:如果向量组r ααα,,, 21线性无关,而βααα,21r ,,, 线性相关,则向量β可由r ααα,,, 21线性表出。
高中数学必修5第三章不等式练习题含答案解析人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分)1.不等式x2≥2x的解集是( )A.{x|x≥2} B.{x|x≤2} C.{x|0≤x≤2} D.{x|x≤0或x≥2}2.下列说法正确的是( )A.a>b⇒ac2>bc2 B.a>b⇒a2>b2 C.a>b⇒a3>b3 D.a2>b2⇒a>b3.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A.(-3,4) B.(-3,-4) C.(0,-3) D.(-3,2)x-14的解集是( ) x+2A.{x|x<-2} B.{x|-2<x<1} C.{x|x<1} D.{x|x∈R}5.设M=2a(a-2)+3,N=(a-1)(a-3),a∈R,则有( )A.M>N B.M≥N C.M<N D.M≤N2x-y+2≥0,.不等式组+y-2≤0,A.三角形表示的平面区域的形状为( ) B.平行四边形C.梯形D.正方形+y-3≥0,7.设z=x-y,式中变量x和y满足条件则z的最小值为-2y≥0,A.1 B.-1 C.3 D.-3 2m8.若关于x的函数y=x+(0,+∞)的值恒大于4,则( ) xA.m>2 B.m<-2或m>2 C.-2<m<2 D.m<-29.已知定义域在实数集R上的函数y=f(x)不恒为零,同时满足f(x+y)=f(x)·f(y),且当x>0时,f(x)>1,那么当x<0时,一定有( )A.f(x)<-1 B.-1<f(x)<0 C.f(x)>1 D.0<f(x)<1x+210.若,化简y=25-30x++-3的结果为( ) 3x-5A.y=-4x B.y=2-x C.y=3x-4 D.y=5-x二、填空题(本大题共5小题,每小题5分,共25分)111.对于x∈R,式子k的取值范围是_________.kx+kx+11112.不等式logx2-2x-15)>log(x+13)的解集是_________.22x-213.函数f(x)=lg4-x的定义域是__________.x-314.x≥0,y≥0,x+y≤4所围成的平面区域的周长是________.15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x的最小值是________.三、解答题(本大题共6小题,共75分)ee16.(12分)已知a>b>0,c<d<0,e<0,比较的大小.a-cb-d17.(12分)解下列不等式:2(1)-x2+2x->0;(2)9x2-6x+1≥0. 318.(12分)已知m∈R且m<-2,试解关于x的不等式:(m+3)x2-(2m+3)x+m>0.+y-4≤0,19.(12分)已知非负实数x,y满足+y-(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z=x+3y的最大值.20.(13分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元) 1均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足f(t)=20t-2 10|(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21.(14分)某工厂有一段旧墙长14 m,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m2的厂房,工程条件是:(1)建1 m新墙的费用为a元;(2)修1 m旧墙的费用为a 4a(3)拆去1 m的旧墙,用可得的建材建1 m元.2经讨论有两种方案:①利用旧墙x m(0<x<14)为矩形一边;②矩形厂房利用旧墙的一面长x≥14.试比较①②两种方案哪个更好.必修5第三章《不等式》单元测试题1.解析:原不等式化为x2-2x≥0,则x≤0或x≥2.答案:D2.解析:A中,当c=0时,ac2=bc2,所以A不正确;B中,当a=0>b=-1时,a2=0<b2=1,所以B不正确;D中,当(-2)2>(-1)2时,-2<-1,所以D不正确.很明显C正确.答案:C3.解析:当x=y=0时,3x+2y+5=5>0,所以原点一侧的平面区域对应的不等式是3x+2y+5>0,可以验证,仅有点(-3,4)的坐标满足3x+2y+5>0.答案:Ax-1x-1-34.解析:>1⇔-1>0⇔⇔x+2<0⇔x<-2. x+2x+2x+2答案:A5.解析:M-N=2a(a-2)+3-(a-1)(a-3)=a2≥0,所以M≥N.答案:B6.解析:在平面直角坐标系中,画出不等式组表示的平面区域,如下图中的阴影部分.则平面区域是△ABC.答案:A+y-3=0,7.解析:画出可行域如下图中的阴影部分所示.解方程组得A(2,1).由-2y=图知,当直线y=x-z过A时,-z最大,即z最小,则z的最小值为2-1=1.m28.解析:∵x+2|m|,∴2|m|>4. x∴m>2或m<-2.答案:B9.解析:令x=y=0得f(0)=f2(0),若f(0)=0,则f(x)=0·f(x)=0与题设矛盾.∴f(0)=1.又令y=-x,∴f(0)=f(x)·f(-x),1故f(x)=-∵x>0时,f(x)>1,∴x<0时,0<f(x)<1,故选D.答案:Dx+2510.解析:∵,∴-2<x<.而y=25-30x++-3=|3x-5|-|x+33x-5 2|-3=5-3x-x-2-3=-4x.∴选A.答案:A二、填空题(填空题的答案与试题不符)111.对于x∈R,式子k的取值范围是__________.kx+kx+11解析:式子kx2+kx+1>0恒成立.当k≠0时,k>0且Δ=k2kx+kx+1-4k<0,∴0<k<4;而k=0时,kx2+kx+1=1>0恒成立,故0≤k<4,选C. 答案:C?x-212.函数f(x)=+4-x的定义域是__________.x-3解析:求原函数定义域等价于解不等式组x-2≥0,-3≠0,-x>0,答案:A 解得2≤x<3或3<x<4.∴定义域为[2,3)∪(3,4).答案:[2,3)∪(3,4)13.x≥0,y≥0,x+y≤4所围成的平面区域的周长是________.解析:如下图中阴影部分所示,围成的平面区域是Rt△OAB.可求得A(4,0),B(0,4),则OA=OB=4,AB=42,所以Rt△OAB的周长是4+4+2=8+4答案:8+42+,214.已知函数f(x)=x-2x,则满足条件的点(x,y)所形成区域的面积-为__________.解析:化简原不等式组-+-,-+y-,所表示的区域如右图所示,阴影部分面积为半圆面积.答案:π15.(2010·浙江高考)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x的最小值是________.解析:由已知条件可得,七月份销售额为500×(1+x%),八月份销售额为500×(1+x%)2,一月份至十月份的销售总额为3860+500+2[500(1+x%)+500(1+x%)2],可列出不等式为11666t+-≥0.4360+1000[(1+x%)+(1+x%)2]≥7000.令1+x%=t,则t2+t-≥0,即11又∵t+0,566∴t≥,∴1+x%≥,55∴x%≥0.2,∴x≥20.故x的最小值是20.答案:20三、解答题(本大题共6小题,共75分)ee16.(12分)已知a>b>0,c<d<0,e<0,比较与a-cb-d----+-解:==e. a-cb---d--∵a>b>0,c<d<0,∴a-c>0,b-d>0,b-a<0,c-d<0.eeee又e<0,∴->0.∴>a-cb-da-cb-d17.(12分)解下列不等式:2(1)-x2+2x->0;3(2)9x2-6x+1≥0.22解:(1)-x2+2x-⇔x2-2x⇔3x2-6x+2<0. 3333Δ=12>0,且方程3x2-6x+2=0的两根为x1=1-x2=1,3333∴原不等式解集为{x|1-<x<1+.3322(2)9x-6x+1≥0⇔(3x-1)≥0.∴x∈R.∴不等式解集为R.18.(12分)已知m∈R且m<-2,试解关于x的不等式:(m+3)x2-(2m+3)x+m>0. 