按比例分配
- 格式:doc
- 大小:34.50 KB
- 文档页数:4
根据六年级道德与法治上册按比例分配应
用题
请根据六年级道德与法治上册的内容,介绍如何按比例分配应用题。
根据六年级道德与法治上册的教材,按比例分配应用题涉及到公平与合理的原则。
以下是一些建议和步骤:
1. 理解题目要求:首先,仔细阅读应用题并理解题目要求。
确保对题目的要求和条件有清楚的理解。
2. 确定比例因素:根据题目设定的比例原则,确定应用题中的比例因素。
比如,如果题目要求按比例分配物品或金钱,确定比例因素为多少。
3. 计算比例分配:使用确定的比例因素,计算出每个人或每组应该分配的数量。
确保计算的过程准确无误。
4. 检查结果:完成计算后,检查结果是否符合公平与合理的原则。
确保每个人或每组获得的分配数量符合题目要求。
5. 可视化展示:为了更好地理解比例分配的结果,可以使用图
表或图形将分配结果可视化展示。
这样可以帮助学生更直观地理解
分配的过程和结果。
注意事项:
- 在计算中要小心精度和四舍五入的处理,确保分配结果准确。
- 在分配过程中要遵循公平与合理的原则,确保每个人或每组
都能获得合理的分配。
- 跟进题目要求中的单位,确保分配的数量单位与题目一致。
希望以上建议能帮助您根据六年级道德与法治上册的要求,按
比例分配应用题。
2、按⽐例分配引领教育-之-按⽐例分配常将有⽇想⽆⽇-1–莫到⽆时想有时按⽐例分配【精要点拨】【精要点拨】【精要点拨】【精要点拨】把⼀个数量按照⼀定的⽐例进⾏分配,叫做按⽐例分配。
在按⽐例分配的应⽤题中,有“单⽐分配、连⽐分配、复⽐分配”等⼏种基本类型。
(复⽐就是⼏个单⽐的所有前项的积做前项,所有后项的积做后项,这样所得的⽐是原来⼏个⽐的复⽐)按⽐例分配的应⽤题解法:可以⽤⽐例分配的⽅法;可以⽤正⽐例的⽅法;可以⽤分数应⽤题的⽅法。
例例例例11::::⿊⾊⽕药是⽤⽕硝、⽊炭和硫磺按15∶3∶2的⽐例制成的,要制造这种⽕药500千克,三种原料各需多少千克?※※※※举⼀反三举⼀反三举⼀反三举⼀反三※※※※1、修筑⼀座⼤桥,所⽤的混凝⼟由2份⽔泥、3份沙⼦、5份⽯⼦配制⽽成。
这座⼤桥约重2000吨,需⽔泥、沙⼦、⽯⼦各多少吨?2、某饲养场共养家禽1080只,鸡、鸭、鹅只数⽐是1∶5∶9,这个饲养场的鹅⽐鸡多多少只?3、有54个同学参加植树活动,如果平均分成3组,每组多少⼈?如果按2∶3∶4分成3组,最多的⼀组是多少⼈?例例例例22::::⼀块长⽅形地,周长400⽶,长与宽的⽐是3∶2,这块地的⾯积是多少平⽅⽶?※※※※举⼀反三举⼀反三举⼀反三举⼀反三※※※※1、甲、⼄两数的和是72,甲数与⼄数的⽐是∶2,甲、⼄两数各是74多少?2、⼀张长⽅形纸的周长是42厘⽶,长与宽的⽐是4∶3,长⽅形的⾯积是多少平⽅厘⽶?3、甲、⼄两个车间的平均⼈数是36⼈,如果两个车间⼈数的⽐是5∶7,甲、⼄两车间各有多少⼈?例例例例33::::长⽅体棱长的和是192厘⽶,长、宽、⾼的⽐是5∶4∶3,求引领教育-之-按⽐例分配常将有⽇想⽆⽇-2–莫到⽆时想有时长⽅体的体积是多少⽴⽅厘⽶?※※※※举⼀反三举⼀反三举⼀反三举⼀反三※※※※1、⼀根长144厘⽶的铁丝⽤去后,⽤剩下的部分要接成⼀个长⽅31体框架,使它的长、宽、⾼之⽐为3∶2∶1,求出这个长⽅体的体积是多少?2、把⼀根长112分⽶的铁条焊成⼀个长⽅体,它的长、宽、⾼的⽐是6∶5∶3。
数的按比例分配在数学中,按比例分配是一种常见的分配方法。
当需要将一个数按照一定的比例分配给不同的部分时,按比例分配方法可以很好地满足这一需求。
本文将介绍按比例分配的概念、计算方法和实际应用案例。
一、按比例分配的概念按比例分配是指根据给定的比例将一个数分配给不同的部分。
通常情况下,比例是一个有理数,可以表示为两个整数的比值。
比例的大小可以决定每个部分所得到的数量或比例的权重。
二、按比例分配的计算方法在进行按比例分配时,首先需要确定总数和各部分所占的比例。
然后,通过简单的计算方法得出每个部分所得到的数量或权重。
以下是按比例分配的计算方法:1. 比例分配计算公式:若总数为N,比例为a:b:c,需分配给三个部分,其中a,b,c为整数。
则各部分所得到的数量分别为:a/N * 总数,b/N * 总数,c/N * 总数。
2. 比例分配实例:假设有一个总数为100的数需要按照2:3:5的比例分配给三个部分。
根据计算公式,各部分所得到的数量分别为:2/10 * 100 = 20,3/10 * 100 = 30,5/10 * 100 = 50。
三、按比例分配的实际应用案例按比例分配在实际生活和工作中有广泛的应用。
