2017年春季学期新版新人教版八年级数学下学期19.2、一次函数同步练习12
- 格式:doc
- 大小:114.00 KB
- 文档页数:3
人教版八年级数学下19.2一次函数同步练习题(附答案)《19.2一次函数》同步练习题一、选择题.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是A.1B.2c.3D.4.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s与行驶时间t的关系如图所示,则下列结论中错误的是A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时c.相遇时快车行驶了150千米D.快车出发后4小时到达乙地.已知一次函数,若随着的增大而减小,则该函数图象经过二、三象限、二、四象限第二、三、四象限、三、四象限.一次函数,当≤x≤1时,y的取值范围为1≤y≤9,则•b的值为A.14B.c.或21D.或14.若y=x+2﹣3b是正比例函数,则b的值是.A.0B.c.-D.-.下图中表示一次函数与正比例函数图像的是..一次函数y1=x+b与y2=x+a的图象如图,则下列结论:①<0;②a>0:③b>0;④x<2时,x+b<x+a中,正确的个数是A.1B.2c.3D.4二、填空题.已知:一次函数的图像平行于直线,且经过点,那么这个一次函数的解析式为..已知,一次函数的图像与正比例函数交于点A,并与y轴交于点,△AoB的面积为6,则。
0.一次函数y=x+2中,y随x的增大而减小,则a的取值范围是_________.1.直线y=-2x++2和直线y=3x+-3的交点坐标互为相反数,则=______。
.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右第4个阴影三角形的面积是_____,第XX个阴影三角形的面积是_____.三、解答题3.如图,点A、B、c的坐标分别为、、,将△ABc先向下平移2个单位,得△A1B1c1;再将△A1B1c1沿y轴翻折180°,得△A2B2c2;.画出△A1B1c1和△A2B2c2;求直线A2A的解析式..已知:甲、乙两车分别从相距300千米的A,B两地同时出发相向而行,其中甲到B地后立即返回,下图是它们离各自出发地的距离y与行驶时间x之间的函数图象.求甲车离出发地的距离y与行驶时间x之间的函数关系式,并写出自变量的取值范围;当它们行驶到与各自出发地的距离相等时,用了9/2小时,求乙车离出发地的距离y与行驶时间x之间的函数关系式;在的条件下,求它们在行驶的过程中相遇的时间..如图,直线l_1的解析表达式为y=-3x+3,且l_1与x轴交于点D.直线l_2经过点A、B,直线l_1,l_2交于点c.求点D的坐标;求直线l_2的解析表达式;求ΔADc的面积;在直线l_2上存在异于点c的另一个点P,使得ΔADP 与ΔADc的面积相等,求P点的坐标.参考答案.c.【解析】试题分析:①y=x是一次函数,故①符合题意;②y=是一次函数,故②符合题意;③y=自变量次数不为1,故不是一次函数,故③不符合题意;④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个.故选c..c【解析】根据函数的图象中的相关信息逐一进行判断即可得到答案.解:观察图象知甲乙两地相距400千米,故A选项正确;慢车的速度为150÷2.5=60千米/小时,故B选项正确;相遇时快车行驶了400-150=250千米,故c选项错误;快车的速度为250÷2.5=100千米/小时,用时400÷100=4小时,故D选项正确.故选c..B【解析】试题分析:∵一次函数,若随着的增大而减小,∴0,∴此函数的图象经过一、二、四象限..D【解析】∵因为该一次函数y=x+b,当-3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知若该一次函数的y值随x的增大而增大,则有x=-3时,y=1,x=1时,y=9;则有1=-3+b,9=+b,解之得=2,b=7,∴•b=14.若该一次函数的y值随x的增大而减小,则有x=-3时,y=9,x=1时,y=1;则有9=-3+b,1=+b,解之得=-2,b=3,∴•b=-6,综上:•b=14或-6.故选D..B【解析】由正比例函数的定义可得:2-3b=0,解得:b=.故选B..c【解析】①当n>0,正比例函数y=nx过、三象限;与n同号,同正时y=x+n过、二、三象限,故A错误;同负时过第二、三、四象限,故D错误;②当n<0时,正比例函数y=nx过第二、四象限;与n 异号,>0,n<0时y=x+n过、三、四象限,故B错误;<0,n>0时过、二、四象限.c正确故选c..B.【解析】试题分析:∵直线=x+b过、二、四象限,∴<0,b>0,所以①③正确;∵直线y2=x+a的图象与y轴的交点在x轴下方,∴a<0,所以②错误;当x>3时,x+b<x+a,所以④错误.故选B..y=﹣x﹣4.【解析】试题分析:因为一次函数的图象平行于直线y=﹣x+1,所以=﹣1,∵经过点,∴b=﹣4,∴这个一次函数的解析式为y=﹣x﹣4.故答案是y=﹣x﹣4..4或.【解析】试题分析:根据题意,画出图形,根据三角形AoB的面积为6,求出A1、A2的坐标,用待定系数法求出一次函数的解析式即可.试题解析:如图:∵三角形AoB的面积为6,∴A1E•oB=6,∵oB=4,∴A1E=3,代入正比例函数y=x得,y=1,即A1,设一次函数的解析式为y=x+b,则,解得,=,b=-4,∴一次函数的解析式为y=x-4;同理可得,一次函数的另一个解析式为y=-x-4;∴b=4或0.a>-【解析】试题解析:一次函数y=x+2中,y随x的增大而减小,则:解得:故答案为:1.-1.【解析】试题分析:把两个直线方程联立方程组,求出它们的解,根据互为相反数可求出的值.试题解析:由得:x=1所以y=-1.故=-1..128,2^4033【解析】【分析】根据等腰直角三角的性质以及直线上的点的坐标满足直线解析式,根据直线y=x+2即可表示出每一个阴影三角形的直角边长,然后表示出三角形的面积,从中发现规律用来解题即可.【详解】当x=0时,y=x+2=2,∴oA1=oB1=2;当x=2时,y=x+2=4,∴A2B1=B1B2=4;当x=2+4=6时,y=x+2=8,∴A3B2=B2B3=8;当x=6+8=14时,y=x+2=16,∴A4B3=B3B4=16.∴An+1Bn=BnBn+1=2n+1,∴Sn+1=1/2×2=22n+1,当n=3时,S4=22×3+1=128;当n=XX时,SXX=22×XX+1=24033.故答案为:128;2^4033.3.见解析;y=1/3x【解析】分析:将△ABc的三个顶点分别向下平移2个单位,得到新的对应点,顺次连接得△A1B1c1;再从△A1B1c1三个顶点向y轴引垂线并延长相同单位,得到新的对应点,顺次连接,得△A2B2c2;设直线A2A的解析式为y=x+b,再把点A,A2代入,用待定系数法求出它的解析式.详解:如图所示:△A1B1c1,△A2B2c2即为所求;设直线A2A的解析式为y=x+b把点的坐标AA2的坐标代入上式得:解得:,所以直线A2A的解析式为..见解析【解析】分析:由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小于27/4时是一次函数.可根据待定系数法列方程,求函数关系式.5小时大于3,代入一次函数关系式,计算出乙车在用了9/2小时行使的距离.从图象可看出求乙车离出发地的距离y与行驶时间x之间是正比例函数关系,用待定系数法可求解.两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.详解:当0≤x≤3时,是正比例函数,设为y=x,x=3时,y=300,代入解得=100,所以y=100x;当3<x≤27/4时,是一次函数,设为y=x+b,代入两点、,得{█解得{█,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y={█@540-80x).当x=9/2时,y甲=540﹣80×9/2=180;乙车过点,y乙=40x.由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=15/7;②当3<x≤27/4时,+40x=300,解得x=6.综上所述,两车次相遇时间为第15/7小时,第二次相遇时间为第6小时..D;y=3/2x-6;9/2;P点坐标为.【解析】试题分析:因为点D是一次函数y=-3x+3与x 轴的交点,所以令y=0,即可求出点D坐标,设直线l_2的解析式为:y=x+b,将点A,B坐标代入列二元一次方程组即可求出,b,即可得l_2的解析式, 因为点c是直线l_1和直线l_2的交点,可将两直线所在解析式联立方程组,求出点c坐标,再根据点A,D可得三角形的底边长,由点c的纵坐标可得三角形的高,代入三角形面积公式进行计算即可求解,根据△ADP与△ADc的面积相等,可知点P与点c到x轴的距离相等,且又不同于点c,所以求出点P的纵坐标,然后代入直线l_2的解析式即可求解.试题解析:∵y=﹣3x+3,∴令y=0,得﹣3x+3=0,解得x=1,∴D,设直线l2的解析表达式为y=x+b,由图象知:x=4,y=0,x=3,y=-3/2,代入表达式y=x+b,得{█,解得{█,所以直线l2的解析表达式为y=3/2x-6,由图象可得:{█,解得{█,∴c,∵AD=3,∴S△ADc=1/2×3×3=9/2,因为点P与点c到AD的距离相等,所以P点的纵坐标为3,当y=3时,3/2x-6=3,解得x=6,所以P点坐标为.。
19.2.2 一次函数同步练习题一、选择题1.已知直线y=kx+b与y=2x﹣5平行且经过点(1,3),则y=kx+b的表达式是()A. y=x+2 B. y=2x+1 C. y=2x+2 D. y=2x+32.已知直线152y x=+与一条经过原点的直线l平行,则这条直线l的函数关系式为()A.152y x=-+ B.12y x= C.12y x=- D. y=2x3.已知函数,,的图象交于一点,则值为().A. B. C. D.4.在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或.向左平移4个单位,恰好都在直线y=kx+b上,则k的值是()A. B. C. D. 25.已知一次函数y=kx+2的图象经过点(3,-3),则k值为( )A. B. C. D.6.已知变量y与x之间的函数关系的图象如图,它的解析式是()A. y=−x+2(0≤x≤3)B. y=−x+2C. y=−x+2(0≤x≤3)D. y=−x+2 7.一次函数的图象交x轴于(2,0),交y轴于(0,3),当函数值大于0时,x的取值范围是()A. x>2B. x<2C. x>3D. x<38.已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3,则其表达式为( )A. y =1.5x +3B. y =-1.5x +3C. y =1.5x +3或y =-1.5x +3D. y =1.5x -3或y =-1.5x -39.如图,过A 点的一次函数的图象与正比例函数2y x =的图象相交于点B ,则这个一次函数的解析式是( ).A. 23y x =-+B. 3y x =-C. 23y x =-D. 3y x =-+ 二、填空题 10.直线关于y 轴对称的直线的解析式_________.11.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.12.若一次函数y =kx +b ,当-3≤x ≤1时,对应的y 值满足1≤y ≤9,则一次函数的解析式为____________.13.