时间序列
- 格式:pdf
- 大小:159.01 KB
- 文档页数:3
时间序列的实际例子
1. 想想看咱们每天的生活呀,从早上起床到晚上睡觉,这就是一个时间序列呀!就好比你每天早上固定时间起来,然后刷牙洗脸吃早餐,接着去上班或者上学,这一系列的动作不就是按照时间顺序来的嘛。
2. 四季的更替也是超明显的时间序列例子呢!春天万物复苏,夏天骄阳似火,秋天果实累累,冬天白雪皑皑,年复一年都是这样有规律地循环着呀,难道不是超级神奇的嘛!
3. 你的成长过程那也是时间序列哦!从呱呱坠地的小婴儿,到蹒跚学步的幼儿,再到蹦蹦跳跳的少年,逐渐成长为成熟的大人,这一路走来,都是时间在起着作用呀,你说这多有意思!
4. 一场体育比赛不也是吗!从比赛开始的哨声响起,运动员们奋力拼搏,到中场休息,再到最后的冲刺和决出胜负,这不就是在时间轴上展开的嘛,多让人热血沸腾啊!
5. 城市的发展也是典型的时间序列呀!从过去的小村落,慢慢变成繁华的大都市,建筑越来越高,街道越来越热闹,这都是时间带来的变化呀,难道你不惊叹吗!
6. 植物的生长过程呀,从种子发芽,到长出叶子,再到开花结果,这都是在时间的流淌中一步步完成的呀,这就像是一场神奇的魔法表演呢!
7. 再看看一部电影的播放,从开头的字幕出现,到情节逐渐展开,再到高潮和结局,不也是顺着时间进行的嘛,多吸引我们沉浸其中啊!
我觉得时间序列真的是无处不在呀,它让我们的世界变得更加有序和精彩呢!。
统计学中的时间序列时间序列(Time Series)是统计学中重要的研究对象之一,它描述了同一变量在不同时间点上的观测结果。
时间序列在许多领域都有广泛的应用,如经济学、金融学、气象学等。
通过对时间序列的分析,可以揭示出其中的规律和趋势,为决策和预测提供依据。
一、时间序列的基本概念时间序列是按照时间顺序排列的数据序列。
通常,时间序列中的观测值可以按照以下两个因素进行分类:1. 时间单位:观测点之间的时间间隔可以是固定的,如每日、每月、每年等,也可以是不规则的,如每小时、每分钟等。
2. 观测值类型:时间序列可以包含单变量(单个观测变量)或多变量(多个观测变量)。
二、时间序列的经典模型时间序列分析的目标是识别和建模数据中的模式和结构。
经典的时间序列模型包括以下几种:1. 自回归移动平均模型(ARMA):ARMA模型是将自回归模型(AR)和移动平均模型(MA)结合起来,它假设时间序列的当前观测值与过去的观测值和随机误差有关。
2. 自回归整合移动平均模型(ARIMA):ARIMA模型是在ARMA模型的基础上引入差分操作,用于消除时间序列的非平稳性。
3. 季节性模型:对于具有明显季节性变化的时间序列,可以采用季节性模型,如季节性ARIMA模型(SARIMA)。
4. 非线性模型:除了上述线性模型外,时间序列还可能具有非线性特征,因此可以采用非线性模型,如ARCH、GARCH模型等。
三、时间序列分析的方法时间序列分析主要包括以下几个步骤:1. 数据获取和预处理:从数据源获取时间序列数据,并对数据进行预处理,如处理缺失值、异常值等。
2. 数据可视化和描述性统计:通过绘制时间序列图、自相关图、偏自相关图等,对数据进行可视化和描述性统计,以了解数据的整体特征。
3. 模型识别和参数估计:根据观察到的时间序列图和自相关函数,选择适当的模型,并对模型的参数进行估计。
4. 模型检验和诊断:对所建立的模型进行检验,如检验模型的拟合优度、残差序列是否平稳等,并进行诊断,如检验残差是否具有自相关性等。
时间序列的概念时间序列的概念时间序列是指在一段时间内按照固定时间间隔所观测到的一系列数据或变量的集合。
这些数据或变量可以是任何类型的,例如经济指标、天气变化、股票价格等。
时间序列分析是对这些数据进行统计分析和预测的方法。
一、时间序列的基本概念1.1 时间序列的定义时间序列是指按照固定时间间隔所观测到的一系列数据或变量的集合。
这些数据可以是任何类型的,例如经济指标、天气变化、股票价格等。
1.2 时间序列的组成元素时间序列由三个基本组成元素构成:趋势、季节性和随机性。
趋势是长期上升或下降趋势,季节性是周期性波动,随机性则代表着随机波动。
1.3 时间序列的应用领域时间序列广泛应用于经济学、金融学、气象学、环境科学等领域。
在金融领域中,它被用于预测股票价格和汇率波动;在气象领域中,它被用于预测天气变化;在环境科学领域中,它被用于预测自然灾害的发生。
二、时间序列的分析方法2.1 描述性统计描述性统计是对时间序列数据进行总体和样本统计特征的分析。
平均值、标准差、最大值和最小值等。
2.2 时间序列图时间序列图是一种展示时间序列数据的图表。
它通常由时间轴和变量轴组成,可以直观地反映出数据的趋势和季节性波动。
2.3 分解法分解法是将时间序列分解为趋势、季节性和随机性三个部分。
通过对这三个部分进行独立分析,可以更好地理解和预测时间序列数据。
2.4 平稳性检验平稳性检验是判断一个时间序列是否具有平稳性的方法。
平稳性是指时间序列在长期内具有相同的统计特征,如均值、方差等。
如果一个时间序列不具有平稳性,则需要进行差分或其他处理方法以实现平稳化。
2.5 预测方法预测方法是利用历史数据来预测未来趋势或波动的方法。
常用的预测方法包括移动平均法、指数平滑法、ARIMA模型等。
三、时间序列的应用案例3.1 经济领域时间序列在经济领域中广泛应用,例如预测GDP增长率、通货膨胀率、失业率等。
这些预测结果对政府制定经济政策和企业决策具有重要意义。
时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。
它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。
本文将介绍时间序列分析的基本概念、常见的方法和应用领域。