以下是一些实际应用案例:1. 资金分配:在财务管理和投资中,经常需要按照不同的比例将资金分配给不同的项目或投资组合。
比例的选择通常基于风险偏好、收益预期等因素。
2. 食品配方:在食品加工和配方中,按比例分配是制定食品配方的基本方法之一。
根据配方要求,将各种食材按照特定的比例组合起来,以实现所需的口味和营养需求。
3. 人力资源分配:在组织管理中,按比例分配也常用于人力资源的合理配置。
根据不同岗位的需求和工作量,按比例分配员工的工作任务和工作时间,以提高工作效率和满足业务需求。
四、总结按比例分配是一种常见的数学方法,可以应用于各个领域。
通过确定比例和采用适当的计算方法,可以实现数量或权重的合理分配。
在实际应用中,按比例分配可以解决资源分配、食品配方和人力资源等问题。
按比例分配按比例分配是指根据一定的比例将某种资源或物品划分给不同的人或单位。
这种方法能够使分配更加公平、合理,并且适用于各种不同的场合。
在日常生活中,我们也经常使用按比例分配的方法,比如在分配食物时,我们可以根据每个人的能力和需求,按比例分配食物;在分配财产时,我们也可以按比例分配。
总的来说,按比例分配是一种有效的分配方法,能够帮助我们在生活和工作中更加公平、合理地分配资源。
1. 什么是按比例分配按比例分配是指根据一定的比例将某种资源或物品划分给不同的人或单位。
这种方法能够使分配更加公平、合理,并且适用于各种不同的场合。
例如,在一个公司中,财务部门可能会根据每个部门的工作量和贡献,按比例分配预算;在一个家庭中,家长可能会根据每个孩子的需求和能力,按比例分配食物。
按比例分配的原理是:在分配资源或物品时,应该根据每个人或单位的需求和能力,按比例分配,以使分配更加公平、合理。
总的来说,按比例分配是一种有效的分配方2. 按比例分配的原理按比例分配的原理是:在分配资源或物品时,应该根据每个人或单位的需求和能力,按比例分配,以使分配更加公平、合理。
举个例子,假设有三个人要分配一份蛋糕,三个人的能力和需求分别是A、B、C。
如果按照固定的方式分配,比如A分1/3,B分1/3,C分1/3,那么可能会导致A和C的分配过多或过少,而B的分配刚好。
这样就不公平了。
如果按照比例分配,就可以根据每个人的能力和需求,计算出合理的比例,使得每个人的分配都更加公平。
例如,假设A的能力是最高的,需求也最大3. 按比例分配的方法按比例分配的方法有很多种,常用的方法包括:1. 计算比例法:根据每个人或单位的需求和能力,计算出合理的比例,然后按照比例分配。
这种方法能够使分配更加公平、合理。
2. 固定比例法:规定一个固定的比例,然后按照这个比例分配。
这种方法适用于大多数情况,但是有时候会导致分配不够公平。
3. 等比分配法:将资源或物品按照等比分配。
《按比例分配》教学设计教学设计:按比例分配一、教材分析:本节课教材为小学五年级数学教材第三册第九单元《比例》第一小节《按比例分配》。
本节课的教学重点是学生理解什么是按比例分配,能够灵活运用比例来解决实际问题。
二、教学目标:1.知识目标:学生能够掌握什么是按比例分配,掌握按比例分配的基本方法。
2.能力目标:培养学生灵活运用比例解决实际问题的能力。
3.情感目标:培养学生的观察、思考和合作意识。
三、教学方法:通过多种教学方法,如讲授、示范、小组合作学习等,培养学生的综合能力。
四、教学过程及时间安排:Step 1:导入(5分钟)1.师生互动:教师出示两个水果盘,一个放有5颗橙子,一个放有10颗苹果,问学生:怎样才能使两个盘子中的水果的量相等?2.学生思考回答:学生认为将橙子和苹果按比例分配即可。
Step 2:学习比例分配的概念(15分钟)1.教师讲解:教师给出比例分配的定义,即按照一定的比例将数量或资源进行合理分配。
2.学生思考:学生思考教师给出的例子,并讨论如何按照一定的比例分配。
Step 3:按比例分配的基本方法(20分钟)1.教师示范:教师给出一个具体例子,如将30个相同的铅笔按照1:2的比例分配给两个人,教师通过板书的方式展示实际操作的步骤。
2.学生合作:学生分成小组,自行编写一组题目,并互相分配完成。
3.小组交流:学生互相交流自己的答案,讨论是否正确,如有错误及时纠正。
Step 4:复习巩固(10分钟)1.小组展示:每个小组选择一个代表,展示自己编写的题目与答案,并向全班解释自己的思路。
2.教师点评:教师对每个小组的展示进行点评,提出建议和改进意见。
Step 5:实际问题的应用(15分钟)1.教师示范:教师出示一个实际问题,如将100个糖果以1:3的比例分配给4个孩子,教师通过板书的方式展示实际操作的步骤。
2.学生独立思考:学生自行解决实际问题,然后将解决步骤写在纸上。