若点(),3A m 在一次函数57y x =-的图象上,则m 的值为__________.14.请写出一个经过点1,2)-(且y 随x 的增大而减小的一次函数表达式 ________________. 15.如图,将直线y =-x 沿y 轴向下平移后的直线恰好经过点A(2,-4),且与y 轴交于点B ,在x 轴上存在一点P 使得PA +PB 的值最小,则点P 的坐标为____.三、解答题16.已知一次函数在时,,且它的图象与轴交点的横坐标是,求这个一次函数的解析式.17.已知y=(m+1)x2-|m|+n+4是y关于x的一次函数.(1)求m、n的值;(2)当m、n满足什么条件时,此函数的图象经过坐标原点?18.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标.19.“边疆宣讲团”从招待所出发,动身前往某边防哨所去为哨所官兵宣讲“十九大”精神.若按照他们出发时的速度匀速直线行进,则刚好在约定的时间准点到达哨所; 可天有不测风云! 因道路交通事故,他们中途被迫停留了半小时; 为按约定时间准点到达哨所,他们后来加快速度但仍保持匀速直线行进,结果正好准点到达哨所.如图7,是他们离哨所的距离y(km)与所用时间x(h)之间的部分函数图象.根据图象,解答下列问题:(1)求CD所在直线的表达式;(2)求招待所离哨所的距离.20.如图,直线y=kx+b(k≠0)与两坐标轴分别交于点B,C,点A的坐标为(-2,0)点D的坐标为(1,0)(1)试确定直线BC的函数关系式.(2)若p(x,y)是直线BC在第一象限内的一个动点,试写出△ADP的面积S与x的函数关系式.(3)当P运动到什么位置时,△ADP的面积为3?请写出此时点P的坐标,并说明理由.参考答案1.B2.B3.B4.B5.B6.A7.B8.C9.D10.y=2x+111.12.y=2x+7或y=-2x+313.214.y=-x+315.(23,0)16.【解析】试题分析:把,和,代入到,得到关于a和b的二元一次方程组,解方程组求出a、b的值即可得到结论.∵时,且与轴交点为,∴,解得,∴.17.(1) m=1,n为任意实数;(2) m=1,n=-4【解析】试题分析:(1)根据一次函数的定义,即可得出关于m的一元一次不等式以及含绝对值符号的一元一次方程,解之即可得出结论;(2)根据一次函数图象上点的坐标特征,即可得出关于n的一元一次方程,解之即可得出结论.试题解析:(1)∵y=(m+1)x2-|m|+n+4是y关于x的一次函数,∴m+1≠0,2-|m|=1,解得m=1.∴m=1,n为任意实数.(2)∵y=2x+n+4的图象过原点,∴n+4=0,解得n=-4.∴当m=1,n=-4时,此函数的图象经过坐标原点.18.(1)y=x﹣4;(2)(﹣4,0).解析:(1)由题意可得2k﹣4=﹣3,解得k=,∴一次函数解析式为y=x﹣4;(2)把该函数图象向上平移6个单位可得y=x﹣4+6=x+2,令y=0可得x+2=0,解得x=﹣4,∴平移后图象与x轴的交点坐标为(﹣4,0).19.(1)CD的解析式为:y=-12.5+50;(2)招待所与哨所之间距离为40km 解析:(1)设CD所在直线的表达式为y=kx+b(k≠0),将点C(2,25)、D(3,12.5)代入y=kx+b,得,解得:,∴CD所在直线的表达式为y=﹣12.5x+50.(2)当y=0时,有﹣12.5x+50=0,解得:x=4,∴原计划4小时到达.设AB所在直线的表达式为y=mx+n(m≠0),将点(1.5,25)、(4,0)代入y=mx+n,得,解得:,∴AB所在直线的表达式为y=﹣10x+40.当x=0时,y=﹣10x+40=40,∴点A的坐标为(0,40),∴招待所离哨所的距离为40km.20.(1)y=-x+4;(2) S=-x+6;(3) (3,2)解:(1)设直线BC的函数关系式为y=kx+b(k≠0),由题意,得方程组,,解得,所以,函数y与x的函数关系式为y=-x+4;(2)由题意,P(x,y)是直线BC在第一象限的点,∴y>0,且y=-x+4,又,点A的坐标为(-2,0),点D的坐标为(1,0),∴AD=3,∴S△ADP=×3×〔-x+4 〕=-x+6,即S=-x+6;(3)当S=3时,-x+6=3,解得x=3,所以y=-×3+4=2,此时,点P的坐标为(3,2).。
19.2.2 一次函数(1) 同步练习一、选择题1.下列函数(1)(2)(3)(4)(5),其中是一次函数的是()A. 4个B. 3个C. 2个D. 1个2.下列说法正确的是( )A. 过原点的直线都是正比例函数B. 正比例函数图象经过原点C. y=kx 是正比例函数D. y=3+x 是正比例函数3.当5x =时一次函数2y x k =+和34y kx =-的值相同,那么k 和y 的值分别为()A. 1,11B. -1,9C. 5,11D. 3,34.若函数是一次函数,则m ,n 应满足的条件是( ) A. m≠2且n=0 B. m=2且n=2 C. m≠2且n=2 D. m=2且n=05.已知一次函数y=(k+2)x+k 2﹣4的图象经过原点,则( )A. k=±2B. k=2C. k=﹣2D. 无法确定6.已知等腰三角形的周长为10 cm ,将底边长表示为ycm ,腰长表示为x cm ,则x 、y 的关系式是102y x =-,则其自变垦x 的取值范围是( )A. 0<x <5B. 52<x <5 C. 一切实数 D. x >0 7.已知长方形的周长为30 cm ,一边长为x cm ,与其相邻的另一边长为y cm ,则y 与x 之间的函数解析式为( )A. y =B. y =30-xC. y =30-2xD. y =15-x二、填空题8.方程用含x 的代数式表示y 得____________________。
9.下列函数中:()121y x =+,()121y x=+,()3y x =-,()4(y kx b k b =+、是常数),一次函数有____(填序号).10.若点(1,m )和点(n ,2)都在直线y =x ﹣1上,则m +n 的值为_____.11.若点(),3A m 在一次函数57y x =-的图象上,则m 的值为__________.12.若等腰三角形的周长为50 cm ,底边长为x cm ,一腰长为y cm ,y 与x 的函数解析式为y = (50-x),则变量x 的取值范围是____________.三、解答题13.已知y=(m+1)x 2﹣|m|+n+4(1)当m 、n 取何值时,y 是x 的一次函数?(2)当m 、n 取何值时,y 是x 的正比例函数?14.已知y 与x ﹣3成正比例,且当x=2时,y=﹣3.(1)求y 与x 之间的函数关系式;(2)求当x=1时,y 的值;(3)求当y=﹣6时,x 的值.15.当m ,n 为何值时,是关于x 的一次函数?当m ,n 为何值时,y 是关于x 的正比例函数?16.现有450本图书供给学生阅读,每人9本,求余下的图书数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围.17.已知等腰三角形的周长为12cm ,若底边长为y cm ,一腰长为x cm..(1)写出y 与x 的函数关系式;(2)求自变量x 的取值范围.参考答案1.B【解析】(1)是一次函数;(2)是一次函数;(3)是一次函数;(4)是二次函数;(5)是反比例函数.∴一次函数有3个.故选B.点睛:本题考查了一次函数的识别,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数,根据定义判断即可2.B【解析】A.y轴是过原点的直线,但不是正比例函数,所以A错误;B.正确;C.当k=0时,不是正比例函数;D.是一次函数.故选B.点睛:本题主要考查了正比例函数和一次函数的性质,正比例函数的图象是一条过原点的直线,但不包括y轴,正比例函数的一般式y=kx中,要注意k≠0,一次函数的一般式是y=kx+b(k≠0).3.A【解析】将x=5代入y=2x+k,得y=k+10,将x=5代入y=3kx-4,得y=15k-4,则k+10=15k-4,解得k=1.则y=k+10=11.故选A.4.C【解析】∵函数y=(m−2)xn−1+n是一次函数,∴,解得.故选:C.5.B 【解析】由题意可得,24020k k -=+≠且,解得k=2,故选B .6.B【解析】由题意得2x +y =10,Q 10-2x >0. ∴x <5;Q y <2x ,102x ∴-<2x, 解得x<52, 所以52<x <5,选B. 7.D【解析】∵矩形的周长是30cm ,∴矩形的一组邻边的和为15cm ,∵一边长为xcm ,另一边长为ycm.∴y=15−x ,故选:D.8.【解析】用含x 的代数式表示y移项得:−5y=−4x+6,系数化为1得:y=;故填:y=9.(1),(3)【解析】根据一次函数的概念,形如y=kx+b (k≠0,k 、b 为常数)的函数,可知(1)(3)是一次函数.故答案为:(1)(2).10.3【解析】解:∵点(1,m )和点(n ,2)都在直线y =x ﹣1上,∴m =1﹣1=0,2=n ﹣1,解得m =0,n =3,∴m +n =3.11.2【解析】∵(),3A m -在一次函数57y x =-,∴357m =-,∴m=2.故答案为:2.12.0<x <25【解析】由题意得:0<x<2y ,∵y=50-x ,即x<50-x ,∴x<25,又∵x>0,∴x 的取值范围是0<x <25.故答案为:0<x <2513.(1)当m=1,n 为任意实数时,这个函数是一次函数;(2)当m=1,n=﹣4时,这个函数是正比例函数.【解析】试题分析:(1)因为一次函数的定义是:形如y kx b =+ (其中k ,b 是常数且k ≠0),所以可得2-|m |=1且m +1≠0,n 为任意实数, ,(2)因为正比例函数的定义是 :形如y kx = (其中k 是常数且k ≠0), 所以可得2-|m |=1且m +1≠0,n +4=0,然后进行计算即可.试题解析:(1)根据一次函数的定义,得:2-|m |=1,解得m =±1,又∵m +1≠0即m ≠-1,∴当m =1,n 为任意实数时,这个函数是一次函数,(2)根据正比例函数的定义,得:2-|m |=1,n +4=0,解得m =±1,n =-4,又∵m +1≠0即m ≠-1,∴当m =1,n =-4时,这个函数是正比例函数.点睛:本题主要考查一次函数的定义和正比例函数的定义,解决本题的关键要熟练掌握一次函数和正比例函数的定义.14.(1)y=3x﹣9;(2)﹣6;(3)x=1.【解析】试题分析:(1)根据y与x-3成正比例,设出一次函数的关系式,再把当x=2时,y=-3代入求出k的值即可;(2))把x=1代入y=3x-9即可求得y的值;(3)把y=-6代入y=3x-9即可求得x的值.解:(1)∵y与x﹣3成正比例,设出一次函数的关系式为:y=k(x﹣3)(k≠0),把当x=2时,y=﹣3代入得:﹣3=k(2﹣3),∴k=3,∴y与x之间的函数关系式为:y=3(x﹣3),故y=3x﹣9.(2)把x=1代入y=3x﹣9得,y=3×1﹣9=﹣6;(3)把y=﹣6代入y=3x﹣9得,﹣6=3x﹣9,解得x=1;15.(1)m≠且n=1;(2)m=-1且n=1【解析】通过一次函数及正比例函数的定义即可得到m,n的取值范围.解:若y=(5m-3)x2-n+(m+n)是关于x的一次函数,则有解得所以当m≠且n=1时,y=(5m-3)x2-n+(m+n)是关于x的一次函数.若y=(5m-3)x2-n+(m+n)是关于x的正比例函数,则有解得所以当m=-1且n=1时,y=(5m-3)x2-n+(m+n)是关于x的正比例函数.16.y=450-9x, 0≤x≤50,且x为整数.【解析】试题分析:由余下的图书数=总图书数-借给学生的图书总数可得出y与x的函数关系,再结合每人9本数即可得到x的最大取值此时即可得到x的取值范围.试题解析:根据题意,得y=450-9x,根据每人9本可得x最多为=50答:剩余图书的本数y(本)和学生人数x(人)之间的函数表达式为y=450-9x,自变量的取值范围为0≤x≤50.17.(1)y与x的函数关系式为:y=12-2x;(2)自变量x的取值范围为3<x<6.【解析】试题分析:(1)底边长=周长-2×腰长;(2)根据三角形三边关系定理:三角形任意两边之和大于第三边来进行解答.试题解析:(1)依题意有:y=12−2x,故y与x的函数关系式为:y=12−2x;(2)依题意有:2{x yx y x>+>,即2122{1220x xx>-->,解得:3<x<6.故自变量x的取值范围为3<x<6.。