解:当m=-3时,不等式变成3x-3>0,得x>1;当-3<m<-2时,不等式变成(x-1)[(m+3)xm-m]>0,得x>1或x<;m+3m当m<-3时,得1<x<m+3综上,当m=-3时,原不等式的解集为(1,+∞);当m-3<m<-2时,原不等式的解集为-∞,m+∪(1,+∞);当m<-3时,原不等式m的解集为,m++y-4≤0,19.(12分)已知非负实数x,y满足+y-(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z=x+3y的最大值.解:(1)由x,y取非负实数,根据线性约束条件作出可行域,如下图所示阴影部分.(2)作出直线l:x+3y=0,将直线l向上平移至l1与y轴的交点M位置时,此时可行域内M点与直线l的距离最大,而直线x+y-3=0与y轴交于点M(0,3).∴zmax=0+3×3=9.20.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近1似满足f(t)=20-t-10|(元).2(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.解:(1)y=g(t)·f(t)1=(80-2t)·(20-|t-10|) 2=(40-t)(40-|t-10|)+-,0≤t<10,=--,(2)当0≤t<10时,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10≤t≤20时,y的取值范围是[600,1200],在t=20时,y取得最小值为600.21.(14分)某工厂有一段旧墙长14 m,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m2的厂房,工程条件是:(1)建1 m新墙的费用为a元;a(2)修1 m元;4a(3)拆去1 m的旧墙,用可得的建材建1 m元.2经讨论有两种方案:①利用旧墙x m(0<x<14)为矩形一边;②矩形厂房利用旧墙的一面长x≥14.试比较①②两种方案哪个更好.ax解:方案①:修旧墙费用为元),4a拆旧墙造新墙费用为(14-x)(元),22×126其余新墙费用为(2x+-14)a(元),x2×126axax36则总费用为y=(14-x)+(2x+-14)a=7a-1)(0<x<14),42x4xx36∵2=6,4x4xx36∴当且仅当x=12时,ymin=35a,4x方案②:a7a利用旧墙费用为14×=元),42252建新墙费用为(2x-14)a(元),x7a25212621则总费用为y=(2x+-14)a=2a(x+-(x≥14),2xx2126可以证明函数x+在[14,+∞)上为增函数,x∴当x=14时,ymin=35.5a.∴采用方案①更好些.。
3.1.1分数指数幂第1课时根式学习目标 1.理解n次实数方根、n次根式的概念.2.正确运用根式运算性质化简、求值.3.体会分类讨论思想、符号化思想的作用.知识点一n次实数方根,n次根式思考若x2=3,这样的x有几个?x叫做3的什么?怎么表示?答案这样的x有2个,它们都称为3的平方根,记作±3.梳理(1)n次实数方根的概念(2)根式的概念式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数. 知识点二 根式的性质思考 我们已经知道,若x 2=3,则x =±3,那么(3)2等于什么?32呢?(-3)2呢? 答案 把x =3代入方程x 2=3,有(3)2=3; 32=9,9代表9的正的平方根即3. (-3)2=9=3. 梳理 根式的性质(1)n0=0(n ∈N *,且n >1); (2)(na )n =a (n ∈N *,且n >1); (3)na n =a (n 为大于1的奇数); (4)na n=|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)(n 为大于1的偶数).类型一 根式的意义例1 求使等式(a -3)(a 2-9)=(3-a )a +3成立的实数a 的取值范围. 解(a -3)(a 2-9)=(a -3)2(a +3)=|a -3|a +3,要使|a -3|a +3=(3-a )a +3成立,需⎩⎪⎨⎪⎧a -3≤0,a +3≥0,解得a ∈[-3,3]. 反思与感悟 对于na ,当n 为偶数时,要注意两点 (1)只有a ≥0才有意义.(2)只要n a 有意义,na 必不为负.跟踪训练1 若a 2-2a +1=a -1,求a 的取值范围. 解 ∵a 2-2a +1=|a -1|=a -1, ∴a -1≥0,∴a ≥1.类型二 利用根式的性质化简或求值 例2 化简: (1)4(3-π)4; (2)(a -b )2(a >b );(3)(a -1)2+(1-a )2+3(1-a )3. 解 (1)4(3-π)4=|3-π|=π-3. (2)(a -b )2=|a -b |=a -b .(3)由题意知a -1≥0,即a ≥1.原式=a -1+|1-a |+1-a =a -1+a -1+1-a =a -1. 反思与感悟 n 为奇数时⎝⎛⎭⎫n a n =n a n =a ,a 为任意实数均可;n 为偶数且a ≥0时,⎝⎛⎭⎫n a n 才有意义,且⎝⎛⎭⎫n a n =a ;而a 为任意实数n a n 均有意义,且n a n =|a |. 跟踪训练2 求下列各式的值. (1)7(-2)7; (2)4(3a -3)4(a ≤1); (3)3a 3+4(1-a )4. 解 (1)7(-2)7=-2.(2)4(3a -3)4=|3a -3|=3|a -1|=3-3a . (3)3a 3+4(1-a )4=a +|1-a |=⎩⎪⎨⎪⎧1,a ≤1,2a -1,a >1.类型三 有限制条件的根式的化简例3 设-3<x <3,求x 2-2x +1-x 2+6x +9的值. 解 原式=(x -1)2-(x +3)2=|x -1|-|x +3|, ∵-3<x <3, ∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.引申探究例3中,若将“-3<x <3”变为“x ≤-3”,结果又是什么? 解 原式=(x -1)2-(x +3)2=|x -1|-|x +3|. ∵x ≤-3,∴x -1<0,x +3≤0, ∴原式=-(x -1)+(x +3)=4.反思与感悟 当n 为偶数时,na n 先化为|a |,再根据a 的正负去绝对值符号. 跟踪训练3 已知x ∈[1,2],化简(4x -1)4+6(x 2-4x +4)3=________. 答案 1解析 ∵x ∈[1,2],∴x -1≥0,x -2≤0, ∴(4x -1)4+6(x 2-4x +4)3 =x -1+6(x -2)6 =x -1-(x -2) =1.1.已知x 5=6,则x 等于________. 答案562.m 是实数,则下列式子中可能没有意义的是________. ①4m 2;②3m ;③6m ;④5-m . 答案 ③3.(42)4运算的结果是________. 答案 24.3-8的值是________. 答案 -25.化简(1-2x )2(2x >1)的结果是________. 答案 2x -11.根式的概念:如果x n =a ,那么x 叫做a 的n 次实数方根,其中n >1,且n ∈N *.n 为奇数时,x =n a ,n 为偶数时,x =±na (a >0);负数没有偶次方根,0的任何次方根都是0.2.掌握两个公式:(1)(na )n=a ;(2)n 为奇数,n a n =a ,n 为偶数,n a n=|a |=⎩⎪⎨⎪⎧a , a ≥0,-a ,a <0.3.一个数到底有没有n 次实数方根,我们一定要先考虑被开方数到底是正数还是负数,还要分清n 为奇数还是偶数这两种情况.课时作业一、填空题1.已知m 10=2,则m =________. 答案 ±102解析 ∵m 10=2,∴m 是2的10次方根.又∵10是偶数,∴2的10次方根有两个,且互为相反数. ∴m =±102. 2.给出下列各式:①na n=a ;②a a =34a (a >0);③3-3=6(-3)2. 其中正确的为________. 