结构力学 位移计算
- 格式:ppt
- 大小:2.37 MB
- 文档页数:67
结构力学位移计算公式结构力学是研究结构体系的力学性能和运动规律的学科,是工程力学的一个重要分支。
在结构力学中,位移是一个重要的物理量,它描述了结构体系在受外力作用下发生的变形情况。
位移计算公式是用来计算结构体系的位移的数学公式。
1.剪力梁位移计算公式:在剪力梁中,位移是一个表示结构体系纵向变形的物理量。
当在剪力梁上施加一个集中力作用时,位移可以通过以下公式进行计算:δ=(F*L)/(G*A)其中,δ表示位移,F表示施加在剪力梁上的集中力,L表示剪力梁的长度,G表示剪力梁的剪切模量,A表示剪力梁的截面面积。
2.弹性梁位移计算公式:在弹性梁中,位移是一个表示结构体系纵向变形的物理量。
当在弹性梁上施加一个力矩作用时,位移可以通过以下公式进行计算:θ=(M*L)/(E*I)其中,θ表示位移,M表示施加在弹性梁上的力矩,L表示弹性梁的长度,E表示弹性梁的弹性模量,I表示弹性梁的截面惯性矩。
3.压杆位移计算公式:在压杆中,位移是一个表示结构体系纵向变形的物理量。
当在压杆上施加一个轴向力作用时,位移可以通过以下公式进行计算:δ=(F*L)/(E*A)其中,δ表示位移,F表示施加在压杆上的轴向力,L表示压杆的长度,E表示压杆的弹性模量,A表示压杆的截面面积。
4.梁柱位移计算公式:在梁柱中,位移是一个表示结构体系纵向变形的物理量。
当在梁柱上施加一个集中力作用时,位移可以通过以下公式进行计算:δ=(F*L)/(E*A)其中,δ表示位移,F表示施加在梁柱上的集中力,L表示梁柱的长度,E表示梁柱的弹性模量,A表示梁柱的截面面积。
上述的位移计算公式是基于简化假设和力学理论推导得出的,适用于较为简单的结构体系。
在实际工程设计中,考虑到结构的复杂性和非线性效应,可能需要使用更为复杂的有限元分析等方法来计算位移。
在实际应用中,还需要根据具体情况进行适当的修正和调整,以获得更加准确的位移计算结果。
第七章 结构位移计算到上节课为止,我们把五种静定杆件结构的计算问题全讨论过了。
我们知道内力计算问题属强度问题→是结力讨论的首要任务。
讲第一章时,结力的第二大任务:刚度问题,而要解决…,首先应该…杆件结构位移计算 (结构变形+刚度位移)→{刚度校核截面设计确定P max又是超静定结构计算的基础(双重作用)。
另外本章主要讨论各种杆件结构的位移计算问题。
结构位移计算的依据是虚功原理,所以本章先讨论刚体、变形体的虚功原理,然后推导出杆件结构位移计算的一般公式,再讨论各种具体结构的位移计算。
§7-1概述一、结构的位移画图:梁、刚架、桁架 (内力N 、Q 、M ——拉伸、剪切、弯曲)截面C 线位移:C ∆ 角位移:C ϕ结点的线位移: 两点(截面)相对线位移: 杆件的角位移: AB ϕ 两截面相对角位移: 两杆件相对角位移:1、位移定义:由于结构变形或其它原因使结构各点的位置产生(相对)移动(线位移),使杆件横截面产生(相对)转动(角位移)。
截面C 线位移:C ∆。
一般 分解成水平、垂直两方向:CH ∆、CV ∆ 角位移:C ϕ2、位移的分类:6种绝对位移:点(截面)线位移——分解成水平、垂直两方向截面角位移:杆件角位移:相对位移:两点(截面)相对线位移——沿连线方向两截面相对角位移:两杆件相对角位移:统称为:广义位移:角、线位移;相对、绝对位移Δki:k:产生位移的方向;i:引起位移原因。
如ΔA P、Δat、ΔA C广义力:集中力、力偶、分布荷载,也可以是上述各种力的综合二、引起位移的原因1、荷载作用:(荷载→内力→变形→位移)2、温度改变:静定结构,温度改变,→0应力非0应变→结构变形(材料胀缩引起的位移性质同)3、支座移动;(无应力,无应变,但几何位置发生变化){刚体位移(制造误差同)变形位移三、计算位移的目的1)刚度验算:最大挠度的限制(框架结构弹性层间位移限值1/450)2)为超静定结构的弹性分析打下基础3)预先知道变形后的位置,以便作出一定的施工措施:(起重机吊梁、板)(屋架安装)(建筑起拱)(屋窗、门、过梁)(结构要求高,精密)四、计算位移的有关假定(简化计算)1)弹性假设2)小变形假设建立平衡、应变与位移、位移与荷载成线性关系3)理想约束(联结,不考虑阻力摩擦)变形体系{ 