19.2.2 一次函数 班级: 姓名:一、单选题1.已知点A (1,y 1),B (-3,y 2)都在直线122y x =-+上,则( )A .y 1< y 2B .y 1= y 2C .y 1>y 2D .不能比较2.已知点(k ,b)为第二象限内的点,则一次函数y kx b =-+的图象大致是( ) A . B . C . D . 3.关于函数21y x =-+,下列结论正确的是( )A .图象必经过点()2,1-B .图象经过第一、二、三象限C .当12x >时,0y <D .y 随x 的增大而增大4.如图,将点P(-2,3)向右平移n 个单位后落在直线y=2x-1上的点P'处,则n 等于()A .4B .5C .6D .75.一次函数y=ax+b 与y=abx 在同一个平面直角坐标系中的图象不可能是( )A .B .C .D .6.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( ) A . B .C .D .7.将直线y =-x +a 的图象向下平移2个单位后经过点A (3,3),则a 的值为( ) A .-2 B .2 C .-4 D .88.正比例函数的图象如图所示,将这条直线向右平移一个单位长度,它所表示函数的解析是( )A .12y x =-+ B .1y x =-+C .22y x =-+D .122y x =-9.将函数y 2x =的图象向下平移3个单位,则得到的图象相应的函数表达式为( ) A .y 2x 3=+B .y 2x 3=-C .y 2x 6=+D .y 2x 6=-二、填空题10.如图,正比例函数y=2x 的图象与一次函数y=-3x+k 的图象相交于点P(1,m),则两条直线与x 轴围成的三角形的面积为_______.11.关于一次函数(0)y kx k k =+≠有如下说法:①当0k >时,y 随x 的增大而减小;②当0k >时,函数图象经过一、 二、三象限;③函数图象一定经过点(1, 0);④将直线(0)y kx k k =+≠向下移动2个单位长度后所得直线表达式为()2)0( y k x k k =-+≠.其中说法正确的序号是__________.12.弹簧的长度ycm 与所挂物体的质量x(kg)的关系是一次函数,图像如图所示,则弹簧不挂物体时的长度是_______.13.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______. 14.已知A 地在B 地的正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (km )与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为______km.15.若点P (-1,y 1)和点Q (-2,y 2)是一次函数y =13-x+b 的图象上的两点,则y 1,y 2的大小关系是___.三、解答题16.如图,在平面直角坐标系中,已知点()5,0A 和点()0,4B .(1)求直线AB 所对应的函数表达式;(2)设直线y x =与直线AB 相交于点C ,求AOC ∆的面积.17.如图,在平面直角坐标系xOy 中,过点(0,4)A 的直线1l 与直线2l :1y x =+相交于点(,2)B m . (1)求直线1l 的表达式;(2)过动点(,0)P n 且垂直于x 轴的直线与1l ,2l 的交点分别为M ,N ,当点M 位于点N 上方时,请直接写出n 的取值范围是 .一、单选题1.对于函数y =2x+1下列结论不正确是( )A .它的图象必过点(1,3)B .它的图象经过一、二、三象限C .当x >12时,y >0 D .y 值随x 值的增大而增大2.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 3.已知正比例函数y=kx(k≠0)的函数值y 随x 的增大而减小,则函数y=kx ﹣k 的图象大致是( )A .B .C .D . 4.已知点124,, 2()(),y y -都在直线21y x =-+上,则1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不能确定5.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D . 6.已知一次函数y=mx+n ﹣2的图象如图所示,则m 、n 的取值范围是( )A .m >0,n <2B .m >0,n >2C .m <0,n <2D .m <0,n >27.一次函数y kx b =+的图象经过第一、二、四象限,若点()2,A m ,()1,B n -在该一次函数的图象上,则m 、n 的大小关系是( )A .m n <B .m n =C .m n >D .无法判定8.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是( )A .打六折B .打七折C .打八折D .打九折9.一次函数y =kx -(2-b)的图像如图所示,则k 和b 的取值范围是( )A .k>0,b>2B .k>0,b<2C .k<0,b>2D .k<0,b<2二、填空题 10.已知:如图,在平面直角坐标系xOy 中,一次函数y =34x+3的图象与x 轴和y 轴交于A 、B 两点将△AOB 绕点O 顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.11.已知:一次函数y kx b =+的图像在直角坐标系中如图所示,则kb ______0(填“>”,“<”或“=”)12.把直线112y x =--向y 轴正方向平移4个单位,得到的直线与x 轴的交点坐标为__________. 13.如果直线y=-2x+k 与两坐标轴围成的三角形面积是8,则k 的值为______.14.关于x 的一次函数y=3kx+k-1的图象无论k 怎样变化,总经过一个定点,这个定点的坐标是 .15.一次函数11:24l y x =-+与221:12l y x =--的图象如图所示,1l 交x 轴于点A ,现将直线2l 平移使得其经过点A ,则2l 经过平移后的直线与y 轴的交点坐标为________.16.一次函数23y x =-的图像经过的象限是___________.17.如果()2213m y m x -=-+是一次函数,则m 的值是________________.18.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题19.已知一次函数2y kx k =+-的图象不经过第二象限.(1)求k 的取值范围;(2)当1k =时,判断点()1,3是否在该函数图象上.20.如图,直线y=kx+b 与x 轴、y 轴分别交于点A ,B ,且OA ,OB 的长(OA >OB )是方程x 2-10x+24=0的两个根,P (m ,n )是第一象限内直线y=kx+b 上的一个动点(点P 不与点A ,B 重合).(1)求直线AB 的解析式.(2)C 是x 轴上一点,且OC=2,求△ACP 的面积S 与m 之间的函数关系式;(3)在x 轴上是否有在点Q ,使以A ,B ,Q 为顶点的三角形是等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.21.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B .(1)求一次函数的解析式;(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;(3)若该一次函数的图象与x 轴交于D 点,求△BOD 的面积.参考答案1-5.ADCAD6-9.BDBB10.53 11.②12.10cm13.1y x =+14.1.515.y 1<y 216.(1)4y x 45=-+;(2)AOC 50S 9=V . 17.(1)直线1l 的表达式为24y x =-+;(2)1n <.1-5.CADAA6-9.DACB10.443y x =-+ 11.> 12.(6,0)13.42±.14.(-13,-1). 15.(0,1)16.一、三、四17.-1 ;18.y=-3x+5 19.(1)02k <≤;(2)点()1,3不在该一次函数的图像上.20.(1)y=-23x+4;(2)S=-83m+16或S=-43m+8(0<m <6);(3)存在,130)或130)或(-6,0)或(53,0) 21.(1)y =-x +3;(2)不在,理由略;(3)3。
一、填空题1、已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.2、当直线y=kx+b与直线y=2x﹣2平行,且经过点(3,2)时,则直线y=kx+b为.3、把直线y=x-1向下平移后过点(3,-2),则平移后所得直线的解析式为__ __.4、如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4).结合图象可知,关于x的方程ax+b=0的解是__________.5、已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为______________.6、一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是7、已知关于x的一元一次方程kx+b=0的解是x=﹣2,一次函数y=kx+b的图象与y轴交于点(0,2),则这个一次函数的表达式是.8、已知一次函数的图象经过点A(0,2)且坐标轴围成的直角三角形的面积为2,则这个一次函数的表达式为.9、点(-3,2),(a,a+1)在函数y=kx-1的图象上,则k=________,a=________.二、选择题10、在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限11、将直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A.y=2x-4 B.y=2x+4C.y=2x+2 D.y=2x-212、直线y=3x向下平移1个单位长度再向左平移2个单位长度,得到的直线是( )A.y=3(x+2)+1B.y=3(x-2)+1C.y=3(x+2)-1D.y=3(x-2)-113、若k≠0,b>0,则y=kx+b的图象可能是( )14、端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米 B.小明到家的时间为17点C.返程的速度为60千米每小时 D.10点至14点,汽车匀速行驶15、在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度 B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度 D.