答案 ② 解析 ①na n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |,n 为偶数,∴①错;②a a =(a a )12=(aa 12)12=(a 32)12=a 34,∴②正确;③3-3=-33,6(-3)2=632=33,∴③错. 3.化简3-8125的值是________. 答案 -25解析3-8125=3(-25)3=-25. 4.化简(e -1+e )2-4等于________. 答案 e -e -1解析(e -1+e )2-4=e -2+2e -1e +e 2-4=e -2-2+e 2=(e -1-e )2 =|e -1-e|=e -e -1.5.若2<a <3,化简(2-a )2+4(3-a )4的结果是________.答案 1解析 ∵2<a <3,∴a -2>0,a -3<0,∴(2-a )2+4(3-a )4=|2-a |+|3-a |=a -2+3-a =1. 6.5-26的平方根是________. 答案 ±(3-2)解析 ±5-26=±3-26+2=±(3-2)2 =±(3-2).7.化简(π-4)2+3(π-4)3的结果为________. 答案 0解析 原式=|π-4|+π-4=4-π+π-4=0. 8.若x <0,则|x |-x 2+x 2|x |=________.答案 1解析 ∵x <0,∴原式=-x -(-x )+-x-x=-x +x +1=1. 9.3-223+22=________.答案 3-2 2 解析 方法一3-223+22=(2-1)2(2+1)2=2-12+1=(2-1)2(2+1)(2-1)=3-2 2. 方法二 3-223+22=(3-22)2(3+22)(3-22)=3-2 2.10.把a-1a根号外的a 移到根号内等于________. 答案 --a 解析 要使-1a有意义,需a <0. ∴a -1a=-|a |-1a=-|a |2·(-1a)=--a .二、解答题11.求3(-6)3+4(5-4)4+3(5-4)3的值. 解 ∵3(-6)3=-6, 4(5-4)4=|5-4|=4-5, 3(5-4)3=5-4,∴原式=-6+4-5+5-4=-6.12.设f (x )=x 2-4,若0<a ≤1,求f (a +1a ).解 f (a +1a )=(a +1a)2-4=a 2+1a2-2=(a -1a )2=|a -1a|,因为0<a ≤1,所以a ≤1a ,故f (a +1a )=1a-a .13.化简x 2-2xy +y 2+7(y -x )7. 解 原式=(x -y )2+y -x =|x -y |+y -x . 当x ≥y 时,原式=x -y +y -x =0; 当x <y 时,原式=y -x +y -x =2(y -x ).∴原式=⎩⎪⎨⎪⎧0,x ≥y ,2(y -x ),x <y .三、探究与拓展 14.化简(1-a )·41(a -1)3=________. 答案 -4a -1解析 要使函数有意义需a -1>0. (1-a )41(a -1)3=(1-a )(a -1)-34 =-(a -1)(a -1)-34=-4a -1.15.计算: (1)614-3338+30.125;(2)3(-8)3+4(3-2)4-3(2-3)3. 解 (1)原式=254-3278+318=52-32+12=32. (2)原式=-8+|3-2|-(2-3) =-8+2-3-2+ 3 =-8.。
第三章 3.3 3.3.3基础巩固一、选择题1.已知△ABC 的三个顶点坐标分别为A (2,6),B (-4,3),C (2,-3),则点A 到BC 边的距离为( )A .92B .922C .255D .4 3[答案] B[解析] BC 边所在直线的方程为y -3-3-3=x +42+4,即x +y +1=0;则d =|2×1+6×1+1|2=922.2.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A .4 B .21313 C .52613D .72010[答案] D[解析] 3x +y -3=0变形为6x +2y -6=0,可知m =2,则d =|1-(-6)|62+22=71020.3.若点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为( ) A .79B .-13C .-79或-13D .79或13[答案] C[解析] 由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.4.若点P 在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)[答案] C[解析] 设点P 的坐标为(x 0,y 0),则有⎩⎨⎧3x 0+y 0-5=0|x 0-y 0-1|2=2,解得⎩⎪⎨⎪⎧ x 0=1y 0=2或⎩⎪⎨⎪⎧x 0=2y 0=-1.5.与直线2x +y +1=0的距离为55的直线方程为( ) A .2x +y =0B .2x +y -2=0C .2x +y =0或2x +y -2=0D .2x +y =0或2x +y +2=0[答案] D[解析] 根据题意可设所求直线方程为2x +y +C =0(C ≠1),因为两直线间的距离等于55,所以|C -1|22+12=55,解得C =0或C =2,所以所求直线方程为2x +y =0或2x +y +2=0.故选D .6.(2013·广东改编)直线l 垂直于直线y =x +1,原点O 到l 的距离为1,且l 与y 轴正半轴有交点,则直线l 的方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0[答案] A[分析] 所求直线l 与直线y =x +1垂直,可以直接设直线l 的方程为y =-x +b ,与y 轴正半轴有交点,确定截距范围,再利用原点到直线的距离等于1求参数,得直线方程.[解析] 因为直线l 与直线y =x +1垂直,所以直接设直线l 的方程为y =-x +b ,又l 与y 轴正半轴有交点,知b >0,即x +y -b =0(b >0)的距离|0+0-b |12+12=1,求得b =2(b =-2舍去),所以所求直线l 的方程为x +y -2=0.二、填空题7.两条直线l 1:3x +4y +1=0和l 2:5x +12y -1=0相交,则其顶点的角平分线所在直线的方程为_________.[答案] 7x -4y +9=0,8x +14y +1=0[解析] 设P (x ,y )是所求直线上的任意一点,则点P 到l 1,l 2的距离相等,即|3x +4y +1|32+42=|5x +12y -1|52+122,整理,得所求直线的方程为7x -4y +9=0,8x +14y +1=0.8.过点A (-3,1)的所有直线中,与原点距离最远的直线方程是_________. [答案] 3x -y +10=0[解析] 当原点与点A 的连线与过点A 的直线垂直时,距离最大.∵k OA =-13,∴所求直线的方程为y -1=3(x +3),即3x -y +10=0.三、解答题9.已知正方形的中心为直线2x -y +2=0和x +y +1=0的交点,其一边所在直线的方程为x +3y -5=0,求其它三边的方程.[解析] 由⎩⎪⎨⎪⎧ 2x -y +2=0,x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0,即该正方形的中心为(-1,0).所求正方形相邻两边方程3x -y +p =0和x +3y +q =0. ∵中心(-1,0)到四边距离相等, ∴|-3+p |10=610,|-1+q |10=610,解得p 1=-3,p 2=9和q 1=-5,q 2=7,∴所求方程为3x -y -3=0,3x -y +9=0,x +3y +7=0.10.求经过点P (1,2)的直线,且使A (2,3),B (0,-5)到它的距离相等的直线方程. [分析] 解答本题可先设出过点P 的点斜式方程,注意斜率不存在的情况,要分情况讨论,然后再利用已知条件求出斜率,进而写出直线方程.另外,本题也可利用平面几何知识,先判断直线l 与直线AB 的位置关系,再求l 方程.事实上,l ∥AB 或l 过AB 中点时,都满足题目的要求.[解析] 方法1:当直线斜率不存在时,即x =1,显然符合题意,当直线斜率存在时,设所求直线的斜率为k ,即直线方程为y -2=k (x -1),由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0.