动态几何中的动点型问题ppt精选课件
- 格式:ppt
- 大小:361.50 KB
- 文档页数:16
动点问题“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.速度特点: 1. 运动方向2. 运动速度3. S=vt注意:时间范围确定最终状态分类关键: 动中求静.解题方法及思想:数学思想:分类思想函数思想方程思想数形结合思想转化思想专题一: 几何中动点问题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置)。
近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
【例1】 如图,在等腰梯形ABCD 中,AD BC ∥,5075135AB DC AD BC ====,,,点P 从点B 出发沿折线段BA AD DC --以每秒5个单位长度的速度向点C 匀速运动,点Q 从点C 出发沿线段CB 方向以每秒3个单位长度的速度匀速运动,过点Q 向上作射线QK BC ⊥,交折线段CD DA AB --于点E ,点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止,设点P 、Q 运动的时间是t 秒()0t >(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ DC ∥?(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD DA ,上时,S 与t 的函数关系式;(不必写出t 的取值范围)P KQ EDCBA【例2】 如图,在平面直角坐标系中,点()30A,,()332B ,,()02C ,,动点D 以每秒1个单位的速度从点O 出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动,过点E 作EF AB ⊥交BC 于点F ,连结OA 、OF ,设运动时间为t 秒.(1)求ABC ∠的度数; (2)当t 为何值时,AB DF ∥; (3)设四边形AEFD 的面积为S , ①求S 关于t 的函数关系式;②若一抛物线2y x mx =+经过动点E ,当23S <时,求m 的取值范围.y x D FE OC BA【例3】 如图,在平面直角坐标系中,四边形OABC 为矩形,点A B ,的坐标分别为()()4043,,,,动点M N ,分别从点O B ,同时出发,以每秒1个单位的速度运动,其中点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动,过点N 作NP BC ⊥,交AC 于点P ,连结MP ,当两动点运动了t 秒时.(1)P 点的坐标为( , )(用含t 的代数式表示). (2)记M PA ∆的面积为S ,求S 与t 的函数关系式(04)t <<. (3)当t = 秒时,S 有最大值,最大值是 .(4)若点Q 在y 轴上,当S 有最大值且QAN ∆为等腰三角形时,求直线AQ 的解析式.y xOPNMCBA【例4】 ABC ∆中,90C ∠=︒,60A ∠=︒,2cm AC =.长为1cm 的线段MN 在ABC ∆的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P ,Q 两点,线段MN 运动的时间为ts .(1)若AM P ∆的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C ,P ,Q 为顶点的三角形与ABC ∆相似?N M QPBA C5.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C时,点M 也随之停止运动.设运动时间为t 秒.⑴ 若4a =厘米,1t =秒,则PM =______厘米;⑵ 若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;⑶ 若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; ⑷ 是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.P N NMQDC BAQPMDCBA专题二:函数中动点问题(写出走过和剩下的路程,再找等量关系)【例1】 已知抛物线2y ax bx c =++与y 轴交于点()03A ,,与x 轴分别交于()10B ,、()50C ,两点. (1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E ,点F 的坐标,并求出这个最短总路径的长.xCA'33B EFy M'O MA2.如图,在平面直角坐标系xOy 中,ABC 三个机战的坐标分别为()6,0A -,()6,0B ,()0,43C ,延长AC 到点D,使CD=12AC ,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。
动点问题、动态几何问题专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.【专题一:建立动点问题的函数解析式】函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P ,PH ⊥OA ,垂足为H ,△OPH 的重心为G .(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH =32NH =2132⋅OP =2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP =32MP =233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP =PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP =GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意. ③PH =GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2. 二、应用比例式建立函数解析式例2(2006山东)如图2,在△ABC 中,AB =AC =1,点D ,E 在直线BC 上运动.设BD =,x CE =y . (1)如果∠BAC =30°,∠DAE =105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB =AC ,∠BAC =30°, ∴∠ABC =∠ACB =75°, ∴∠ABD =∠ACE =105°. ∵∠BAC =30°,∠DAE =105°, ∴∠DAB +∠CAE =75°, 又∠DAB +∠ADB =∠ABC =75°, ∴∠CAE =∠ADB ,∴△ADB ∽△EAC , ∴ACBD CE AB =,2222233621419x x x MH PH MP +=-+=+=AEDCB 图2HM NG POAB图1x y∴11xy =, ∴x y 1=.(2)由于∠DAB +∠CAE =αβ-,又∠DAB +∠ADB =∠ABC =290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005上海)如图3(1),在△ABC 中,∠ABC =90°,AB =4,BC =3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D ,交线段OC 于点E .作EP ⊥ED ,交射线AB 于点P ,交射线CB 于点F .(1)求证: △ADE ∽△AEP .(2)设OA =x ,AP =y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF =1时,求线段AP 的长. 解:(1)连结OD .根据题意,得OD ⊥AB ,∴∠ODA =90°,∠ODA =∠DEP .又由OD =OE ,得∠ODE =∠OED .∴∠ADE =∠AEP , ∴△ADE ∽△AEP .(2)∵∠ABC =90°,AB =4,BC =3, ∴AC =5. ∵∠ABC =∠ADO =90°, ∴OD ∥BC , ∴53x OD =,54xAD =, ∴OD =x 53,AD =x 54. ∴AE =x x 53+=x 58. ∵△ADE ∽△AEP , ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF =1时,①若EP 交线段CB 的延长线于点F ,如图3(1),则CF =4.∵∠ADE =∠AEP , ∴∠PDE =∠PEC . ∵∠FBP =∠DEP =90°, ∠FPB =∠DPE , ∴∠F =∠PDE , ∴∠F =∠FEC , ∴CF =CE . ∴5-x 58=4,得85=x .可求得2=y ,即AP =2.A3(2)3(1)②若EP 交线段CB 于点F ,如图3(2), 则CF =2. 类似①,可得CF =CE . ∴5-x 58=2,得815=x . 可求得6=y ,即AP =6.综上所述, 当BF =1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004上海)如图,在△ABC 中,∠BAC =90°,AB =AC =22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO =x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O ,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC ,垂足为H . ∵∠BAC =90°,AB =AC =22, ∴BC =4,AH =21BC =2. ∴OC =4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA =1+x ,OH =x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA =1-x ,OH =2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. 【专题二:动态几何型压轴题】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。