将l1向上平移4个单位长度16、一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x<3时,y1<y2,错误的个数是( )A.0 B.1 C.2 D.3三、简答题17、一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.(1)求出该一次函数的表达式;(2)判断(﹣5,﹣4)是否在这个函数的图象上?(3)求出该函数图象与坐标轴围成的三角形面积.18、在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19、已知一次函数y=(m+3)x﹣(2n﹣4),当m,n满足什么条件时.(1)该函数图象经过一、二、四象限.(2)该函数图象经过原点.20、已知一次函数y=ax+b.(1)当点P(a,b)在第二象限时,直线y=ax+b经过哪几个象限?(2)如果ab<0,且y随x的增大而增大,则函数的图象不经过哪些象限?21、已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.参考答案一、填空题1、a>b .2、y=2x﹣4 .3、y=x-54、x=25、y1>y26、-2<m<3.7、y=x+2 .8、y=x+2或y=﹣x+2 .9、-1;-1二、选择题10、B.11、A12、C13、C14、D15、A.16、C三、简答题17、.【解答】解:(1)一次函数的表达式为y=3x ﹣2;(2)由(1)知,一次函数的表达式为y=3x ﹣2,将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4,∴(﹣5,﹣4)不在这个函数的图象上;(3)由(1)知,一次函数的表达式为y=3x ﹣2,令x=0,则y=﹣2,令x=0,则3x ﹣2=0,∴x=2/3, ∴该函数图象与坐标轴围成的三角形面积为3232221=⨯⨯ 18、 解:这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y 的取值范围是﹣4≤y <6.(2)∵点P (m ,n )在该函数的图象上,∴n=﹣2m+2,∵m ﹣n=4,∴m ﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P 的坐标为(2,﹣2).19、【分析】(1)利用一次函数图象与系数的关系得到m+3<0,﹣(2n ﹣4)>0,然后解两个不等式即可;(2)利用一次函数图象与系数的关系得m+3≠0,﹣(2n ﹣4)=0,然后解不等式和方程即可.【解答】解:(1)m <﹣3,n <2;(2)∵该函数图象经过原点.∴m+3≠0,﹣(2n ﹣4)=0,即m≠﹣3,n=2.20、解:(1)因为点P(a,b)在第二象限,所以a<0,b>0. 所以直线y=ax+b经过第一、二、四象限.(2)因为y随x的增大而增大,所以a>0.又因为ab<0,所以b<0.所以一次函数y=ax+b的图象不经过第二象限.21、解:(1)m=3.(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3,解得m=1(3)根据y随x的增大而减小说明k<0.即2m+1<0.解得:m<-0.5。
初中数学试卷金戈铁骑整理制作一次函数(待定系数法)初二数学2017.3.20满分120一.选择题(共9小题)1.一次函数y=kx+b,经过(1,1),(2,﹣4),则k与b的值为()A .B .C .D .2.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()A.y=8x B.y=2x+6 C.y=8x+6 D.y=5x+33.若一次函数y=kx﹣4的图象经过点(﹣2,4),则k等于()A.﹣4 B.4 C.﹣2 D.24.若直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()A.y=2x+3 B .C.y=3x+2 D.y=x﹣15.直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()A.y=2x+3 B.y=﹣x+2 C.y=3x+2 D.y=x+16.已知y是x的一次函数,下表中列出了部分对应值,则m等于()x﹣101y1m﹣5A.﹣1 B.0 C.﹣2 D.7.已知y﹣1与x成正比,当x=2时,y=9;那么当y=﹣15时,x的值为()A.4 B.﹣4 C.6 D.﹣68.已知y与x+1成正比,当x=2时,y=9;那么当y=﹣15时,x的值为()A.4 B.﹣4 C.6 D.﹣69.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4二.填空题(共9小题)10.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣4≤y≤8,则kb的值为.11.如图,该直线是某个一次函数的图象,则此函数的解析式为.12.若直线y=2x+b经过点A(2,﹣3),则b的值为.13.已知y是x的一次函数,下表列出了部分对应值,则m=.x012y1m514.一次函数y=kx+b(k≠0)的图象过点(1,﹣1),且与直线y=﹣2x+5平行,则此一次函数的解析式为.15.一次函数y=kx+b 的图象过点A(﹣1,2),且与y轴交于点B,△OAB的面积是2,则这个一次函数的表达式为.16.直线y=﹣4x+b经过点(2,1),则b=.17.一次函数y=ax+4(a为常数),当x增加2时,y的值减少了3,则a=.18.在平面直角坐标系中,直线l:y=3x+b与x轴、y轴分别交于A、B两点,已知△AOB 的面积为6,则直线l的函数关系式为.三.解答题(共8小题)19.已知:y是x一次函数,且当x=2时,y=﹣3;且当x=﹣2时,y=1(1)试求y与x之间的函数关系式并画出图象;(2)在图象上标出与x轴、y轴的交点坐标;(3)当x取何值时,y=5?20.已知一次函数图象经过点(1,2)和点(﹣1,4),求这一次函数的解析式.21.一次函数y=kx+b的图象经过点M(8,﹣3),且当x=4时,y=0.(1)求函数的解析式;(2)求函数图象与坐标轴围成的三角形的面积.22.若方程组的解所对应的点在一次函数y=kx﹣3的图象上,求k的值.23.已知直线y=kx+b经过点、.(1)求直线MN的解析式;(2)当y>0时,求x的取值范围;(3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标.24.已知一次函数的图象经过点(2,5)与(4,11)(1)求这个函数的解析式;(2)若点P(m,14)在此函数图象上,求m的值.25.已知一次函数y=kx+b的图象经过点A(﹣1,3)和点B(2,﹣3),与x轴交于点C,与y轴交于点D.(1)求这个一次函数的表达式;(2)求点C、D的坐标;(2)求直线AB与坐标轴围成的三角形的面积.S (千t (时) O 10 22.5 7.5 0.5 3 1.5 l B l A26.直线l 与y=﹣2x ﹣1平行且过点(1,3),求直线l 的解析式.27.已知一次函数图象经过(3,5)和)9,4(--两点,(1)求此一次函数解析式;(2)若点(a ,2)在函数图象上,求a 的值。
19.2.2 一次函数 同步练习一、选择题1.在平面直角坐标系中,直线经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限2.一次函数y =3x +6的图象与x 轴的交点是( )A. (0,6)B. (0,-6)C. (2,0)D. (-2,0)3.已知一次函数,若随的增大而减小,则的取值范围是( ) A. B. C. D.4.一次函数y=2x+3的图像可看作由y=2x-4的图像如何平移得到的( )A. 向上平移7个单位B. 向下平移7个单位C. 向左平移7个单位D. 向右平移7个单位5.在同一坐标系中,函数y kx =与2x y k =-的图象大致是( ) A. B. C. D.6.已知正比例函数y=kx(k≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是( )7.已知一次函数y =kx -k ,若y 随x 的增大而增大,则图象经过( )A. 第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限8.直线():32l y m x n =-+-(m , n 为常数)的图象如图,化简:︱3m -︱-244n n -+得( )A. 5m n --B. 5C. -1D. 5m n +-9.若一次函数y =(2k -1)x +3的图象经过A (x 1,y 1)和B (x 2,y 2)两点,且当x 1<x 2时,y 1>y 2,则k 的取值范围是( )A. k <0B. k >0C. k <12 D. k >12二、填空题10.一次函数y =3x +4图像经过第____象限,与x 轴的交点为_______,与y 轴的交点为______,将图象再向_____平移______单位长度,则图象经过原点.11.已知是关于x 的一次函数,则m=_________,n=_________. 直线与x 轴的交点坐标是__________,与y 轴的交点坐标是__________. 12.已知点(-5, 1y )和点(-2, 2y )都在直线112y x =-+上,则函数值1y , 2y 的大小关系是___(用“>”或“<”号连接)13.若一次函数的图象经过二、三、四象限,则__________,__________.14.若一次函数y=kx+b (k≠0)的图像不过第四象限,且点M (-4,m )、N (-5,n )都在其图像上,则m 和n 的大小关系是________;15.一次函数y=kx+b (kb <0)图象一定经过第__________ 象限.16.已知y 是x 的函数,在y =(m +2)x +m -3中,y 随x 的增大而减小,图象与y 轴交于负半轴,则m 的取值范围是_______________.三、解答题17.已知一次函数y=(1-2m )x+m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围。