方法2:由平面几何知识知l ∥AB 或l 过AB 中点. ∵k AB =4,若l ∥AB ,则l 的方程为4x -y -2=0. 若l 过AB 中点(1,-1),则直线方程为x =1, ∴所求直线方程为x =1或4x -y -2=0.规律总结:针对这个类型的题目常用的方法是待定系数法,即先根据题意设出所求方程,然后求出方程中有关的参量.有时也可利用平面几何知识先判断直线l 的特征,然后由已知直接求出直线l 的方程.能力提升一、选择题1.P ,Q 分别为3x +4y -12=0与6x +8y +6=0上任一点,则|PQ |的最小值为( ) A .95B .185C .3D .6[答案] C[解析] |PQ |的最小值是这两条平行线间的距离.在直线3x +4y -12=0上取点(4,0),然后利用点到直线的距离公式得|PQ |的最小值为3.2.过两直线x -3y +1=0和3x +y -3=0的交点,并与原点的距离等于1的直线共有( )A .0条B .1条C .2条D .3条 [答案] B[解析] 联立方程组⎩⎪⎨⎪⎧x -3y +1=0,3x +y -3=0,解得⎩⎨⎧x =12,y =32,即交点坐标为(12,32),它到原点的距离恰好等于1,故满足条件的直线共有1条.3.到两条直线l 1:3x -4y +5=0与l 2:5x -12y +13=0的距离相等的点P (x ,y )必定满足方程( )A .x -4y +4=0B .7x +4y =0C .x -4y +4=0或4x -8y +9=0D .7x +4y =0或32x -56y +65=0 [答案] D[解析] 结合图形可知,这样的直线应该有两条,恰好是两条相交直线所成角的平分线.由公式可得|3x -4y +5|32+(-4)2=|5x -12y +13|52+(-12)2,即3x -4y +55=±5x -12y +1313,化简得7x +4y=0或32x -56y +65=0.4.点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .2 2 C . 2 D .16[答案] A[解析] x 2+y 2表示直线上的点P (x ,y )到原点距离的平方, ∵原点到直线x +y -4=0的距离为|-4|2=22,∴x 2+y 2最小值为8.故选A . 二、填空题5.已知点A (1,1),B (2,2),点P 在直线y =12x 上,则当|P A |2+|PB |2取得最小值时点P 的坐标为_________.[答案] (95,910)[解析] 设P (2t ,t ),则|P A |2+|PB |2=(2t -1)2+(t -1)2+(2t -2)2+(t -2)2=10t 2-18t +10=10(t 2-95t +1)=10(t -910)2+1910,当t =910时,|P A |2+|PB 2|取得最小值,即P (95,910).6.已知平面上一点M (5,0),若直线上存在点P 使|PM |=4,则称该直线为“切割型直线”,下列直线是“切割型直线”的是_________.[答案] ②③[解析] 根据题意,看所给直线上的点到定点M 的距离能否取4.可通过求各直线上的点到M 的最小距离,即点M 到直线的距离来分析.①d =5+12=32>4,故直线上不存在点到M 距离等于4,不是“切割型直线”;②d =2<4,所以在直线上可以找到两个不同的点,使之到点M 的距离等于4,是“切割型直线”;③d =2032+42=4,直线上存在一点,使之到点M 距离等于4,是“切割型直线”;④d =115=1155>4,故直线上不存在到M 距离等于4的点,不是“切割型直线”,故填②③.三、解答题7.过点(2,3)的直线l 被两平行直线l 1:2x -5y +9=0与l 2:2x -5y -7=0所截线段AB 的中点恰在直线x -4y -1=0上,求直线l 的方程.[解析] 设线段AB 的中点P 的坐标为(a ,b ),由点P 到直线l 1,l 2的距离相等,得|2a -5b +9|22+(-5)2=|2a -5b -7|22+(-5)2,整理得2a -5b +1=0.又点P 在直线x -4y -1=0上,所以a-4b -1=0.解方程组⎩⎪⎨⎪⎧ 2a -5b +1=0a -4b -1=0,得⎩⎪⎨⎪⎧a =-3b =-1,即点P 的坐标为(-3,-1).又直线l 过点(2,3),所以直线l 的方程为y -(-1)3-(-1)=x -(-3)2-(-3),即4x -5y +7=0.8.在△ABC 中,A (3,2),B (-1,5),点C 在直线3x -y +3=0上,若△ABC 的面积为10,求点C 的坐标.[解析] 由题知|AB |=(3+1)2+(2-5)2=5,∵S △ABC =12|AB |·h =10,∴h =4.设点C 的坐标为(x 0,y 0),而AB 的方程为y -2=-34(x -3),即3x +4y -17=0.∴⎩⎨⎧3x 0-y 0+3=0,|3x 0+4y 0-17|5=4,解得⎩⎪⎨⎪⎧x 0=-1,y 0=0或⎩⎪⎨⎪⎧x 0=53,y 0=8.∴点C 的坐标为(-1,0)或(53,8).。
新课程标准数学必修5第三章课后习题解答第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭.(2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)52x ⎧+⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=.所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y--台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为122025101512(70)208(110)60z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++. 所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.(第2题)3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m . 3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048000012480058000z y x x x⨯=⨯+⨯+=+++=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++ 由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤ 当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+))c =当且仅当()()a cbc x x--=,即x =tan β取得最大,从而视角也最大.第三章 复习参考题A 组(P103)1<2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为2Z x y =+≥ 当2x y =,即x =y =Z可以取得最小值,最小值为. 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即v =c 时,y 有最小值.2sa y sbv v =+=≥2c 时,由函数sa y sbv v =+的单调性可知,v c =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)⎧⎨⎩3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥人教A 版高中数学课后习题解答答案11 5、因为22x y +是区域内的点到原点的距离的平方所以,当240330x y x y -+=⎧⎨--=⎩ 即2,3A A x y ==时,22x y +的最大值为13. 当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45. 6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。