线性变形体系(线弹性体系)荷载和位移呈线性关系,且荷载全撤除后位移将全部消失,无残余变形,(可用位移叠加原理)非线形变形体系(分段线形叠加)4)位移叠加原理(类似内力、反力叠加)§7-2 变形体系的虚功原理一、 位移实位移:外因作用下结构实际位移虚位移:根据解题需要,虚设位移状态 (满足变形协调+边界条件) 统称为:广义位移二、功:力所做的功:该力大小乘以力方向上的相应位移常力的功: T =P ×Δ=P ×D ×cos a (大小、方向、作用点不变) 变力的功:T=⎰s dT =⎰s P ×cos (P ,d s )×d s力偶所做的功:功两要素:力与位移P :广义力(力、力偶、相对力、相对力偶)Δ:和广义力相对应的广义位移(线、角、相对线、相对角)注意:在定义功T 时,没有说位移Δ是由力P 引起的,可能由P 或其它原因,但P 力照样作功。
结构位移计算的一般公式1.梁的位移计算:对于均布荷载作用下的梁结构,可以使用梁的基本理论进行位移计算。
其中,梁的位移可以通过悬臂梁的位移公式进行计算。
对于简支梁,可以使用不同支座之间的相对位移进行计算。
梁的位移计算一般采用梁的位移方程,其中包含了梁的弹性变形和旋转变形。
对于梁的弹性变形,可以使用弹性力学理论中的位移方程进行计算。
2.柱的位移计算:柱的位移计算也是结构位移计算的重要内容之一、对于纯压力作用下的柱,可以使用柱的位移计算公式进行计算。
其中,柱的位移与柱的长度和截面性质有关,可以使用柱的弹性位移方程进行计算。
对于倾斜作用的柱,可以将倾斜柱看作由多个横截面组成的梁,然后进行梁的位移计算。
3.平面桁架的位移计算:平面桁架位移计算是结构力学中的常见问题之一、对于平面桁架结构,可以使用节点位移法进行位移计算。
节点位移法是一种基于平衡条件和相容条件的分析方法,通过计算每个节点的位移,然后通过节点位移与单元位移关系计算整个结构的位移。
4.二维和三维结构的位移计算:对于二维和三维结构,位移计算相对复杂。
一般来说,可以通过有限元分析进行位移计算。
有限元方法可以将结构分为有限数量的单元,每个单元具有独立的位移方程,然后通过确定每个单元的位移,计算整个结构的位移。
有限元方法可以将结构的位移计算问题转化为求解大规模线性方程组的问题。
综上所述,结构位移计算的一般公式包括梁的位移计算公式、柱的位移计算公式、平面桁架的位移计算公式,以及二维和三维结构的位移计算公式。
对于不同类型的结构,位移计算方法略有不同,但都可以通过基本的力学理论和方法进行计算。
(2)位移互等定理: 据功的互等定理1·δ12=1·δ21 位移互等定理: 第二个单位力所引起的第一个单位力作用点沿其方向的位移,等于第一个单位力所引起的第二个单位力作用点沿其方向的位移。
即δ12= δ21 又如:ϕA 有↷ A C P1=1 B A C B ⌒ M=1 fC 36 ϕ A= f c(3)反力互等定理:据功的互等定理 1 △1=1 2 r12·△1= r21·△2 即 r21 1 2 △2=1 r12= r21 r12 上图表示支座1发生单位位移的状态,此时支座2产生的反力为r21。
下图表示支座2发生单位位移的状态,此时支座1产生的反力为r12。
反力互等定理:支座1发生单位位移所引起的支座2的反力,等于支座2发生单位位移所引起的支座1的反力。
37(4)反力位移互等定理由功的互等定理 r12ϕ1 + F2 Δ 21 = r22 i0 + rb i0 r12ϕ1 + F2 Δ 21 = 0 ϕ1 = 1, F2 = 1 可得r1 2 = − Δ 2 1 图a表示F2=1作用时,支座1的反力偶为r12,方向如图。
图b表示支座1顺r12方向发生单位转角时,F2作用点沿其方向的位移为△21。
反力位移互等定理:单位力所引起的结构某支座反力,等于该支座发生单位位移时 38 所引起的单位力作用点沿其方向的位移,符号相反。
主要内容一、图乘法的应用条件:二、图乘法的计算公式: ● 直杆 MMP 1 d s = ∑ (± A y 0 Δ = ∑∫ ● EI不变EI EI ● 至少有一个直线弯矩图三、图乘法的注意事项(1)必须符合上述三个前提条件;(2)竖标yC只能取自直线图形;(3)ω与yC若在杆件同侧则乘积取正号,反之取负号。
(4)顶点的切线与基线平行,才能用抛物线图形的面积和形心进行计算;反之,要把抛物线图形进行分解,应用叠加法求解. 互等定理适用于线弹性结构(包括静定结构和超静定结构) 39。