19.2 一次函数一.选择题(共10小题)1.若函数y=2x+(﹣3﹣m)是正比例函数,则m的值是()A.﹣3B.1C.﹣7D.32.若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±23.如果y=(1﹣m)x是正比例函数,且y随x的增大而减小,则m的值为()A.m=﹣B.m=C.m=3D.m=﹣34.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.5.将直线y=﹣2x﹣2向上平移2个单位长度,可得直线的解析式为()A.y=2x B.y=﹣2x﹣4C.y=﹣2x D.y=﹣2x+46.已知一次函数y=mx+n的图象经过一、三、四象限,则一次函数y=mnx+m﹣n的图象大致是()A.B.C.D.7.一次函数y=2x﹣3与y轴的交点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)8.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=19.在平面直角坐标系中,一次函数y=﹣2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,则()A.y1>y2B.y1<y2C.y1=y2D.y1≥y210.两个一次函数y1=ax+b与y2=bx+a(a,b为常数,且ab≠0),它们在同一个坐标系中的图象可能是()A.B.C.D.二.填空题(共4小题)11.如果正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是.12.正比例函数的图象是,当k>0时,直线y=kx过第象限,y随x的增大而.13.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.14.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.三.解答题15.已知一次函数y=kx+b(k≠0)的图象交x轴于点A(2,0),交y轴于点B,且△AOB 的面积为3,求此一次函数的解析式.16.正比例函数y=kx中,当x增加2时,y增加3,求该正比例函数的解析式.17.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.18.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.19.已知正比例函数y=kx的图象经过点A(2,4),点B(6,0)为x轴正半轴上的一点.(1)求正比例函数的解析式;(2)点P为正比例函数图象上的一个动点,若△ABP为等腰三角形,求点P的坐标.20.在平面直角坐标系xOy中,函数y1=x﹣2的图象与函数y2=的图象在第一象限有一个交点A,且点A的横坐标是6.(1)求m的值;(2)补全表格并以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,补充画出y2的函数图象;x﹣3﹣2﹣101 1.2 1.523456789 y2﹣1157 5.2 3.52112(3)写出函数y2的一条性质:.(4)已知函数y1与y2的图象在第一象限有且只有一个交点A,若函数y3=x+n与y2的函数图象有三个交点,求n的取值范围.参考答案一.选择题(共10小题)1.A.2.B.3.B.4.C.5.C.6.A.7.A.8.C.9.A.10.B.二.填空题(共4小题)11.k>3.12.一条直线;一、三;增大.13.x<2.14.y=﹣x+1.三.解答题15.解:∵A(2,0),S△AOB=3,∴OB=3,∴B(0,3)或(0,﹣3).①当B(0,3)时,把A(2,0)、B(0,3)代入y=kx+b中得∴,解得:.∴一次函数的解析式为.②当B(0,﹣3)时,把A(2,0)、B(0,﹣3)代入y=kx+b中得,,解得:.∴.综上所述,该函数解析式为y=﹣x+3或y=x﹣3.16.解:∵当x增加2时,y增加3,∴y+3=k(x+2),y+3=kx+2k,∵y=kx,∴3=2k,解得:k=,∴正比例函数解析式为y=x.17.解:(1)一次函数y=kx+2的图象与y轴交点D(0,2),d(点D,△ABC)表示点D到△ABC的最小距离,就是点D到点A的距离,即:AD=2﹣1=1,∴d(点D,△ABC)=1当k=1时,直线y=x+2,此时直线L与AB所在的直线平行,且△ABC和△DOE均是等腰直角三角形,d(L,△ABC)表示直线L到△ABC的最小距离,就是图中的AF,在等腰直角三角形ADF中,AD=1,AF=1×=d(L,△ABC)=故答案为:1,;(2)若d(L,△ABC)=0.说明直线L:y=kx+2与△ABC有公共点,因此有两种情况,即:k>0或k<0,仅有一个公共点时如图所示,即直线L 过B点,或过C点,此时可求出k=2或k=﹣2,根据直线L与△ABC有公共点,∴k≥2或k≤﹣2,答:若d(L,△ABC)=0时.k的取值范围为:k≥2或k≤﹣2.(3)函数y=x+b的图象W与x轴、y轴交点所围成的三角形是等腰直角三角形,并且函数y=x+b的图象与AB平行,当d(W,△ABC)=1时,如图所示:在△AGM中,AG=GM=1,则AM=,OM=1+,M(0,1+);即:b=1+;同理:OQ=OP=1+,Q(0,﹣1﹣),即:b=﹣1﹣,若d(W,△ABC)≤1,即b的值在M、N之间∴﹣1﹣≤b≤1+答:若d(W,△ABC)≤1,b的取值范围为﹣1﹣≤b≤1+.18.解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=﹣6,即点A的坐标为:(﹣6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,﹣6﹣8=﹣14,﹣6+8=2,即点C的坐标为:(﹣14,0)或(2,0).19.解:(1)把A(2,4)代入y=kx得2k=4,解得k=2,所以正比例函数的解析式为y=2x;(2)设P(t,2t),AP2=(t﹣2)2+(2t﹣4)2,PB2=(t﹣6)2+(2t)2,AB2=(6﹣2)2+(0﹣4)2=32,当AP=PB时,(t﹣2)2+(2t﹣4)2=(t﹣6)2+(2t)2,解得t=﹣2,此时P点坐标为(﹣2,﹣4);(t﹣2)2+(2t﹣4)2=32,解得t=,此时P点坐标为(,当AP=AB时,)或(,);当PB=AB时,(t﹣6)2+(2t)2=32,解得t1=,t2=2(舍去),此时P点坐标为(,).综上所述,满足条件的P点坐标为(﹣2,﹣4)或(,)或(,)或(,).20.解:(1)在y1=x﹣2中,令x=6,则y=2,即A(6,2),代入y=x+﹣6,可得2=6+﹣6,解得m=12;(2)∵y2=,∴当x=﹣1时,y2=3;当x=5时,y2=;如图所示:(3)由图可得,函数y2的一条性质:当x≤1时,y2随着x的增大而增大;故答案为:当x≤1时,y2随着x的增大而增大;(4)函数y1与y2的图象在第一象限有且只有一个交点A,当n=﹣2时,函数y3=x+n与函数y1=x﹣2的图象重合,此时函数y3=x+n与y2的函数图象有两个交点,当函数y3=x+n的图象经过(1,7)时,函数y3=x+n与y2的函数图象有两个交点,此时,把(1,7)代入y3=x+n,可得n=;∵函数y3=x+n与y2的函数图象有三个交点,∴n的取值范围为﹣2<n<.。
一次函数同步练习一.选择题(共12小题)1.若函数y=(m-1)x|m|-5是一次函数,则m的值为()A.±1B.-1C.1D.22.关于函数y=-2x+1,下列结论正确的是()A.图象必经过(-2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>0.5时,y<03.直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3B.x≥3C.x≥-3D.x≤04.坐标平面上,某个一次函数的图形通过(5,0)、(10,-10)两点,判断此函数的图形会通过下列哪一点?()A.B.C.D.5.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.-2B.-1C.0D.26.设点A(-3,a),B(b,0.5)在同一个正比例函数的图象上,则ab的值为()A.-B.-C.-6D.7.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<0 8.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.9.一次函数y=2x-4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2B.4C.6D.810.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB 的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(-3,0)B.(-6,0)C.(-1.5,0)D.(-2.5,0)11.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(-2,-2)都是“平衡点”.当-1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1B.-3≤m≤1C.-3≤m≤3D.-1≤m≤012.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n(n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、四边形A n-1A n B n B n-1的面积依次记为S1、S2、…、S n,则S n=()A.n2B.2n+1C.2n D.2n-1二.填空题(共5小题)13.若一次函数y=2x+b(b为常数)的图象经过点(b,9),则b= .14.将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为15.已知某直线经过点A(0,2),且与两坐标轴围成的三角形面积为2.则该直线的一次函数表达式是16.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是,点B n的坐标是三.解答题(共6小题)18.一次函数y=kx+4的图象过点(-1,7).(1)求k的值;(2)判断点(a,-3a+4)是否在该函数图象上,并说明理由.19.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.20.如图,直线y=kx+b分别与x轴、y轴交于点A(-2,0),B(0,3);直线y=1-mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1-mx的解集是x>(1)分别求出k,b,m的值;(2)求S△ACD.21.如图,直线y=-2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x轴上点B(2,0)(1)求直线y=kx+b的解析式.(2)求两条直线与y轴围成的三角形面积.(3)直接写出不等式(k+2)x+b≥0的解集.22.如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD 的面积.23.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B 的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,求直线BC的解析式.参考答案1-5:BDACD 6-10:BACBC 11-12:BD13、314、y=2x+115、y=x+2或y=-x+216、x>117、(7,4);(2n-1,2n-1)18、:(1)把x=-1,y=7代入y=kx+4中,可得:7=-k+4,解得:k=-3,(2)把x=a代入y=-3x+4中,可得:y=-3a+4,所以点(a,-3a+4)在该函数图象上.19、:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,△当△OMC的面积是△OAC的面积的时,△M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=-x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).20、:(1)△直线y=kx+b分别与x轴、y轴交于点A(-2,0),B(0,3),解得:k=,b=3,△关于x的不等式kx+b>1-mx的解集是x>△点D的横坐标为,将将代入y=1-mx,解得:m=1;(2)对于y=1-x,令y=0,得:x=1,△点C的坐标为(1,0),△21、:(1)把A(a,2)代入y=-2x中,得-2a=2,△a=-1,△A(-1,2)把A(-1,2),B(2,0)代入y=kx+b中得,△一次函数的解析式是y=;(2)设直线AB与Y轴交于点C,则C(0,)△S△AOC=;(3)不等式(k+2)x+b≥0可以变形为kx+b≥-2x,结合图象得到解集为:x≥-1.22、:(1)△点A的横坐标为4,△y=×4=3,△点A的坐标是(4,3),△OA=5,△OA=OB,△OB=2OA=10,△点B的坐标是(0,-10),设直线l2的表达式是y=kx+b,则解得,△直线l2的函数表达式是y=;(2)将直线l1沿y轴向上平移5个单位长度得y=x+5,解得交点的横坐标为6,△23、:△A(0,4),B(3,0),△OA=4,OB=3,在Rt△OAB中,AB=5.△△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,△BA′=BA=5,CA′=CA,△OA′=BA′-OB=5-3=2.设OC=t,则CA=CA′=4-t,在Rt△OA′C中,△OC2+OA′2=CA′2,△t2+22=(4-t)2,解得t=,△C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得△直线BC的解析式为。