一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。
它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。
时间序列的分析要求数据点之间存在一定的相关性和规律性。
二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。
趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。
三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。
常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。
2. 平稳性检验平稳性是时间序列分析的基本假设。
平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。
常见的平稳性检验方法有单位根检验和ADF检验。
3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。
常用的时间序列模型有ARIMA模型、AR模型和MA模型等。
通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。
4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。
常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。
根据诊断结果,我们可以对模型进行改进,提高预测的准确性。
四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。
在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。
在金融学中,它可以帮助我们预测股票价格和利率走势。
在气象学中,时间序列分析可以用于预测天气变化和自然灾害。
在市场营销中,它可以帮助我们预测销售量和用户行为。
第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。
这种数据称为时间序列数据。
时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。
时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。
表现了现象在时间上的动态变化,故又称为动态数列。
一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。
同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。
研究时间数列的意义:了解与预测。
[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。
知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。
在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。
几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。
二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。
名词解释时间序列
时间序列简言而之是以时间为基础来记录、探索和分析某种事物随时间变化的序列数据。
所谓时间序列,就是指将特定的领域中的某一事件的变化按逐步的采样时间点分成一个序列来进行分析的一种数据结构形态。
时间序列能够帮助我们有效的掌握一定周期内的数据变化及规律,从而更有效的规划预测未来的发展,进而更好的有效的管理领域内的资源,洞察特定活动的走势,以及预测其未来发展趋势。
例如我们可以通过时间序列观测和分析历史上各种财政流入及流出,追踪一段时期内宏观经济市场情况变化,从而制定行之有效的投资策略,及做出正确的决策。
当然,时间序列在基础教育也被大量的运用。
它可以表示出不同教师对学生进行不同教学时对学习成绩的影响,也能够表现出不同学科文章难度改变带来的学生掌握情况,方便学校采用不同的教学模式,以及定期评估语文、数学、物理等学科学习效果。
另外,时间序列还可以被用于诸如社区文化活动、仪式或节假日活动的数据排布、规划、跟踪及分析,发掘各类型活动的规律变化,从而帮助我们把握教育的精准发展方向。
总之,时间序列在基础教育中发挥着重要作用,能够有效的识别教育活动的规律性、发掘教育变化的模式、对教育活动进行预测,更好的管理教育资源,以达到制定有效的教育方案,不断改进教育的质量的效果。
第27章时间序列【本章教材结构】【本章内容讲解】第一节、时间序列及其分类【本节考点】1、时间序列的含义及其构成要素2、时间序列的分类【本节内容】【知识点】时间序列的含义及构成要素统计对事物进行动态研究的基本方法是编制时间序列。
我国1991—1994年若干国民经济指标指标年份1991 1992 1993 1994国内生产总值21618 26638 34634 46759年底总人口数115823 117171 118517 119850人均国内生产总值1879 2287 2939 3923城镇人口比重26.37 27.63 28.14 28.621、时间序列含义:时间序列也称动态数列,是将某一统计指标在各个不同时间上的数值按时间先后顺序编制形成的序列。
2、时间序列的构成要素:(1)被研究现象所属时间:(2)反映该现象一定时间条件下数量特征的指标值。