3.学生交流:学生互相交流自己的答案和思路,讨论解决问题的不同方法和策略。
按比例分配问题的解题方法(一)按比例分配问题的解题方法在日常生活和数学问题中,我们常常遇到需要按比例分配的情况。
这里,将介绍一些常见的解题方法。
方法一:直接比例法直接比例法是最常用的一种方法,适用于相对简单的比例分配问题。
具体步骤如下:1.确定已知条件,例如总量、比例等。
2.建立比例关系式,将已知条件用字母表示。
3.根据比例关系式求解未知量。
方法二:增加单位法增加单位法适用于需要在已知比例基础上进行增加或减少的问题。
具体步骤如下:1.确定已知条件,并将其按照比例转化为单位量。
2.根据单位量进行分配,根据需要增加或减少的量来计算每个单位分配到的数量。
3.根据已知条件和单位量重新计算每个单位的分配数量。
方法三:三角形相似法三角形相似法适用于需要按照特定的比例进行分配的问题,一般涉及到面积或长度的比例。
具体步骤如下:1.确定已知条件,并建立相似三角形关系。
2.根据相似三角形的性质,求解未知量。
方法四:分数法分数法适用于需要按照分数比例进行分配的问题。
具体步骤如下:1.将比例转化为分数,比如2:3可以表示为2/3。
2.根据分数比例进行分配,将总量按照分数比例进行划分。
3.根据已知条件求解未知量。
方法五:代数法代数法适用于需要通过代数方程进行解题的问题。
具体步骤如下:1.根据已知条件建立代数关系式。
2.解方程求解未知量。
方法六:综合方法综合方法适用于复杂的比例分配问题,需要综合多种方法进行求解。
具体步骤如下:1.分析已知条件,确定不同的比例关系。
2.根据不同的比例关系,选择合适的解题方法进行求解。
3.根据已知条件反复求解,直到得到所有未知量。
以上是几种常见的按比例分配问题解题方法,通过灵活运用这些方法,我们可以高效地解决各种比例分配问题。
希望这些方法能够对你有所帮助!方法一:直接比例法直接比例法是最简单也是最直接的一种方法,适用于相对简单的比例分配问题。
1.确定已知条件:首先我们需要明确已知条件,例如总量、比例等。
引言概述:正文内容:1.比的定义和性质1.1比的定义:比是将两个或多个量相互比较的关系,通常用冒号(:)或分数形式表示。
比的顺序不可改变:例如,A比B大,那么B比A小。
等比的比值相等:例如,3:1和6:2表示同样的比。
比可以进行比较运算:例如,可以对两个比进行相加、相减、相乘和相除等运算。
2.比的简化2.1比的简化:将比中的两个数同时除以它们的最大公约数,得到的新比与原比相等,但体现了更简洁的比例关系。
2.2比的扩大:将比中的两个数同时乘以一个正整数,得到的新比与原比相等,但体现了更大的比例关系。
3.比例的概念和性质3.1比例的定义:比例是指两个或多个比之间的相等关系。
通常用等号(=)表示。
两个比例相等的充分必要条件是四个比值依次相等。
等比例的比值可以进行比较运算。
4.按比例分配的方法和应用4.1按比例分配:按照给定的比例将一个总量按照一定的比例进行分配。
4.2分配数量的计算:根据给定的总量和比例,可以通过构建等比例关系,解方程求得分配数量。
4.3应用场景:按比例分配常见于资源分配、工作任务分配、资金分配等各个领域。
5.比例方程和比例图的应用5.1比例方程:比例关系可以用比例方程表示,例如,20:5=4:x可以表示为20/5=4/x,从而求得未知量的值。
5.2比例图:比例关系可以用比例图表示,通过在图上标注已知比例和对应的值,可以推导出未知量的值。
总结:通过对比和按比例分配的讨论,我们了解了比和按比例分配的相关知识点。
比的定义和性质给出了比的基本概念和运算性质;比的简化和扩大使得比的表示更加简洁和方便;比例的概念和性质揭示了比例的重要性和应用范围。
按比例分配的方法和应用使我们能够在实际问题中灵活应用比例关系;比例方程和比例图为解决比例问题提供了两种重要的工具。
通过理解和掌握这些知识点,我们能够更好地进行比例相关问题的分析和求解,为实际应用提供数学支持。
按比例分配(教案)青岛版六年级上册数学今天,我要为大家分享的是青岛版六年级上册数学的一节教案——按比例分配。
一、教学内容这部分内容主要涉及教材的第三章“比例”,具体包括比例的定义、比例的性质以及按比例分配的方法。
二、教学目标通过这节课的学习,我希望学生能够掌握比例的基本概念,了解比例的性质,并能够运用按比例分配的方法解决实际问题。
三、教学难点与重点重点是比例的性质和按比例分配的方法,难点是理解比例在实际问题中的应用。
四、教具与学具准备我已经准备好了PPT和一些实际问题案例,以及练习题。