19.2.2 一次函数第1课时 一次函数的定义01 基础题 知识点 认识一次函数1.下列函数关系式:①y=-2x ;②y=-2x ;③y=-2x 2;④y=x 3;⑤y=2x -1.其中是一次函数的有(B )A .①⑤B .①④⑤C .②⑤D .②④⑤2.下列函数中,是一次函数但不是正比例函数的是(C )A .y =2xB .y =1x+2 C .y =12x -23D .y =2x 2-13.下列问题中,变量y 与x 成一次函数关系的是(B )A .路程一定时,时间y 和速度x 的关系B .10米长的铁丝折成长为y ,宽为x 的长方形C .圆的面积y 与它的半径xD .斜边长为5的直角三角形的直角边y 和x4.据调查,某地铁自行车存放处在某星期天的存车量为4 000辆次,其中变速车存车费是每辆一次0.30元,普通自行车存车费是每辆一次0.20元,若普通自行车存车数为x 辆,存车费总收入为y 元,则y 关于x 的函数解析式为(D )A .y =0.10x +800(0≤x≤4 000)B .y =0.10x +1 200(0≤x≤4 000)C .y =-0.10x +800(0≤x≤4 000)D .y =-0.10x +1 200(0≤x≤4 000)5.函数、一次函数和正比例函数之间的包含关系是(A )6.若函数y =2kx +k +3是正比例函数,则k 的值是-3.7.函数s =15t -5和s =15-5t 都是形如y =kx +b 的一次函数,其中第一个式子中k = 15,b =-5;第二个式子中k =-5,b =15.8.已知一次函数y =kx +b ,当x =-2时,y =7;当x =1时,y =-11,求k ,b 的值.解:将x =-2,y =7和x =1,y =-11分别代入y =kx +b ,得⎩⎪⎨⎪⎧-2k +b =7,k +b =-11.解得⎩⎪⎨⎪⎧k =-6,b =-5.9.已知y =(m +1)x2-|m|+n +4.(1)当m ,n 取何值时,y 是x 的一次函数? (2)当m ,n 取何值时,y 是x 的正比例函数? 解:(1)根据一次函数的定义,有 m +1≠0且2-|m|=1,解得m =1.∴m =1,n 为任意实数时,这个函数是一次函数. (2)根据正比例函数的定义,有 m +1≠0且2-|m|=1,n +4=0, 解得m =1,n =-4.∴当m =1,n =-4时,这个函数是正比例函数.10.写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数?y 是否是x 的一次函数?(1)某小区的物业费是按房屋面积每平方米0.5元/月来收取的,该小区业主每个月应缴的物业费y(元)与房屋面积x(平方米)之间的函数关系;(2)地面气温是28 ℃,如果高度每升高1 km,则气温会下降5 ℃,则气温y(℃)与高度x(km)的关系;(3)圆面积S(cm2)与半径r(cm)的关系.解:(1)y=0.5x,y是x的正比例函数,y是x的一次函数.(2)y=28-5x,y是x的一次函数,但y不是x的正比例函数.(3)S=πr2,S不是r的一次函数,S也不是r的正比例函数.02中档题11.函数y=(m-2)x n-1+n是一次函数,则m,n应满足的条件是(C)A.m≠2且n=0 B.m=2且n=2C.m≠2且n=2 D.m=2且n=012.关于函数y=kx+b(k,b是常数,k≠0),下列说法正确的有(B)①y是x的一次函数;②y是x的正比例函数;③当b=0时,y=kx是正比例函数;④只有当b≠0时,y才是x的一次函数.A.1个B.2个C.3个D.4个13.已知关于x 的一次函数y=kx+4k-2(k≠0),若x=1,y=8,则k=2.14.在一次函数y=-2(x+1)+x中,比例系数k为-1,常数项b为-2.15.把一个长10 cm,宽5 cm的长方形的宽增加x cm,长不变,长方形的面积y(cm2)随x的变化而变化.(1)求y与x的函数解析式;(2)要使长方形的面积增加30 cm2,则x应取什么值?解:(1)y=10(x+5),即y=10x+50.(2)根据题意,得10x+50=10×5+30,解得x=3.16.已知y -m 与3x +n 成正比例函数(m ,n 为常数),当x =2时,y =4;当x =3时,y =7,求y 与x 之间的函数关系式.解:∵y-m 与3x +n 成正比例,∴设y -m =k(3x +n)(k ,m ,n 均为常数,k ≠0). ∵当 x =2时,y =4;当x =3时,y =7,∴⎩⎪⎨⎪⎧4-m =k (6+n ),7-m =k (9+n ). ∴k =1,,m +n =-2.∴y 与x 之间的函数关系式为y =3x -2.17.学校图书室有360本图书借给八(2)班的同学阅读,每人借6本.(1)求余下的图书数量y(本)和学生数x(人)之间的函数关系式,并求自变量的取值范围; (2)当班里有50个学生时,剩余多少本?(3)当图书室剩余72本书时,这个班有多少名学生? 解:(1)y =360-6x(0≤x≤60). (2)当x =50时,y =360-6×50=60. (3)当y =72时,360-6x =72,解得x =48. 03 综合题18.已知y =y 1+y 2,y 1与x 成正比例,y 2与x -2成正比例,当x =1时,y =0;当x =-3时,y =4.(1)求y 与x 的函数解析式,并说明此函数是什么函数; (2)当x =3时,求y 的值.解:(1)设y 1=k 1x ,y 2=k 2(x -2),则y =k 1x +k 2(x -2),依题意,得 ⎩⎪⎨⎪⎧k 1-k 2=0,-3k 1-5k 2=4,解得⎩⎪⎨⎪⎧k 1=-12,k 2=-12.∴y =-12x -12(x -2),即y =-x +1.∴y 是x 的一次函数.(2)把x =3代入y =-x +1,得y =-2. ∴当x =3时,y 的值为-2.微课堂第2课时 一次函数的图象与性质01 基础题知识点1 画一次函数图象1.已知函数y =-2x +3.(1)画出这个函数的图象;(2)写出这个函数的图象与x 轴,y 轴的交点的坐标.解:(1)如图.(2)函数y =-2x +3与x 轴,y 轴的交点的坐标分别是(32,0),(0,3).知识点2 一次函数图象的平移2.(2017·赤峰)将一次函数y =2x -3的图象沿y 轴向上平移8个单位长度,所得直线的解析式为(B)A .y =2x -5B .y =2x +5C .y =2x +8D .y =2x -83.(2016·娄底)将直线y =2x +1向下平移3个单位长度后所得直线的解析式是y =2x -2. 4.(2016·益阳)将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第四象限.知识点3 一次函数的图象与性质5.(2017·沈阳)在平面直角坐标系中,一次函数y =x -1的图象是(B)A B C D6.(2016·邵阳)一次函数y =-x +2的图象不经过的象限是(C )A .第一象限B .第二象限C .第三象限D .第四象限7.(2017·抚顺)若一次函数y =kx +b 的图象如图所示,则(B)A .k <0,b <0B .k >0,b >0C .k <0,b >0D .k >0,b <08.若一次函数y =(2-m)x -2的函数值y 随x 的增大而减小,则m 的取值范围是(D )A .m<0B .m>0C .m<2D .m>29.请你写出y 随着x 的增大而减小的一次函数解析式(写出一个即可)y =-2x +1(答案不唯一,只要k 是负数即可).10.已知函数y =(2m +1)x +m -3.(1)若函数图象经过原点,求m 的值;(2)若函数的图象平行于直线y =3x -3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围. 解:(1)把(0,0)代入y =(2m +1)x +m -3,得m =3. (2)由题意,得2m +1=3,解得m =1. (3)由题意,得2m +1<0,解得m <-12.02 中档题11.(2016·玉林)关于直线l :y =kx +k(k≠0),下列说法不正确的是(D )习题解析A .点(0,k)在l 上B .l 经过定点(-1,0)C .当k >0时,y 随x 的增大而增大D .l 经过第一、二、三象限12.(2017·滨州)若点M(-7,m),N(-8,n)都在函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是(B)A .m >nB .m <nC .m =nD .不能确定13.(2016·永州)已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为-1.14.(2016·荆州)若点M(k -1,k +1)关于y 轴的对称点在第四象限内,则一次函数y =(k -1)x +k 的图象不经过第一象限.15.在同一直角坐标系中画出下列函数的图象,说出四条直线围成图形的形状.y =12x +3,y =12x -2,y =-12x +3,y =-12x -2.解:列表:描点、连线,如图.由于y =12x +3,y =12x -2中比例系数相同,故两直线平行;由于y =-12x +3,y =-12x -2中比例系数相同,故两直线平行.∴所得图形为平行四边形.16.已知关于x 的一次函数y =(2m -4)x +3n.(1)当m ,n 取何值时,y 随x 的增大而增大? (2)当m ,n 取何值时,函数图象不经过第一象限? (3)当m ,n 取何值时,函数图象与y 轴交点在x 轴上方? (4)若图象经过第一、三、四象限,求m ,n 的取值范围. 解:(1)∵y 随x 的增大而增大, ∴2m -4>0.∴m>2,n 为全体实数. (2)∵函数图象不经过第一象限, ∴2m -4<0,3n <0.∴m<2,n ≤0. (3)∵函数图象与y 轴交点在x 轴上方, ∴2m -4≠0,3n >0,∴n >0,m ≠2. (4)∵图象经过第一、三、四象限, ∴2m -4>0,3n ≤0.∴m >2,n <0.17.(1)在同一平面直角坐标系内画出一次函数y =12x +2,y =x +2和y =-23x +2的图象.(2)指出这三个函数图象的共同之处;(3)若函数y =12x +a ,y =x +b 2和y =-23x -c3的图象相交于y 轴上同一点,请写出a ,b ,c 之间的关系.解:(1)列表:描点、连线,如图.(2)这三个函数图象相交于(0,2). (3)a =b 2=-c 3.03 综合题18.