习题3.1计算下列行列式:①5312--+a a ②212313121+----a a a解 ①5312--+a a =(a+2)(a-5)+3=a 2-3a-7②212313121+----a a a =(a-1)(a-1)(a+2)-3-12+2(a-1)-3(a-1)+6(a+2)= a 3+2a习题3.2求从大到小的n 阶排列(n n-1 … 2 1)的逆序数. 解 τ(n n-1 … 2 1)=(n-1)+(n-2)+…+1+0=2)1(-n n 习题3.31.在6阶行列式中,项a 23a 31a 42a 56a 14a 65和项a 32a 43a 14a 51a 66a 25应各带有什么符号?解 因为a 23a 31a 42a 56a 14a 65=a 14a 23a 31a 42a 56a 65,而τ(4 3 1 2 6 5)=3+2+0+0+1+0=6,所以项a 23a 31a 42a 56a 14a 65带有正号.又因为项a 32a 43a 14a 51a 66a 25=a 14a 25a 32a 43a 51a 66,而τ(4 5 2 3 1 6)=3+3+1+1+0+0=8,所以项a 32a 43a 14a 51a 66a 25带有正号. 2.计算:000400010002000300050000 解 因为a 15a 24a 33a 42a 51的逆序数为τ(5 4 3 2 1)=5×4/2=10,带有正号,所以000400010002000300050000=5×3×2×1×4=120 习题3.4计算:6217213424435431014327427246-解 6217213424435431014327427246-=6211003424431001014327100246-=100×621134244*********1246-=-294×105习题3.51.计算下列行列式:①1723621431524021----- ②6234352724135342------解 ①1723621431524021-----=1374310294111120001------=137410291111-----=-726②6234352724135342------=1035732130010313410------=0105731331310---- =05723133710----=-5×72337--=-1002. 计算下列n 阶行列式(n ≥2):①ab ba b a b a 000000000000 ②1210010010011110-n a a a③n n n n x x x x x x a a a a x a 1322113211000000000-----+④111)()1()()1()()1(111n a a a n a a a n a a a n n n n n n --------- 解 ① n n a b b a b a b a ⨯000000000000=)1()1(00000000000-⨯-⨯n n a b a b a b a a+)1()1(1000000000000)1(-⨯-+⨯-n n n b a b b ab b=a n+(-1)n+1b n② D n =1210010*********-n a a a=a n-1×D n-1+(-1)n+1×)1)(1(2100000000001111---n n n a a= a n-1D n-1+(-1)n+1×(-1)1+(n-1)×)2)(2(232100000000----n n n n a a a a=a n-1D n-1-a 1a 2…a n-2=a n-1(a n-2D n-2-a 1a 2…a n-3)-a 1a 2…a n-2 =a n-1a n-2D n-2-a n-1a 1a 2…a n-3-a 1a 2…a n-2 …= a n-1a n-2…a 2D 2-a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2= a n-1a n-2…a 21110a -a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2=-a n-1a n-2…a 2-a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2 =-∑---11211)...(n i in a a a a ③ D n =nn n n x x x x x x a a a a x a 1322113211000000000-----+=112111...)1()1(---++-⨯-n n n n n n D x x x x a =a n x 1x 2…x n-1+x n D n-1=a n x 1x 2…x n-1+x n (a n-1x 1x 2…x n-2+x n-1D n-2) =a n x 1x 2…x n-1+x n a n-1x 1x 2…x n-2+x n x n-1D n-2 …=a n x 1x 2…x n-1+x n a n-1x 1x 2…x n-2+…+x n x n-1…x 4a 3x 1x 2+x n x n-1…x 4x 3D 2=a n x 1x 2...x n-1+x n a n-1x 1x 2...x n-2+...+x n x n-1...x 4a 3x 1x 2+x n x n-1...x 4x 3[(a 1+x 1)x 2+a 2x 1] =)( (1)1121121∑=+--+ni n i i i n n x x a xx x x x x x④D n+1=111)()1()()1()()1(111n a a a n a a a n a a a n n n nn n ---------=nn n n n n n n a a a n a a a n a a a )1()1()()1()()1(111)1(1112)1(----------+=)1()]}1([)2)(1)]{(()2)(1[()1(2)1(---------+ n n n n=2!3!...n!3.计算下列n 阶行列式(n ≥1):①n a a a a ++++1111111111111111321②ax x x x x a x x x x a x a x x x x x a x n n nn ----- 321321321321解 ① D n =na a a a ++++1111111111111111321=na a a a +++++++11110111*********11321=1111111111111111321a a a ++++na a a a111011101110111321+++ =110010010321a a a +1-n n D a =a n D n-1-a 1a 2…a n-1=a n (a n-1D n-2-a 1a 2…a n-2)-a 1a 2…a n-1 =a n a n-1D n-2-a n a 1a 2…a n-2-a 1a 2…a n-1 =n ni n i i a a a a a aa 211111)(+∑=+-=⎪⎪⎭⎫ ⎝⎛+∑=ni i n a a a a 12111 (a i ≠0) ②D n =a x x x x x a x x x x a x a x x x x x a x n n n n -----321321321321=ax x x x x a x x x x a x a x x x x x a x n n n n -+-+--+- 321321321321000=n n n n x x x x x a x x x x a x a x x x x x a x 321321321321----+ax x x a x x x a x a x x x x a x -----321321321321000 =x n (-a)n-1(x 1+x 2+…+x n )+(-a)n4.证明:n 阶行列式yz z x y y x z xzz zz y y x z z yy y x z yy y y x nn ----=)()( 其中z ≠y .