五、教学过程1. 引入:我先用一个实际问题引入,例如“一家商店将一件商品的价格降低了20%,问降低后的价格是多少?”让学生思考,然后引出比例的概念。
2. 讲解:接着,我通过PPT讲解比例的定义和性质,让学生理解比例的意义。
3. 例题:我通过PPT展示一些例题,让学生直观地了解按比例分配的方法,并在课堂上一起讨论解题思路。
4. 练习:在讲解完例题后,我给出一些随堂练习题,让学生独立完成,然后一起讲解答案。
5. 应用:我给出一些实际问题,让学生运用按比例分配的方法解决,并分享解题过程和答案。
六、板书设计板书设计主要包括比例的定义、比例的性质和按比例分配的方法。
七、作业设计作业主要包括一些练习题和实际问题,让学生巩固所学知识。
八、课后反思及拓展延伸课后,我会反思这节课的教学效果,看学生是否掌握了比例的基本概念和按比例分配的方法。
同时,我也会给学生提供一些拓展延伸的材料,让他们进一步深入学习。
重点和难点解析在上述教案中,有几个重要的细节是需要我们重点关注的。
引入环节的设计,它是激发学生兴趣和引导学生思考的关键。
讲解环节中比例性质的阐述,这是学生理解按比例分配方法的基础。
再次,例题的讲解和随堂练习的应用,它们是帮助学生掌握按比例分配方法的重要步骤。
作业的设计和课后反思的进行,它们是巩固学生所学知识,提高学生应用能力的重要环节。
按比例分配教学设计(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!按比例分配教学设计按比例分配教学设计(精选3篇)按比例分配教学设计篇1教学内容:浙江省省编义务教材十二册p,96;例3、例4教学目标:(1)联系实际,使学生感知按比例分配的实际意义,初步掌握按比例分配的方法。
按比例分配在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
它是比的一种应用,一般是按某一标准进行分配,例如按人数分任务,按消耗分摊费用,按工时或劳动效果计酬等。
按比例分配与求平均数问题有区别。
求平均数问题是平均分配,是等分。
按比例分配不是等分,而等分可以看成是按比例分配的一种特殊情况。
解答按比例分配的题目的基本数量关系式是:=每部分数量总数量×每部分量占的份数总份数在这里可以把总数量看做是单位“1”的量,因此解决这类题时要注意,求什么部分数,一定要找准这个数的对应份数和总份数。
例题精讲例1.一种铝和锡的合金重2500克,而铝和锡的重量比是2:3,问这种合金中铝和锡各重多少克?分析与解答:在2500克合金中,铝的重量是2份,锡的重量是3份,总重量一共是5份,铝的重量占合金总重量的2/5,锡的重量占合金总重量的3/5。
解:2+3=5铝的重量:2500×2/5=1000(克)锡的重量:2500×3/5=1500(克)答:这种合金中铝重1000克,锡重1500克。
例2.黑色火药是用火硝、木炭和硫磺按15:3:2的比例配制而成的。
某次配制时木炭比硫磺多用15千克,这次配制三种原料各需要多少千克?分析与解答:根据题意可知,黑色火药中木炭占3份,硫磺占2份,3份比2份多1份,正好多15千克。
也可以这样想,总份数是15+3+2=20,木炭占总份数的3/20,硫磺占总份数的2/20,木炭比硫磺多1/20正好与15千克对应,这样就能求出三种原料的总数,然后再按比例进行分配。
解:15+3+2=2015÷(3/20-2/20)=300(千克)300×15/20=225(千克)300×3/20=45(千克)300-(225+45)=30(千克)答:火硝需要225千克,木炭需要45千克,硫磺需要30千克。
例3.甲、乙、丙三人同时共同加工了104个零件,只知同样加工一个零件甲用10分钟,乙用15分钟,丙用20分钟,三人各加工多少个零件?分析与解答:甲每分钟加工1/10个零件,乙每分钟加工1/15个零件,丙每分钟加工1/20个零件,甲、乙、丙工作效率比为1/10:1/15:1/20,因为零件是三个人同时加工的,所以他们加工的时间是一样的,因此工作总量比也就是工作效率的比,因此完成任务时,甲、乙、丙三人工作量的比是1/10:1/15:1/20,104个零件就按1/10:1/15:1/20的比例分配的。
按比例分配的方法
按比例分配问题的解题方法如下:
按比例分配必须具有两个条件才能进分配。
一是分配的总数施荡番;二是分配的比。
这个比可以是人数比,也可以是面积比,还可以是投资的比等等。
这里的分配总数是这些比所代表的实沟珠际数量的总和。
按人数比分配:例如:六年级共有1800本图书要按人数分给六年级三个班,六一班有60人,六二班有55人,六三班压边有65人,问六年级三个班每班应分得图书多少本?