(2016·怀化)已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象; (2)求图象与x 轴的交点A 的坐标,与y 轴的交点B 的坐标; (3)在(2)的条件下,求出△AOB 的面积;(4)利用图象直接写出:当y <0时,x 的取值范围.解:(1)图象如图所示.(2)当x =0时,y =4,当y =0时,x =-2, ∴A(-2,0),B(0,4).(3)S △AOB =12×2×4=4. (4)x <-2.第3课时 用待定系数法求一次函数的解析式01 基础题知识点 待定系数法求一次函数解析式1.若一次函数y =kx +17的图象经过点(-3,2),则k 的值为(D )A .-6B .6C .-5D .52.直线y =kx +b 在坐标系中的图象如图,则(B )A .k =-2,b =-1B .k =-12,b =-1 C .k =-1,b =-2 D .k =-1,b =-123.已知函数y =kx +b(k≠0)的图象与y 轴交点的纵坐标为-2,且当x =2时,y =1.那么此函数的解析式为y =32x -2.4.一条直线经过点(2,-1),且与直线y =-3x +1平行,则这条直线的解析式为y =-3x +5. 5.已知直线y =kx +b 经过点(-5,1)和(3,-3),求k ,b 的值.解:将(-5,1)和(3,-3)代入y =kx +b 中,得 ⎩⎪⎨⎪⎧-5k +b =1,3k +b =-3.解得⎩⎪⎨⎪⎧k =-12,b =-32.6.已知y 是x 的一次函数,当x =0时,y =3;当x =2时,y =7.(1)写出y 与x 之间的函数关系式; (2)当x =4时,求y 的值.解:(1)设y 与x 之间的函数关系式为y =kx +b ,将(0,3)、(2,7)代入y =kx +b ,得⎩⎪⎨⎪⎧b =3,2k +b =7. 解得⎩⎪⎨⎪⎧k =2,b =3.∴y 与x 之间的函数关系式为y =2x +3. (2)当x =4时,y =2x +3=2×4+3=11.7.已知y 是x 的一次函数,下表列出了部分y 与x 的对应值,求m 的值.解:设一次函数的解析式为y =kx +b.由题意,得⎩⎪⎨⎪⎧k +b =1,2k +b =3.解得⎩⎪⎨⎪⎧k =2,b =-1. ∴一次函数的解析式为y =2x -1. 把(0,m)代入y =2x -1,解得m =-1.8.如图,已知直线l 经过点A(-2,0)和点B(0,2),求直线l 的解析式.解:设直线l 的解析式为y =kx +b(k≠0),将点A(-2,0)和点B(0,2)的坐标代入y =kx +b 中,得⎩⎪⎨⎪⎧b =2,-2k +b =0,解得⎩⎪⎨⎪⎧k =1,b =2.∴直线l 的解析式为y =x +2.02 中档题9.已知直线y =kx +b 经过点(k ,3)和(1,k),则k 的值为(B )A . 3B .± 3C . 2D .± 210.如图,若点P(-2,4)关于y 轴的对称点在一次函数y =x +b 的图象上,则b 的值为(B )A .-2B .2C .-6D .611.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为(0,-1). 12.如图,在平面直角坐标系内,一次函数y =kx +b(k≠0)的图象与正比例函数y =-2x 的图象相交于点A ,且与x 轴交于点B ,求这个一次函数的解析式.解:在函数y =-2x 中,令y =2,得-2x =2, 解得x =-1.∴点A 的坐标为(-1,2).将A(-1,2),B(1,0)代入y =kx +b ,得⎩⎪⎨⎪⎧-k +b =2,k +b =0.解得⎩⎪⎨⎪⎧k =-1,b =1. ∴一次函数的解析式为y =-x +1.13.已知一次函数y =kx +b 的自变量的取值范围是-3≤x ≤6,相应的函数值的取值范围是-5≤y≤-2,求这个一次函数的解析式.解:分两种情况:①当k >0时,把x =-3,y =-5;x =6,y =-2代入y =kx +b ,得⎩⎪⎨⎪⎧-3k +b =-5,6k +b =-2,解得⎩⎪⎨⎪⎧k =13,b =-4.∴这个函数的解析式是y =13x -4(-3≤x≤6);②当k <0时,把x =-3,y =-2;x =6,y =-5代入y =kx +b ,得⎩⎪⎨⎪⎧-3k +b =-2,6k +b =-5,解得⎩⎪⎨⎪⎧k =-13,b =-3.∴这个函数的解析式是y =-13x -3(-3≤x≤6).综上:这个函数的解析式是y =13x -4(-3≤x≤6)或者y =-13x -3(-3≤x≤6).14.已知一次函数的图象经过点(3,-3),并且与直线y =4x -3相交于x 轴上的一点,求此函数的解析式.解:令y =0,则x =34.∴直线y =4x -3与x 轴的交点坐标是(34,0).设一次函数的解析式为y =kx +b(k≠0), 将(3,-3)和(34,0)分别代入y =kx +b ,得⎩⎪⎨⎪⎧3k +b =-3,34k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =1. ∴此函数的解析式为y =-43x +1.03 综合题15.一次函数的图象y =kx +b 与两坐标轴围成的三角形的面积是8,且过点(0,2),求此一次函数的解析式.解:设一次函数图象与x 轴交于点B.∵一次函数的图象y =kx +b 与两坐标轴围成的三角形的面积是8, ∴12OB×2=8,解得OB =8. ∴B(8,0)或B(-8,0).①当y =kx +b 的图象过点(0,2),(8,0)时,则⎩⎪⎨⎪⎧8k +b =0,b =2.解得⎩⎪⎨⎪⎧b =2,k =-14. ∴此一次函数的解析式为y =-14x +2;②当y =kx +b 的图象过点(0,2),(-8,0)时,则⎩⎪⎨⎪⎧b =2,-8k +b =0.解得⎩⎪⎨⎪⎧b =2,k =14.∴此一次函数的解析式为y =14x +2.综上所述,此一次函数的解析式为y =14x +2或y =-14x +2.第4课时 一次函数的应用01 基础题知识点1 一次函数的简单应用1.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x≤5)的函数关系式为y =6+0.3x .2.已知水银体温计的读数y(℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式;(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数. 解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧4.2k +b =35,8.2k +b =40.解得⎩⎪⎨⎪⎧k =1.25,b =29.75. ∴y =1.25x +29.75.(2)当x =6.2时,y =1.25×6.2+29.75=37.5. 答:此时体温计的读数为37.5 ℃.3.两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x (个)之间的一次函数解析式(不要求写出自变量x 的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.解:(1)设函数解析式为y =kx +b ,根据题意,得⎩⎪⎨⎪⎧4k +b =10.5,7k +b =15. 解得⎩⎪⎨⎪⎧k =1.5,b =4.5.∴y 与x 之间的函数解析式为y =1.5x +4.5. (2)当x =12时,y =1.5×12+4.5=22.5. 答:它的高度是22.5 cm.知识点2 分段函数的应用4.“五一节”期间,王老师一家自驾游去了离家170千米的某地,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是(C)A .2小时B .2.2小时C .2.25小时D .2.4小时5.为更新果树品种,某果园计划购进A ,B 两个品种的果树苗栽植培育.若计划购进这两种果树苗共45棵,其中A 种树苗的单价为7元/棵,购买B 种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.求y 与x 的函数解析式.解:∵当0≤x<20时,图象经过(0,0)和(20,160),∴设y =k 1x. 把(20,160)代入,得160=20k 1,解得k 1=8.∴y=8x. 当x≥20时,设y =k 2x +b , 把(20,160)和(40,288)代入,得⎩⎪⎨⎪⎧20k 2+b =160,40k 2+b =288.解得⎩⎪⎨⎪⎧k 2=6.4,b =32.∴y=6.4x +32. ∴y =⎩⎪⎨⎪⎧8x (0≤x<20),6.4x +32(x≥20).(其中x 为整数)6.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费.如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.设某户每月用水量为x 吨,应缴水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x间的函数解析式;(2)若该城市某户4月份水费平均为每吨2.8元,求该户4月份用水多少吨?解:(1)当x≤20时,y=2.5x;当x>20时,y=3.3(x-20)+2.5×20=3.3x-16.(2)∵该户4月份水费平均每吨2.8元,∴该户4月份用水超过20吨.设该户4月份用水a吨,则2.8a=3.3a-16,解得a=32.答:该户4月份用水32吨.02中档题7.(2017·聊城)端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500 m的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是(D) A.乙队比甲队提前0.25 min到达终点B.当乙队划行110 m时,此时落后甲队15 mC.0.5 min后,乙队比甲队每分钟快40 mD.自1.5 min开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m/min第7题图第8题图8.(2017·南充)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为0.3km.9.为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上对应四档的高度,得到数据见下表:(1)小明经过对数据的探究,发现桌高y 是凳高x 的一次函数,请你写出这个一次函数的解析式;(不要求写出x 的取值范围)(2)小明回家后测量了家里的写字台和凳子,写字台的高度为77厘米,凳子的高度为43.5厘米,请你判断它们是否配套,并说明理由.解: (1)设函数的解析式为y =kx +b ,则⎩⎪⎨⎪⎧37k +b =70,42k +b =78,解得⎩⎪⎨⎪⎧k =1.6,b =10.8. ∴一次函数的解析式为y =1.6x +10.8. (2)不配套.理由:当x =43.5时,y =1.6×43.5+10.8=80.4≠77, ∴这个写字台和凳子不配套.10.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,寄快递时,他了解到这个公司除了收取每次6元包装费外,樱桃不超过1 kg 收费22元,超过1 kg ,则超出部分每千克加收10元费用,设该公司从西安到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg ).(1)求y 与x 之间的函数解析式;(2)已知小李给外婆快寄了2.5 kg 樱桃,请你求出这次快寄的费用是多少元? 