解 D n =xzz zzy y x z z yy y x z x y zx00--=(x-z)D n-1-(y-x))1()1(-⨯-n n x zz zy y x zy y y z=(x-z)D n-1-(y-x)z)1()1(111-⨯-n n x z z y y x y yy=(x-z)D n-1-(y-x)z)1()1(10010001-⨯-----n n y x yz y z y x=(x-z)D n-1-(y-x)z(x-y)n-2=(x-z)D n-1+z(x-y)n-1即有D n =(x-z)D n-1+z(x-y)n-1(1)又D n =xzz zy y x z yy y x x z yy y y y x--=(x-y)D n-1-(z-x))1()1(-⨯-n n x zz zy y x zy y y y=(x-y)D n-1-(z-x)y)1()1(1111-⨯-n n x z z z yy x z=(x-y)D n-1-(z-x)y)1()1(001111-⨯-----n n z x z y z y z x=(x-y)D n-1-(z-x)y(x-z)n-2即有D n =(x-y)D n-1+y(x-z)n-1(2) 联立式(1)和式(2)得yz z x y y x z xzz zzy y x z z yy y x z yy y y x nn ----=)()( 习题3.61.设A,B,P ∈Mat n ×n (F),并且P 是可逆的,证明:如果B=P -1AP ,则|B|=|A|.证 因为|P -1||P|=1,所以|B|=|P -1AP|=|P -1||A||P|=|A|. 2*.仿照例3.6.1,试用分块初等变换,证明定理3.6.1. 证 设A ,B 都是n ×n 矩阵,则nE BA -0=B A B A A E B n n n n=-=--+)1(0)1(另一方面,对nE BA -0的第2行小块矩阵乘以A 加到第一行上去,有nE BA -0=AB E BAB n=0所以B A AB =.习题3.71.求下列矩阵的伴随矩阵和逆矩阵①⎪⎪⎭⎫⎝⎛--1112 ②⎪⎪⎪⎭⎫ ⎝⎛--325436752解 ①设原矩阵为A ,则A 11=-1,A 21=-1,A 12=1,A 22=2,伴随矩阵A *=⎪⎪⎭⎫⎝⎛--2111,|A|=-2+1=-1,所以,A -1=⎪⎪⎭⎫ ⎝⎛---211111=⎪⎪⎭⎫ ⎝⎛--2111②设原矩阵为A ,则A 11=3243--=-9+8=-1,A 21=3275---=-(-15+14)=1,A 31=4375=20-21=-1,A 12=3546--=38,A 22=3572-=-41,A 32=4672-=34, A 13=2536-=-27,A 23=2552--=29,A 33=3652=-24伴随矩阵A *=⎪⎪⎪⎭⎫ ⎝⎛-----242927344138111,|A|=-18-84+100-105+16+90=-1,所以,A -1=⎪⎪⎪⎭⎫ ⎝⎛------24292734413811111=⎪⎪⎪⎭⎫ ⎝⎛----2429273441381112.证明:上三角形矩阵是可逆矩阵的充分必要条件是:它的主对角线元全不为零.证 因为矩阵可逆的充分必要条件是它的行列式不为零,而上三角形矩阵的行列式等于它的主对角线上所有元的乘积,所以上三角形矩阵的行列式不为零的充分必要条件是:它的主对角线元全不为零,故上三角形矩阵可逆矩阵的充分必要条件是:它的主对角线元全不为零.3.设A 是n ×n 矩阵.证明:A 是可逆的,当且仅当A *也是可逆的.证 因为 AA *=|A|E ,两边取行列式得|A||A *|=|A|n.若A 可逆,则A 的行列式|A|≠0,从而有|A *|=|A|n-1≠0,所以A *可逆.反之,若A *可逆,设A *的逆阵为(A *)-1.用反证法,假设A 不可逆,则A 的行列式|A|=0,所以AA *=|A|E=0,对AA *=0两边同时右乘(A *)-1,得A=0,从而A 的任一n-1阶子式必为零,故A *=0,这与A *可逆相矛盾,因此A 可逆. 4.证明定理3.7.2的推论1.推论1的描述:设A 是分块对角矩阵,A=diag(A 1,A 2,…,A s ),证明:A 可逆当且仅当A 1,A 2,…,A s 均可逆,并且A -1=diag(A 1-1,A 2-1,…,A s -1).证 A 可逆,当且仅当A 的行列式|A|≠0,而|A|=|A 1||A 2|…|A s |,所以|A|≠0当且仅当|A 1|,|A 2|,…,|A s |都不为零,即A 1,A 2,…,A s 均可逆.令B=diag(A 1-1,A 2-1,…,A s -1),则有AB=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛S A A A21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11211s A A A =⎪⎪⎪⎪⎪⎭⎫⎝⎛S E E E21=E 故A -1=diag(A 1-1,A 2-1,…,A s -1).4.设A=⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a 是实矩阵(实数域上的矩阵),且a 33=-1.证明:如果A 的每一个元都等于它的代数余子式,则|A|=1.证 如果A 的每一个元都等于它的代数余子式,则A 的伴随矩阵A *=⎪⎪⎪⎭⎫ ⎝⎛332313322212312111a a a a a a a a a =A T .所以|A *|=|A|,又AA *=|A|E ,两边取行列式得|A|2=|A|3. 由a 33=-1,得AA *=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a aa a a a a a ⎪⎪⎪⎭⎫ ⎝⎛332313322212312111a a a a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛-12313322212312111a a a a a a a a ⎪⎪⎪⎭⎫⎝⎛-12313322212312111a a a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛++1232231a a =⎪⎪⎪⎭⎫ ⎝⎛||000||000||A A A比较最后一个等式两端第3行3列的元素知|A|=a 312+a 322+1≠0,对|A|2=|A|3两边同时除以|A|2得|A|=1.6.设A=(a ij )是n ×n 可逆矩阵,有两个线性方程组(Ⅰ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++u x c x c x c bx a x a x a b x a x a x a b x a x a x a n n nn nn n n n n n n (221122112222212111212111)(Ⅱ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++vx b x b x b cx a x a x a c x a x a x a c x a x a x a n n nn nn n n n n n n (221122112222211211221111)如果(Ⅰ)有解.证明:当且仅当u =v 时,(Ⅱ)有解.证 设方程组(Ⅰ)的解为x 1*, x 2*,…, x n *,代入方程组(Ⅰ)得(Ⅲ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++ux c x c x c bx a x a x a b x a x a x a b x a x a x a n n n n n nnn n n n n **2*1**2*12*2*22*211*1*12*11................................................ (212)12121 当u =v 时,因为 A=(a ij )是n ×n 可逆矩阵,A 的行列式不等于零,根据克莱姆法则,方程组(Ⅱ)的前n 个方程作为一个线性方程组,它有唯一解,记该解为x 1**, x 2**,…, x n **,代入方程组(Ⅱ)的前n 个方程中得(Ⅳ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++----nnn n n n nn n n n n c x a x a x a cx a x a x a c x a x a x a c x a x a x a n n nn ****2**11**1**12**112**2**22**121**1**21**11......................................................21212121 对等式组(Ⅳ)中第1个等式的两端同时乘以x 1*,第2个等式的两端同时乘以 x 2*,…, 第n个等式的两端同时乘以 x n *,然后将n 各等式的左边全部相加,也将右边全部相加,并利用(Ⅲ)式,可得b 1x 1**+b 2x 2**+…+b n x n **=c 1x 1*+ c 2x 2*+…+ c n x n *=u由u =v ,得b 1x 1**+b 2x 2**+…+b n x n **=u即x 1**, x 2**,…, x n **也满足(Ⅱ)中最后一个方程.所以方程组(Ⅱ)有解.反之,若方程组(Ⅱ)有解,设其解为x 1**, x 2**,…, x n **,代入(Ⅱ)得到(Ⅴ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++-vx b x b x b cx a x a x a c x a x a x a c x a x a x a n n n n n n nn n n n n ****2**11****2**12**2**22**121**1**21**11......................................................21212121 对等式组(Ⅲ)中第1个等式的两端同时乘以x 1**,第2个等式的两端同时乘以 x 2**,…,第n 个等式的两端同时乘以 x n **,然后将n 各等式的左边全部相加,也将右边全部相加,并利用(Ⅴ)式,可得c 1x 1*+c 2x 2*+…+c n x n *=b 1x 1**+ b 2x 2**+…+ b n x n **将上式左端与(Ⅴ)式中最后一个等式比较,将上式右端与(Ⅲ)式中最后一个等式比较,得 u =v .7.设A 是n ×n 矩阵.证明:|A *|=|A|n-1证 因为AA *=|A|E ,两边取行列式得 |A||A *|=|A|n .如果|A|≠0,两边除以|A|,得|A *|=|A|n-1如果|A|=0,也可写成|A *|=|A|n-1,总之,有|A *|=|A|n-1成立.。
第三章经典习题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.sin 2π12-cos 2π12的值为( )A .-12 B.12 C .-32 D.32[答案] C[解析] 原式=-(cos 2π12-sin 2π12)=-cos π6=-32.2.函数f (x )=sin2x -cos2x 的最小正周期是( ) A.π23 B .π C .2π D .4π[答案] B[解析] f (x )=sin2x -cos2x =2sin(2x -π4),故T =2π2=π. 3.已知cos θ=13,θ∈(0,π),则cos(3π2+2θ)=( ) A .-429B .-79C.429D.79[答案] C[解析] cos(3π2+2θ)=sin2θ=2sin θcos θ=2×223×13=429. 4.若tan α=3,tan β=43,则tan(α-β)等于( ) A .-3 B .-13 C .3 D.13[答案] D[解析] tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13. 5.cos 275°+cos 215°+cos75°·cos15°的值是( ) A.54 B.62 C.32 D .1+23[答案] A[解析] 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=54. 6.y =cos 2x -sin 2x +2sin x cos x 的最小值是( ) A. 2 B .- 2 C .2 D .-2 [答案] B[解析] y =cos2x +sin2x =2sin(2x +π4),∴y max =- 2. 7.若tan α=2,tan(β-α)=3,则tan(β-2α)=( ) A .-1 B .-15 C.57 D.17[答案] D[解析] tan(β-2α)=tan[(β-α)-α]=tan ?β-α?-tan α1+tan ?β-α?tan α=3-21+6=17.8.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ →|的最大值是( ) A. 2 B .2 C .4 D.22[答案] B[解析] PQ →=(cos β-cos α,sin β-sin α),则|PQ →|=?cos β-cos α?2+?sin β-sin α?2=2-2cos ?α-β?,故|PQ →|的最大值为2.9.函数y =cos2x +sin2xcos2x -sin2x 的最小正周期为( )A .2πB .π C.π2D.π4[答案] C[解析] y =1+tan2x 1-tan2x =tan(2x +π4),∴T =π2.10.若函数f (x )=sin 2x -12(x ∈R ),则f (x )是( ) A .最小正周期为π2的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数 [答案] D[解析] f (x )=sin 2x -12=-12(1-2sin 2x )=-12cos2x ,∴f (x )的周期为π的偶函数.11.y =sin(2x -π3)-sin2x 的一个单调递增区间是( ) A .[-π6,π3] B .[π12,712π] C .[512π,1312π] D .[π3,5π6][答案] B[解析] y =sin(2x -π3)-sin2x =sin2x cos π3-cos2x sin π3-sin2x =-(sin2x cos π3+cos2x sin π3)=-sin(2x +π3),其增区间是函数y =sin(2x +π3)的减区间,即2k π+π2≤2x +π3≤2k π+3π2,∴k π+π12≤x ≤k π+7π12,当k =0时,x ∈[π12,7π12].12.已知sin(α+β)=12,sin(α-β)=13,则log 5(tan αtan β)2等于( )A .2B .3C .4D .5[答案] C [解析]由sin(α+β)=12,sin(α-β)=13得⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12sin αcos β-cos αsin β=13,∴⎩⎪⎨⎪⎧sin αcos β=512cos αsin β=112,∴tan αtan β=5, ∴log5(tan αtan β)2=log552=4.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.(1+tan17°)(1+tan28°)=________. [答案] 2[解析] 原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2.14.(2012·全国高考江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为______. [答案]17250[解析] ∵α为锐角,∴π6<α+π6<2π3,∵cos ⎝⎛⎭⎪⎫α+π6=45,∴sin ⎝⎛⎭⎪⎫α+π6=35;∴sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2425, cos(2α+π3)=cos(α+π6)2-sin 2(α+π6)=725∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎝ ⎛⎭⎪⎫2α+π3-π4=sin ⎝ ⎛⎭⎪⎫2α-π3cos π4-cos ⎝ ⎛⎭⎪⎫2α+π3sin π4=17250.15.