分析:分配总数:1800本图书;分配的比即三个班的人数比=60:55:65每人应分得的图书本数:1800÷(60+55+65)=1800÷180=10(本)六一班:10×60=600(本)六二班:10×55=550(本)六三班:10×65=650(本)
答:六一班应分得图书600本,六二班应分得图书550本,六三班应分得图书650本。
按面积比分配一块菜地的总面积是200平方米,其中的五分之一用来种西红柿,其余的按3:5分别种黄瓜和豆角,问种黄瓜和豆角的面积分别有多少平方米?
分析:黄瓜与豆角的面积比为3:5,即分配的比是3:5,下面我们只要找出黄瓜与豆角的面积总和,就可以按比例分配了。
注意这里的200平方米并不是分配的总数,并不是黄瓜与豆角的面积和,需要拿200平方米减去种西红柿的面积才是黄瓜与豆角的面积总和。
具体算法同上。
优质教案分享——按比例分配的应用按比例分配的应用在现代教育中,教案是教学活动的重要组成部分。
好的教案可以高教学效果,促进学生的学习进步。
而对于初学者来说,编写一份优质的教案是很困难的事情。
在这种情况下,利用按比例分配的原则来编写教案,可以帮助初学者更好地掌握教学要领,更好地完成教学任务。
本文将从什么是按比例分配的原则、按比例分配在教案中的应用、按比例分配在不同学科中的应用等方面,深入探讨按比例分配的应用。
一、什么是按比例分配的原则按比例分配原则是一种常见的分配方式,在现实生活中运用广泛。
按比例分配原则是指以一定比率来分配某种物品或者资源。
按比例分配原则有很多种不同的应用场合,例如分配工资、分配奖金、分配任务等等。
对于教学来说,按比例分配原则也是非常重要的。
按比例分配原则可以帮助教师更好地规划教学任务,确保任务的完成。
按比例分配原则在教案中的应用也越来越广泛。
二、按比例分配在教案中的应用教案是教学过程中的重要工具,是教师前期准备工作的重要组成部分。
按比例分配原则在教案中的应用,可以帮助教师更好地规划教学内容,使教学过程更加规范、有序、有效。
下面我们具体分析按比例分配应用在教案中的几个方面。
1、分配教学时间在编写教案时,教师需要考虑到教学时间的分配。
一节课的时间有限,教师需要合理安排教学内容,将重点内容突出、难点内容重点讲解。
如果教师不对时间进行分配,可能会导致课堂时间不足以完成教学任务,或者过多时间花在了次要的内容上。
这时候,有意识地使用按比例分配原则,合理安排教学时间,对于教师来说是非常必要的。
2、分配教学资源教学资源也是教学中不可或缺的重要因素。
教学资源包括:教具、图书、网络资源等等。
教师需要根据教学内容的需要,合理分配教学资源,让学生更好地参与到教学过程中。
按比例分配原则可以帮助教师更好地规划教学资源,确保学生在教学过程中得到充分的发挥和尽可能的利用。
3、分配教学任务教学任务也是教学中重要的组成部分。
六年级数学上册教案《按比分配》人教版一. 教材分析《按比分配》是人教版六年级数学上册的一章节,主要让学生掌握按比例分配的方法和应用。
本节课的内容是在学生已经掌握了比例、分数等基础知识的基础上进行的,旨在培养学生的逻辑思维能力和解决实际问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对比例、分数等概念有一定的了解。
但是,学生在实际应用中可能会遇到一些问题,如不知道如何将实际问题转化为按比例分配的问题,以及对按比例分配的理解不够深入等。
三. 教学目标1.让学生理解按比例分配的概念和方法。
2.培养学生将实际问题转化为按比例分配问题的能力。
3.培养学生运用按比例分配的方法解决实际问题的能力。
四. 教学重难点1.按比例分配的概念和方法。
2.如何将实际问题转化为按比例分配的问题。
五. 教学方法采用讲授法、案例分析法、小组讨论法、练习法等教学方法,以学生为主体,教师为主导,注重学生的参与和实践。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际案例,引导学生思考如何将实际问题转化为按比例分配的问题。
2.呈现(10分钟)讲解按比例分配的概念和方法,并结合案例进行分析。
3.操练(10分钟)让学生分组讨论,每组解决一个实际问题,并将解题过程和答案展示给大家。
4.巩固(10分钟)讲解学生解决实际问题时可能遇到的问题,并给出解决方法。
5.拓展(10分钟)让学生思考如何将按比例分配的方法应用于生活中的实际问题。
6.小结(5分钟)总结本节课的主要内容和解决实际问题的方法。
7.家庭作业(5分钟)布置相关的练习题,让学生巩固所学知识。
教学过程的时间分配如下:导入:5分钟呈现:10分钟操练:10分钟巩固:10分钟拓展:10分钟小结:5分钟家庭作业:5分钟总计:50分钟教学情境分析:在教学《按比分配》这一课时,我创设了一个贴近学生生活的情境:分配生日礼物。
按比例分配的公式
按比例分配公式是y:x=k,所谓按比例分配,就是把一个数按照一定的比分成若干份。