解:(1)当0<x≤1时,y =22+6=28; 当x>1时,y =28+10(x -1)=10x +18.∴y =⎩⎪⎨⎪⎧28(0<x≤1),10x +18(x>1).(2)当x =2.5时,y =10×2.5+18=43. ∴这次快寄的费用是43元. 03 综合题11.从A 地向B 地打长途电话,通话时间不超过3 min 收费2.4元,超过3 min 后每分钟加收1元.(1)根据题意,填写下表:(2)设通话时间为x min ,通话费用为y 元,求y 与x 的函数解析式;(3)若小红有10元钱,求她打一次电话最多可以通话的时间(本题中通话时间取整数,不足1 min 的通话时间按1 min 计费).解:(2)当x≤3时,y =2.4;当x >3时,y =2.4+(x -3)×1=x -0.6.∴y =⎩⎪⎨⎪⎧2.4(x≤3),x -0.6(x>3).(3)根据题意,得x -0.6≤10,解得x≤10.6.∵通话时间取整数,不足1 min 的通话时间按1 min 计费, ∴她打一次电话最多可以通话10 min .19.2.3一次函数与方程、不等式01基础题知识点1一次函数与一元一次方程1.若直线y=kx+b的图象经过点(1,3),则方程kx+b=3的解是x=(A)A.1 B.2C.3 D.42.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为(C)A.x=2B.y=2C.x=-1D.y=-13.已知方程3x+9=0的解是x=-3,则函数y=3x+9与x轴的交点坐标是(-3,0).知识点2一次函数与一元一次不等式(组)4.(2017·乌鲁木齐)如图是一次函数y=kx+b(k,b是常数,k≠0)的图象,则不等式kx+b>0的解集是(A)A.x<2 B.x<0C.x>0 D.x>2第4题图第5题图5.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是(C)A.x<1 B.x>1C .x <3D .x >36.将一次函数y =12x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是(B )A .x >4B .x >-4C .x >2D .x >-27.已知函数y =kx +b 的图象如图所示,利用函数图象回答:(1)当x 取何值时,kx +b =0; (2)当x 取何值时,kx +b =1.5; (3)当x 取何值时,kx +b <0; (4) 当x 取何值时,0.5<kx +b <2.5.解:(1)x =-0.5. (2)x =1. (3)x <-0.5. (4)0< x <2.知识点3 一次函数与二元一次方程组8.如图,一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组⎩⎪⎨⎪⎧y =k 1x +b 1,y =k 2x +b 2的解是(A )A .⎩⎪⎨⎪⎧x =-2y =3B .⎩⎪⎨⎪⎧x =3y =-2C .⎩⎪⎨⎪⎧x =2y =3D .⎩⎪⎨⎪⎧x =-2y =-39.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(1,b).(1)求b 的值;(2)不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =x +1,y =mx +n ,请你直接写出它的解.解:(1)∵P(1,b)在直线l 1上, ∴b =1+1,即b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. 02 中档题10.如图是直线y =x -5的图象,点P(2,m)在该直线的下方,则m 的取值范围是(D )A .m >-3B .m >-1C .m >0D .m <-311.(2017·菏泽)如图,函数y 1=-2x 与y 2=ax +3的图象相交于点A(m ,2),则关于x 的不等式-2x >ax +3的解集是(D)A .x >2B .x <2C .x >-1D .x <-1第11题图 第12题图12.已知一次函数y =kx +b 的图象如图所示,当x <1时,y 的取值范围是y<-2. 13.若直线y =3x +4与y =2x +5的交点坐标为(m ,n),则m =1,n =7.14.如图,经过点B(-2,0)的直线y =kx +b 与直线y =4x +2相交于点A(-1,-2),则不等式4x +2<kx +b <0的解集为-2<x <-1.习题解析15.在同一平面直角坐标系内画一次函数y 1=-x +4和y 2=2x -5的图象,根据图象求:(1)方程-x +4=2x -5的解;(2)当x 取何值时,y 1>y 2?当x 取何值时,y 1>0且y 2<0?解:(1)如图,∵一次函数y 1=-x +4和y 2=2x -5的图象相交于点(3,1), ∴方程-x +4=2x -5的解为x =3. (2)由图可知,当x <3时,y 1>y 2; 当x <52时,y 1>0且y 2<0.16.如图,直线y =2x +3与直线y =-2x -1.(1)求两直线与y 轴交点A ,B 的坐标; (2)求两直线交点C 的坐标; (3)求△ABC 的面积.解:(1)对于y =2x +3,令x =0,则y =3, ∴点A 的坐标为(0,3). 对于y =-2x -1,令x =0, 则y =-1,∴点B 的坐标为(0,-1).(2)联立⎩⎪⎨⎪⎧y =2x +3y =-2x -1,解得⎩⎪⎨⎪⎧x =-1,y =1.∴点C 的坐标为(-1,1). (3)S △ABC =12AB·|x c |=12×4×1=2.03 综合题17.(2017·青岛)A ,B 两地相距60 km ,甲、乙两人从两地出发相向而行,甲先出发.如图,l 1,l 2表示两人离A 地的距离s (km)与时间t (h )的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是l2(填l1或l2);甲的速度是30km/h,乙的速度是20km/h;(2)甲出发多少小时,两人恰好相距5 km?解:由图象知,甲离A地的距离与时间的关系式是y1=60-30x,乙离A地的距离与时间的关系式y2=20(x-0.5),即y2=20x-10.由题意得30x+20x-10+5=60或30x+20x-10-5=60,解得x=1.3或1.5.答:甲出发1.3 h或1.5 h时,两人恰好相距5 km.。
《19.2一次函数》同步练习题一、选择题(每小题只有一个正确答案)1.下列函数:①y=x ;②y=;③y=;④y=2x+1,其中一次函数的个数是( )A .1B .2C .3D .42.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s(千米)与行驶时间t(小时)的关系如图所示,则下列结论中错误的是( )A. 甲、乙两地的路程是400千米B. 慢车行驶速度为60千米/小时C. 相遇时快车行驶了150千米D. 快车出发后4小时到达乙地3.已知一次函数,若随着的增大而减小,则该函数图象经过( )(A )第一、二、三象限 (B )第一、二、四象限(C )第二、三、四象限 (D )第一、三、四象限4.一次函数b kx y +=,当3-≤x ≤1时, y 的取值范围为1≤y ≤9,则k ·b 的值为( )A .14B .6-C .4-或21D .6-或145.若y =x +2﹣3b 是正比例函数,则b 的值是( ).A .0B .32C .-32D .-23 6.下图中表示一次函数n mx y +=与正比例函数mnx y =(m ,n 是常数,且mn ≠0)图像的是( ).7.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k<0;②a>0:③b>0;④x<2时,kx+b <x+a 中,正确的个数是( )A .1 B.2 C.3 D.4二、填空题8.已知:一次函数y k x b=+的图像平行于直线1y x=-+,且经过点(0,-4),那么这个一次函数的解析式为 .9.已知,一次函数y kx b=+的图像与正比例函数13y x=交于点A,并与y轴交于点(0,4)B-,△AOB的面积为6,则kb=。
10.一次函数y=(-2a-5)x+2中,y随x的增大而减小,则a的取值范围是_________.11.直线y=-2x+m+2和直线y=3x+m-3的交点坐标互为相反数,则m=______。
第十九章 一次函数19.2.2 一次函数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是 A .1<m <7B .3<m <4C .m >1D .m <4【答案】C【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++, 联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A.k=−12,b=1 B.k=-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴).14.已知一次函数的图象经过点A(2,1),B(-1,-3).()求此一次函数的解析式;()求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(110.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
一次函数与方程和不等式
重难点易错点辨析
一次函数与一元一次方程
题一:直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是( ) A.x=2 B.x= 4 C.x=8 D.x=10
一次函数与一元一次不等式
题二:已知一次函数y=ax+b的图象如图所示,则ax+b>0的解集为.
一次函数与二元一次方程组
题三:已知函数y=ax+b和y=kx的图象交于点A(3,2),则关于x、y的二元一次方程组
y ax b y kx
=+
=
⎧
⎨
⎩
的解是.
金题精讲
题一:(1)已知关于x的方程ax5=7的解为x=1,则一次函数y=ax12与x轴交点的坐标为.(2)在直角坐标系中,直线y=kx4与直线y=2x+b交于点(2,2),求不等式kx4≥2x+b的解集.
(3)如图所示,求直线l1、l2的交点坐标.
题二:已知关于x的函数y1=kx2与y2= 3x+b交于点A(2,1).
(1)求k、b的值;
(2)当x取何值时,y1>y2.
题三:如图,一次函数y= x+4的图象与y轴交于点A,一次函数y=3x6的图象与y轴交于点B,这两个函数的图象交于点C.
(1)求点C的坐标;
(2)若线段AB的中点为D,求图象经过C、D两点的一次函数的解析式.
地件数的3倍,各地的运费如下表所示:
(1)设运往地的水仙花(件),总运费为y(元),试写出y与x的函数关系式和x的取值范围;
(2)若总运费不超过12000元,最多可运往A地的水仙花多少件?
思维拓展
题一:如图所示,在平面直角坐标系中,直线OM是正比例函数y= 2x的图象,点A的坐标为(1,
0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N有个.
一次函数与方程和不等式
讲义参考答案重难点易错点辨析
题一:A.题二:x<1.题三:
3
2
x
y
=-
=
⎧
⎨
⎩
.
金题精讲
题一:(1)(1,0);(2)x≤2;(3) (8/3,7/3).题二:(1)1/2,5;(2)x>2.题三:(1) (2.5,1.5);(2)y=x1.
题四:(1)y=25x+8000(0≤x≤200且x为整数);(2)x≤160.
思维拓展
题一:4.。