高中数学人教A版【精品习题】(必修5)配套练习:2.3 等差数列的前n项和 第1课时
- 格式:docx
- 大小:94.19 KB
- 文档页数:8
2.3 等差数列的前n项和(人教A版必修5)5,16.(8分)已知等差数列{}n a , (1)若271221a a a ++=,求13S ; (2)若1575S =,求8a .17.(9分)已知在正整数数列{}n a 中,前n 项和n S 满足:n S =18(n a +2)2,(1)求证:{}n a 是等差数列;(2)若n b =12n a -30,求数列{}n b 前n 项和的最小值.18.(12分)甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前一分钟多走1 m ,乙每分钟走5 m. (1)甲、乙开始运动几分钟后相遇? (2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?19.(12分)已知数列{}n a 的前n 项和278n S n n =--. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .2.3 等差数列的前n 和(人教A 版必修5)答题纸得分: 一、选择题二、填空题10. 11. 12. 13. 三、解答题 14. 15. 16. 17. 18. 19.2.3 等差数列的前n 项和(人教A 版必修5)答案一、选择题1.B 解析:由1011S S =,得1111100a S S =-=,111(111)0(10)(2)20a a d ⨯=+-=+--=.2.D 解析:∵ 212111(1)2(21)21(21)24424k k k k S S a a a kd a k d a k d k k ⨯⨯+++-=+=++++=++=++=+=,∴ 5k =.3.D 解析:设等差数列{}n a 的公差为d ,∵ 1a =12,4S =4×12+4×32d =2+6d =20,∴ d =3,故6S =6×12+6×52×3=48,故选D.4.C 解析:由等差数列的性质,得112m m m a a a -++=,∴ 22m m a a =.由题意得0m a ≠,∴ 2m a =.又21m S -=121(21)()2(21)22m m m a a a m --+-==2(21)m -=38,∴ m =10.5.B 解析:∵ {}n a 是等差数列,∴ 120219318a a a a a a +=+=+.又12324a a a ++=-,18192078a a a ++=,∴ 12021931854a a a a a a +++++=. ∴ 1203()54a a +=.∴ 12018a a +=.∴ 20S =12020()2a a +=180. 6.C 解析:由已知28111173183(6)3a a a a d a d a ++=+=+=为定值,则13S =11313()2a a +=137a 也为定值,故选C. 7.C 解析:设等差数列{}n a 的首项为1a ,公差为d ,则24354,10.a a a a +=⎧⎪⎨+=⎪⎩①②②-①,得2d =6,∴ d =3.∴ 2411113242434a a a d a d a d a ⨯+=+++=+=+=. ∴ 14a =-.∴ 10S =10×(-4)+10×92×3=-40+135=95.故选C. 8.B 解析:设该等差数列为{}n a ,由题意得123421a a a a +++=,12367n n n n a a a a ---+++=. 又∵ 1213243n n n n a a a a a a a a ---+=+=+=+,∴ 14()216788n a a +=+=,∴ 122n a a +=,∴ n S =1()2n n a a +11286n ==,∴ 26n =. 9.A 解析:∵ 1200OB a OA a OC =+u u u r u u u r u u u r,且,,A B C 三点共线,∴ 12002001a a S +=,=1200200()2a a +100=.二、填空题10. 23 解析:由题意,得1113(1)21511=(1),222a n na n n ⎧=+-⨯⎪⎪⎨⎪+⨯-⨯⎪⎩,解得12,3.a n =⎧⎨=⎩ 11.25 解析:∵ 413a a d -=,∴ 36d =,∴ 2d =,∴ 511155455422522S a d ⨯⨯⨯⨯⨯⨯=+=+=.12.27 解析:由题意得1()182n n n a a S +==. 由121233,1,n n n a a a a a a --++=⎧⎨++=⎩得13()4n a a +=,即1n a a +=43,故n =136362743n a a ==+. 13.3 解析:1357915S a a a a a 奇=++++=,24681030S a a a a a 偶=++++=,∴ 515S S d 偶奇-==,∴ 3d =. 三、解答题14.(1)解法一:由已知条件得510149121358,21150,a a a d a a a d +=+=⎧⎨+=+=⎩解得13,4.a d =⎧⎨=⎩∴ 10110S a =+10(101)2d ⨯-⨯103⨯=+1092⨯4210⨯=. 解法二:由已知条件得51011049110458,250,a a a a d a a a a d +=++=⎧⎨+=++=⎩∴ 11042a a +=,∴ 10S =11010()2a a ⨯+542210⨯==.解法三:由51049()()25850a a a a d +-+==-,得4d =; 由4950a a +=,得121150a d +=,∴ 13a =. 