这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。
先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几,以总份数作分母。
比的前后项分别作分子,再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。
1、表示两个比相等的式子叫做比例.比例是一个等式。
2、组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项。
3、比例的基本性质:在比例里,两个外项的积等于两个内项的积.附加:比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
4、如果a×b=1×2,那么a:1与2:b能组成比例。
加:判断两个比能否组成比例,也可以根据比的基本性质把这两个比都化成最简比,如果所化成的最简比相同,那么这两个比就能组成比例,否则不能。
1、表示两个比相等的式子叫做比例。
比例是一个等式2、组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
3、比例的基本性质:在比例里,两个外项的积等于两个内项的积。
《按比例分配》(教案)-六年级上册数学青岛版一、教学目标1. 让学生理解按比例分配的概念,掌握按比例分配的方法。
2. 培养学生运用按比例分配解决实际问题的能力。
3. 培养学生合作交流、动手操作的能力。
二、教学内容1. 按比例分配的概念2. 按比例分配的方法3. 按比例分配的应用三、教学重点与难点1. 教学重点:掌握按比例分配的方法,能够运用按比例分配解决实际问题。
2. 教学难点:理解按比例分配的原理,灵活运用按比例分配的方法。
四、教学过程1. 导入通过生活中的实例,如分配水果、分配糖果等,引导学生思考如何公平地分配物品,从而引出按比例分配的概念。
2. 新课导入(1)讲解按比例分配的概念,让学生明确按比例分配的含义。
(2)通过例题,讲解按比例分配的方法,让学生掌握按比例分配的计算步骤。
(3)让学生举例说明按比例分配在实际生活中的应用,培养学生运用按比例分配解决实际问题的能力。
3. 练习巩固(1)让学生独立完成练习题,巩固按比例分配的方法。
(2)针对学生的错误,进行讲解和指导,帮助学生掌握按比例分配的计算步骤。
4. 合作交流(1)将学生分成小组,每组选择一个实际问题,运用按比例分配的方法进行解决。
(2)小组内讨论,总结按比例分配的方法和步骤。
(3)小组代表汇报成果,分享解决问题的过程和经验。
5. 课堂小结通过本节课的学习,让学生回顾按比例分配的概念、方法和应用,总结自己在课堂上的收获。
五、作业布置1. 完成课后练习题,巩固按比例分配的方法。
2. 结合生活实际,运用按比例分配解决一个问题,并记录下来。
六、教学反思1. 教师在教学中要注意引导学生理解按比例分配的原理,让学生掌握按比例分配的方法。
2. 通过合作交流,培养学生运用按比例分配解决实际问题的能力。
3. 注重培养学生的动手操作能力和思维能力,提高学生的数学素养。
本节课结束后,教师要对学生的掌握情况进行了解,对教学效果进行评估,以便对后续教学进行改进。
按比分配一、和的按比分配:两个数的和,以及他们的比方法一:〔归一法〕①和÷总份数=每份的数量②求出各数量数量所占的份数方法二:〔分数乘法〕各数量=和×总份数类型一:三角形1、把长48cm的铁丝折成三条边的比为3︰4︰5的直角三角形,这个直角三角形的面积是多少平方厘米?〔提示:斜边最长〕2、一个等腰三角形,顶角与一个底角的度数比是1︰2,求这个三角形各角度数?〔提示:有2个底角〕类型二:长方体棱长按比分配:①长方体棱长总和÷4②用和的按比分配求出长宽高3、一个长方体的棱长总和是96米,长宽高的比是4:3:5,求这个长方体的外表积和体积?类型三:长方形的长宽按比分配:①长方形周长÷2②用和的按比分配求出长宽4、一个长方形长与宽的比是5:2,这个长方形的周长是280厘米,它的面积是多少平方厘米?5、一个长方形的周长是120厘米,长和宽的比是3:2,求这个长方形的面积?二、平均数的按比分配:几个数的平均数,以及他们的比①平均数×个数=总数量〔和〕②用和的按比分配解决6、甲乙丙三人平均体重40千克,他们体重比为5:4:3,三人体重各是多少千克?三、差的按比分配:两个数的差,以及它们的比用归一法:①数量差÷份数差=每份的数量②求出各数量7、甲乙两数比是2:5,乙数比甲数多15,甲乙两数各是多少?8、甲乙丙三个组人数的比是7:3:5,甲组比乙组多12人,求甲乙丙三个组各是多少人?四、一个数的按比分配:其中一个数,以及各数的比用归一法:①量÷所对应的份数=每份的数②求其它各数9、山羊和绵羊的头数比是2∶5,山羊40头。