已知cos2α=13,则sin 4α+cos 4α=________. [答案] 59[解析] cos2α=2cos 2α-1=13得cos 2α=23,由cos2α=1-2sin 2α=13得sin 2α=13(或据sin 2α+cos 2α=1得sin 2α=13),代入计算可得.16.设向量a =(32,sin θ),b =(cos θ,13),其中θ∈(0,π2),若a∥b ,则θ=________.[答案] π4[解析] 若a ∥b ,则sin θcos θ=12,即2sin θcos θ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.[解析] 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725.又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425, 所以sin2α+2sin 2α1-tan α=?2sin αcos α+2sin 2α?cos αcos α-sin α=2sin αcos α?cos α+sin α?cos α-sin α=725×?-425?325=-2875.18.(本题满分12分)设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π6)的最值.[解析] y =cos(2x -π3)+2sin(x -π6) =cos2(x -π6)+2sin(x -π6)=1-2sin 2(x -π6)+2sin(x -π6)=-2[sin(x -π6)-12]2+32.∵x ∈[0,π3],∴x -π6∈[-π6,π6]. ∴sin(x -π6)∈[-12,12], ∴y max =32,y min =-12.19.(本题满分12分)已知tan 2θ=2tan 2α+1,求证:cos2θ+sin 2α=0.[证明] cos2θ+sin 2α=cos 2θ-sin 2θcos 2θ+sin 2θ+sin 2α=1-tan 2θ1+tan 2θ+sin 2α=-2tan 2α1+2tan 2α+1+sin 2α=-tan 2α1+tan 2α+sin 2α=-sin 2αcos 2α+sin 2α+sin 2α=-sin 2α+sin 2α=0.20.(本题满分12分)已知向量a =(cos 3x 2,sin 3x 2),b =(cos x2,-sin x2),c =(3-1),其中x ∈R .(1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值.[解析] (1)由a ⊥b 得a ·b =0,即cos 3x 2cos x 2-sin 3x 2sin x2=0,则cos2x =0,得x =k π2+π4(k ∈Z ),∴x 值的集合是{x |x =k π2+π4,k ∈Z }.(2)|a -c |2=(cos 3x 2-3)2+(sin 3x2+1)2 =cos 23x 2-23cos 3x 2+3+sin 23x 2+2sin 3x 2+1=5+2sin 3x 2-23cos 3x 2=5+4sin(3x 2-π3),则|a -c |2的最大值为9.∴|a -c |的最大值为3.21.设函数f (x )=22cos(2x +π4)+sin 2x (Ⅰ)求函数f (x )的最小正周期;(Ⅱ)设函数g (x )对任意x ∈R ,有g (x +π2)=g (x ),且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x );求函数g (x )在[-π,0]上的解析式。
一、必做作业:
1. 用两种方法求下列函数的极值:
(1)
解:方法一(求导)
方法二(二阶求导)
方法三:由于极值的概念是一个局部性的概念,是极值点0x 处的函数值与其附近的函数值
进行比较而得出的概念。
因此,令:
β
αααβα++-+-+=++-=+-=2
002
02
03
203)2()2( )()(13x x x x x x x x x x x x y
比较系数得到:
①020=-x α
;②320
2
-=-x x α;③12
=+βαx
由①得02x =α,代入②得12
0=x ,故,1100-==x x 或。
若10
=x ,则,2=α,代入③得1-=β,从而有:
1)2()1(2-+-=x x y ;当x 在1的附近,显然有02>+x ,又0)1(2≥-x ;所
以:11)2()1(2-≥-+-=x x y
,即函数y 在处10=x 取得极小值-1.
若10
-=x ,则,2-=α,代入③得3=β,从而有:
233,=0(,)(+)0,y ()0,y y x y x x y x x y x y x y x y ''=-'∈-∞∈∞>'∈<∴12若,解得:=-1,=1,下面讨论函数的单调性:
当-1和1,时,函数是递增的;当-1,1时,函数是递减的。
当=-1时,有极大值3;当=1时,有极小值-1
6,16(-=-116(=1 1.
y x x y y x x y y x ''=''=-=⨯=-''=-=⨯=-显然,
若时,1)6<0,所以函数在处取得极大值,为3;若时,1)6>0,所以函数在处取得极小值在方法一的基,为础上,
3)2()1(2+-+=x x y ;当x 在-1的附近,显然有02<-x ,又0)1(2≥+x ;
所以:33)2()1(2≤+-+=x x y
,即函数y 在处10-=x 取得极大值3.
(2)
.
解:方法一(求导)
22126612,6612=01,2;
--2+0,y 120,y 1y 2y -y x x x x x x x x y x y x x '=----=-='∈∞∈∞>'∈-<=-=令,解得:若(,1)和(,)时,所以函数是递增的;若(,)时,所以函数是减少的。
故在处函数有极大值8,在处函数有极小值19.
方法二(二阶求导)
方法三: 令:
βαααβα++-+-+=++-=+--=2
002
020320232)2(2)2(22 )()(211232x x x x x x x x x x x x x y
比较系数得:
①
3)2(20-=-x α;②12)2(2020-=-x x α;③122
0=+βαx
由①得
23
20-
=x α,代入②得02020=--x x ,故,1200-==x x 或。
若20=x ,则,
25
=
α,代入③得19-=β,从而有: 12-6,112--=-1218219.
y x x y y x x y y x ''=''=-=⨯=-''==>=-在方法一的基础上,显然,
若时,(1)618<0,所以函数在处取得极大值,为8;若时,0,所以函数在处取得极小值,为
19)25
()2(22-+-=x x y ;当x 在2的附近,显然有025>+x ,又
0)2(2
≥-x ;所以:19
19)25
()2(22
-≥-+-=x x y ,即函数y 在处20
=x 取得极小值-19. 若
10-=x ,则,
27
-
=α,代入③得8=β,从而有:
8)27
()1(22
+-+=x x y ;当x 在-1的附近,显然有027<-x ,又
0)1(2
≥+x ;所以:8
8)27
()1(22≤+-+=x x y ,即函数y 在处10
-=x 取得极大值8.
2. 问当
取何值时,
取得最小值.
解:
210614,648,=02,1-(2,1)10,6,(2,1)400(,)(2,1)(2,-1)=20-12+2-28+8+12=2
x y x y xx xy yy f x y f x y f f x y f B f C f A f x y f ''''=+-=+-===-''''''-====-=>>-令,解得:驻点为(2,1),设A=因为AC-B 且,所以函数在处取得最小值,为
3.有一个繁华的商场,一天之中接待的顾客数以千计,川流不息.如果商场有一个重要广告,想使所有的顾客都能听到,又已知当天任意的3个顾客中,至少有两个在商场里相遇.问商场至少广播几次,就能使这一天到过商场里的所有顾客都能听到.
解:顾客人数为n=1,2时,已知条件无法用上。
因此从n=3考虑:
当第一个顾客到来时,为了使广播的次数少一些,可以先不播,一直等到有人要离开商场时,则必须开播。
可见,第一次广播应在第一个顾客将离开而未离开商场之前。
第一次开播时,第2、3位顾客可能到
.
112
2-++x x x
5.设求证:
.
+
a+
a
a。