同一时间序列中,各指标值的时间单位一般要求相等,可以是年、季、月、日。
3.时间序列的分类:时间序列按照其构成要素中统计指标值的表现形式,分为绝对数时间序列、相对数时间序列、平均数时间序列。
时间序列的类别表24-1【例题:2014年单选题】“国内生产总值”指标的时间序列属于()A.时点序列B.相对数时间序列C.平均数时间序列D.时期序列【答案】D【解析】通过本题掌握时间序列的分类【例题:2015年单选题】“年底总人口数”指标的时间序列属于()A.时点序列B.平均数时间序列C.相对数时间序列D.时期序列【答案】A【解析】本题可通过“年底”二字选择时点序列。
第二节、时间序列的水平分析【本节知识点】1、平均发展水平2、增长量(1)逐期增长量、累计增长量的含义、计算以及它们之间的关系(2)平均增长量的含义及计算【本节内容】【知识点】平均发展水平一.发展水平的有关概念1.发展水平:发展水平是时间序列中对应于具体时间的指标数值。
2.最初水平、最末水平、中间水平时间序列中第一项的指标值称为最初水平,最末项的指标值称为最末水平,处于二者之间的各期指标值则称为中间水平。
时间序列
维基百科,自由的百科全书
时间序列(Time series)是实证经济学的一种统计方法。
目录
■
1 内涵
2 时间序列变量的特征
■
■
3 传统的计量经济学的假设
■
4 非平稳性的解决
■
4.1 共整合性
■
5 波动幅度问题的解决
■
5.1 ARCH模型
6 时间序列分析方法的优点
■
■
7 参见
内涵
时间序列是用时间排序的一组随机变量,国内生产毛额(GDP)、消费者价格指数(CPI)、台湾加权股价指数、利率、汇率等等都是时间序列。
时间序列的时间间隔可以是分秒(如高频金融数据),可以是日、周、月、季度、年、甚至更大的时间单位。
时间序列是计量经济学所研究的三大数据形态(另两大为横截面数据和纵面数据)之一,在总体经济学、国际经济学、金融学、金融工程学等学科中有广泛应用。
时间序列变量的特征
■
非平稳性(nonstationarity,也译作不平稳性,非稳定性):即时间序列变量无法呈现出一个长期趋势并最终趋于一个常数或是一个线性函数
■
波动幅度随时间变化(Time-varying Volatility):即一个时间序列变量的方差随时间的变化而变化
这两个特征使得有效分析时间序列变量十分困难。
平稳型时间数列(Stationary Time Series)系指一个时间数列其统计特性将不随时间之变化而改变者。
传统的计量经济学的假设
1.
假设时间序列变量是从某个随机过程中随机抽取并按时间排列而形成的,因而一定存在一个稳定趋势(stationarity)
2.
假定时间序列变量的波动幅度(方差)是固定的(这明显不符合实际,人们早就发现股票收益的波动幅度是随时间而变化的,并非常数)
这样的假设使得传统的计量经济学方法对实际生活中的时间序列变量无法有效分析。
克莱夫·格兰杰和罗伯特·恩格尔的贡献解决了这个问题。
非平稳性的解决
克莱夫·格兰杰解决了这个问题。
虽然单独看不同的时间序列变量可能具有非稳定性,但按一定结构组合后的新的时间序列变量却可能是稳定的,即这个新的时间序列变量长期来看,会趋向于一个常数或是一个线性函数。
例如,时间序列变量)t (X 非稳定,但其二阶差分却可能是稳定的;时间序列变量)t (X 和)t (Y 非稳定,但线性组合)t (Y b −) t (X 却可能是稳定的。
分析非稳定的时间序列变量,可从寻找结构关系入手(例如寻找上述常数b ),把非稳定的时间序列稳定化。
共整合性
克莱夫·格兰杰在1981年的一篇论文中引入了“共整合性”(cointegration ,也译作协整)这个概念。
如果上述常数b 存在,那么原时间序列)t (X 和)t (Y 就具共整合性。
格兰杰和怀思(Weiss )合著的1983年的一篇论文中提出了“格兰杰表述定理”(Granger representation theorem ),证明了以一组特定的动态方程可以重新表述具有“共整合性”的时间序列变量
(cointegrated variables )之间的动态关系,而这组动态方程更具有经济学含义,从而使得时间序列分析更有效。
波动幅度问题的解决
罗伯特·恩格尔在1982年发表在《计量经济学》杂志(Econometrica )的一篇论文中提出了ARCH 模型解决了波动性(volatility )问题,其中他研究的是英国通货膨胀率的波动性。
ARCH 模型
[ARCH 模型能准确地模拟时间序列变量的波动性的变化,它在金融工程学的实证研究中也应用广泛,使人们能更加准确地把握风险(波动性),尤其是应用在风险价值(Value at Risk )理论中,在华尔街是尽人皆知的工具。
时间序列分析方法的优点
既考虑了观测数据在时间序列上的依存性,又考虑了随机波动的干扰
■参见
计量经济学■
ARCH 模型■
风险价值■
A Professional Environment for Time Series and Signal Analysis
(/onlinedocu/dataplore/dp_manual_contents.html)
■来自“/w/index.php?title=%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97&oldid=19267752”
1个分类: 时间序列
本页面最后修订于2012年2月15日(星期三) 20:45。
■
■
本站的全部文字在知识共享署名-相同方式共享 3.0协议之条款下提供,附加条款亦可能应用。
(请参阅使用条款)
Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。
维基媒体基金会是在美国佛罗里达州登记的501(c)(3)免税、非营利、慈善机构。