山羊和绵羊一共有多少头?10、学校把一批练习本按2:3:5分给甲乙丙三个年级,丙年级分到了120本,甲乙年级各分到多少本?【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
按比例分配的概念
按比例分配是指根据一定的比例将某种资源或财富分配给不同的个体
或群体。
这种分配方式通常是为了实现公平、合理和有效的资源配置,以满足人们的基本需求和利益。
在经济学中,按比例分配常常被用来实现资源的公平分配。
例如,在
纳税方面,政府可以根据每个人的收入水平来确定不同税率,以确保
高收入者承担更多的税负。
类似地,在社会福利方面,政府可以根据
家庭收入水平来确定不同程度的补贴和救助措施,以确保弱势群体能
够获得必要的帮助。
在企业管理方面,按比例分配也被广泛应用。
例如,在员工薪酬方面,公司可以根据员工职位、绩效和工作年限等因素来确定不同级别员工
的薪资水平。
此外,在股权激励方面,公司可以将股票按照员工岗位
等级进行分配,以激励员工更好地为公司创造价值。
除此之外,在社会发展和资源配置方面也有着广泛应用。
例如,在国
际援助领域,发达国家可以根据受援国的经济和发展水平来确定资助
金额,以帮助这些国家实现可持续的发展。
此外,在自然资源管理方面,政府可以根据不同地区的生态环境和资源状况来制定不同的开采
和利用政策,以保护自然环境和生态平衡。
总之,按比例分配是一种公正、合理、有效的资源配置方式。
它能够满足人们的基本需求和利益,并促进社会发展和进步。
在实践中,我们需要根据不同情况灵活运用按比例分配的原则,以实现最优化的资源配置效果。
按比例分配(说课教案)
发表日期:2005年8月13日【编辑录入:yhsd】
一、说教材。
1、说课内容:九年义务教育人教版六年制小学数学第十一册第二单元61页例2。
2、本节课内容的地位与作用。
按比例分配在实际中有着广泛的应用,本节课注重了联系生产、生活和科技方面的实际,让学生能应用所学知识解决一些有关的问题。
按比例分配问题是把一个数量按照一定的比进行分配,它是在学生学习了“平均分”和“分数应用题”的基础上进行教学的延伸。
教材是采用把比化为分数,用分数知识来解答。
这样安捧学生容易接受,不仅加深了对分数应用题的理解,还有利于加强知识间的联系,为今后学习比例知识打下良好基础。
3、教学目标的确定。
目前,由应试教育转向素质教育是我们教育改革的总趋势,如何面向全体学生,使学生得到充分、自由、和谐、全面的发展是我们制定课堂教学目标的主导思想。
因此,我们要端正教育思想,充分发挥数学的教育功能,这对于贯彻全面发展的教育方针,有着十分重要的意义。
为此,我们制定了这堂课的教学目标。
(1)、使学生明确按比例分配是比的一种应用,又是“平均分”的发展,进一步明确按比例分配的意义。
(2)、让学生掌握有关按比例分配应用题的特征和解题方法,并在实际生活中得到应用。
(3)、培养学生观察、归纳和语言表达能力,发扬尝试、合作、协调精神,促进思维能力的发展。
4、本节课教学内容的编排特点及重点难点。
(1)、创设“分物情境”,建立表象。
通过学生动手操作和老师的点拨、启发,让学生从中发现规律,获得“按比例分配”的感知,为分散难点起到承上启下的作用。
(2)、巧设“故事情境”,引出尝试题。
让学生听喜闻乐见的故事,激发学生学习兴趣,并从中设疑,使学生对新知识产生强烈的求知欲望,自然地把学生吸引到例题的自学中。
(3)、设计“”自学——尝试——讨论——归纳”的教学程序进行例题的教学。
通过自学例2,试做尝试题,组织讨论,引导学生动脑想,动口说并进行归纳总结,调动全体学生积极参与探求知识的全过程,促进学生思维系统性的发展。
(4)、安排一个多层次的练习系统巩固,强化新知识。
运用触类旁通,举一反三和不同的训练方式,调动全体学生的积极性,达到训练的预期目的。
从上述分析可知,按比例分配的概念和有关应用题的解题方法是本节课的重点,可通
过“操作感知——自学尝试——讨论总结”等环节来突破,教学难点是如何运用比和分数的关系加深对分数应用题算理的理解,课堂上采用“观察——比较——说理”等形式来分解难点。
二、说教法和学法
推广素质教育的主渠道在于我们的课堂教学,如何把学生由被动听变为主动参与,关键在于要打破传统的灌输式教学模式。
因此,我们要树立起尊重学生,相信学生,放手让学生主动学习的观念。
针对这种教学思想,本节课的教学,主要从以下几个方面来探讨。
1、营造一个愉快、和谐、民主的课堂气氛。
本节课通过老师的语言、动作、表情,传递给学生一种亲切、鼓励、信任的情感意识,在师生之间架起互尊、互爱的桥梁,形成和谐的课堂气氛,从而有效地引导学生主动探讨新知识。
2、调动学生学习的主动性,激发学习兴趣。
本节课不断为学生设置问题和悬念,调动学生积极性。
(1)、动手操作,初步感知。
安排“分卡片”活动,折一折,看一看,想一想,说一说,促使多种感官的参与,在“平均分”的基础上进一步感知“按比例分配”的概念。
