考点一
直线与平面平行的判定与性质
考向基础
直线与平面平行的判定与性质
文字语言
平面外一条直线与此平面内的一
图形语言
符号语言
a⊄α,b⊂α,且a∥b⇒a∥α
条直线平行,则该直线与此平面
平行.简称:线线平行,则线面平行
一条直线与一个平面平行,则过
a∥α,a⊂β,
这条直线的任一平面与此平面的
α∩β=b⇒a∥b
别平行于另一个平面内的两条相交直线,那么这两个平面平行.
3.证明两个平面都垂直于同一条直线.(客观题可用)
4.证明两个平面同时平行于第三个平面.(客观题可用)
例2 如图所示,正方体ABCD-A1B1C1D1中,
M,N分别是A1B1,A1D1的中点,E,F分别是B1C1,C1D1的中点.
(1)求证:四边形BDFE为梯形;
∴PQ∥平面BCE.
证法二:如图,在平面ABEF内,过点P作PM∥BE,交AB于点M,连接QM.
∴PM∥平面BCE,且
AP AM
=
,
PE MB
易知AE=BD,又AP=DQ,∴PE=BQ,
∴
AP DQ
AM DQ
=
,∴
=
,
PE BQ
MB QB
∴MQ∥AD,又AD∥BC,
∴MQ∥BC,
∵BC⊂平面BCE,MQ⊄平面BCE,
∴OB∥平面EFC,
∵OB∩OG=O,∴平面OBG∥平面EFC.
方法技巧
方法1
证明直线与平面平行的方法
1.利用线面平行的定义(此法一般伴随反证法证明).
2.利用线面平行的判定定理.应用此法的关键是在平面内找与已知直线
平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常