(2)、故事引趣,设置悬念。
本节课通过“听故事”创设问题情景,使学生有问题学,激发他们思考,诱导他们发现问题,解决问题,使学生始终处于探求知识原由的状态中。
3、指导看书,培养自学能力。
刚才的故事设疑调动了学生自学的积极性,老师在学生自学中也可以“扶一扶”,让学生带着问题边自学,边思考,达到学有所思,学有所获的目的。
4、放手尝试,主动探求新知。
学生自学课本后找到了办法,在老师的引导下,可以放手让学生尝试做故事里的题目,达到自主学习的目的。
5、讨论归纳,创造参与机会。
在自学尝试的基础上开展学生之间的讨论总结,这是把过去的满堂灌变为让学生自主学习的一个有效途径。
三、教学程序设计。
教学准备:电脑、录音机、投影、学生每人六张卡片。
(一)、复习。
1、操作感知,导入新课。
动手分一分:
(1)、按1:1把六张卡片分成两部分。
(2)、按2:1把六张卡片分成两部分。
’
通过动手操作,指出第一种情况是“平均分”,而第二种情况不是“平均分”。
说明在我们日常生活和工农业生产中,常常要把一个数量按照一定的比来进行分配,除了第一种情况是“平均分”外,还有第二种情况,由此导入新课,“按比例分配”。
这样安排导入有利于学生把握知识的发展变化与延伸,从而激发学生学习兴趣。
2、复习旧知,故事设疑。
(1)、比和分数关系的练习。
如:一个农场计划在100公顷的地里播种60公顷小麦和40公顷玉米;小麦和玉米的播种面积各占这块地的几分之几?小麦和玉米播种面积的比是多少?这样安排,目的是把握新旧知识和连接点,为分散难点起着积极的迁移作用。
(2)、故事激趣,引出尝试题。
放录音、听故事:同学们,中秋节快到了,唐僧和猪八戒做了一些月饼,他们一共卖得80元,其中唐僧和猪八戒做月饼个数比是5
:3,正当他们准备分钱时,孙悟空走过来了,唐僧于是叫孙悟空来分钱,猪八戒见了连忙说:“把80元平均分成两份,我要拿其中的一份。
”孙悟空听了笑起来。
老师问:
(1) 、同学们,你们认为孙悟空能不能按照猪八戒的要求来分钱?
(2)、那么孙悟空应该怎样分钱?谁能动脑筋来解决这个问题?
(二)、进行新课。
1、指导自学,探讨原由。
出示尝试题后,学生肯定会产生兴趣,这时老师可引导学生尝试练习,遇到困难时再把他们吸引到自学课本例2上。
自学的目的是让学生自己在课本中找出解决问题的方法,并出示自学提纲:这道题分配的是什么?按照什么分配?播种小麦和玉米的面积比是3 :2,表示播种的小麦占总播种面积的几分之几?播种的玉米占总播种面积的几分之几?
2、大胆尝试,初步探索。
学生自学课本后,可放手让他们做故事里的尝试题,老师可巡回视察,及时反馈尝试情况,学生可边尝试边看课本练习。
学生板演。
3、组织讨论,交流意见。
针对学生的自学和尝试情况,组织学生开展讨论,汇报自学情况,校对尝试错误,发挥学生之间互补作用,让他们各抒己见。
4、教师讲解,课堂小结。
先检查自学情况,再评讲尝试练习,要求学生说:“你是怎样想的?”。
最后让学生作概括性的总结:
(1)、按比例分配应用题是已知什么,求什么?
(2)、计算时先算什么,再算什么,后算什么。
这样训练学生的归纳能力,让学生有一个自我评价的机会。
5.质疑问难。
你们学习后,还有不明白的地方吗?培养学生大胆发问的好习惯。
(三)、多层训练,巩固新知识,形成技能。
练习是数学课堂教学一个重要环节,我W]的练习力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融洽恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。
1、分解性练习。
某班男女学生人数的比是3:4,男生占全班人数的( ),女生占全班人数的( )。
这种练习采用分散难点的办法促使知识结构的内化。
2、对应性练习。
62页的“做一做”第1题,采用讲练结合的形式巩固所学知识。
3、编题练习。
看图编题,后列式计算。
210个零件
第一车间?个第二车间?个
150千米
已修?千米还剩?千米
这种练习的目的是培养学生观察力,全面掌握题目特征与解法。
4、综合性练习。
(1)甲、乙两数的平均数是50,甲和乙的比是7 :3,甲、乙两数各是多少?
(2)一块长方形地周长120米,长和宽的比是3 :1,它的长和宽各是多少米?
这种练习旨在加强对比,提高学生分析和综合运用知识的能力。
(四)、全课总结
你学会了什么知识?掌握了哪些方法?
这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。
这节课的教学设计我们从以下几方面考虑:
(1)、教学结构是否合理,层次是否分明,思路是否清晰;
(2)、是不是学生学得愉快,老师教得轻松;
(3)、能否达到学前有设疑,学中有突破,学后有发展的要求;
(4)、有没有体现以教为主导,学为主体、练为主线的教学原则。
相信通过实践与改革,我们的课堂教学一定能得到素质教育的实现。