故10103S ⨯=+10942102⨯⨯=. (2)解:7S =177()2a a +4742a ==,∴ 46a =. ∴ n S =143))45)510222n n n a a n a a n -+++===(((6. ∴ 20n =.15.解:(1)∵ 6a =10,5S =5, ∴ 11510,510 5.a d a d +=⎧⎨+=⎩解得15,3.a d =-⎧⎨=⎩∴ 86216a a d =+=,8S =188()2a a +=44. (2)∵ 117315a a a a +=+,∴ 17S =11717()2a a +=31517()2a a +=17402⨯=340. 16.解:(1)∵ 21211372a a a a a +=+=,271221a a a ++=, ∴ 7321a =,即7a =7. ∴ 13S =11313()2a a +=71322a ⨯=91. (2)∵ 15S =11515()2a a +=81522a ⨯=75,∴ 8a =5. 17.(1)证明:由21(2)8n n S a =+,得2111(2)8n n S a --=+(n ≥2).当n ≥2时,n a =n S -1n S -=182(2)n a +-1821(2)n a -+,整理,得11()(4)0n n n n a a a a --+--=.∵ 数列{}n a 为正整数数列,∴ 10,n n a a +≠- ∴ 14n n a a --=,即{}n a 为等差数列.(2)解:∵ 1S =1821(2)a +,∴ 1a =1821(2)a +.解得1a =2.∴ n a =2+4(n -1)=4n -2.∴ n b =12n a -30=12(4n -2)-30=2n -31.令n b <0,得n <312, ∴ 15S 为前n 项和的最小值,即151215S b b b L =+++=2(1+2+…+15)-15×31=-225. 18.解:(1)设n 分钟后相遇,则2n +(1)2n n -+5n =70, 整理,得2131400n n +-=.解得n =7或n =-20(舍去). 故甲、乙开始运动7分钟后相遇. (2)设n 分钟后第二次相遇,则2n +(1)2n n -+5n =3×70. 整理,得2134200n n +-=.解得n =15或n =-28(舍去). 故开始运动15分钟后第二次相遇. 19.解:(1)当n =1时,11a S ==-14; 当n ≥2时,1n n n a S S -=-=2n -8, 故n a =14(1),28(2).n n n -=⎧⎨-≥⎩(2)由n a =2n -8可知:当n ≤4时,n a ≤0;当n ≥5时,0n a >. ∴ 当1≤n ≤4时,278n n T S n n =-=-++;当n ≥5时,22444()2782(20)732n n n T S S S S S n n n n ⨯=-+-=-=----=-+,∴ n T =2278(14),732(5).n n n n n n ⎧-++≤≤⎪⎨-+≥⎪⎩。
2.3《等差数列前n 项和》作业(第一课时)1、等差数列Λ,4,1,2-的前n 项和为 ( ) A. ()4321-n n B. ()7321-n n C. ()4321+n n D. ()7321+n n2、已知等差数列{}n a 满足099321=++++a a a a Λ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a3、在等差数列{}n a 中,已知1254=+a a ,那么它的前8项之和8S 等于 ( )A. 12B. 24C. 36D. 484、设{}n a 是公差为2的等差数列,若5097741=++++a a a a Λ,则99963a a a a ++++Λ的值为 ( )A. 78B. 82C. 148D. 1825、在等差数列{}n a 中,35,2,11===n n S d a ,则1a 等于 ( )A. 5或7B. 3或5C. 7或1-D. 3或1-6、设数列{}n a 是递增的等差数列,前三项之和为12,前三项的积为48,则它的首项是()A. 1B. 2C. 4D. 87、一个三角形的三个内角C B A ,,的度数成等差数列,则B 的度数为 ( )A. ο30B. ο45C. ο60D. ο908、等差数列{}n a 中,162,16,1041===n S a a ,则n 等于 ( )A. 11B. 9C. 9或18D. 189、数列{}n a 是等差数列,它的前n 项和可以表示为 ( )A. C Bn An S n ++=2B. Bn An S n +=2C. C Bn An S n ++=2()0≠aD. Bn An S n +=2()0≠a10、=+++++1008642Λ 。
11、等差数列{}n a 中,1011=a ,则=21S 。
12、等差数列{}n a 中,4,184==S S ,则=+++20191817a a a a 。
等差数列的前n 项和[新知初探]1.数列的前n 项和对于数列{a n },一般地称a 1+a 2+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+…+a n .2.等差数列的前n 项和公式 [小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n 项和就是指从数列的第1项a 1起,一直到第n 项a n 所有项的和( ) (2)a n =S n -S n -1(n ≥2)化简后关于n 与a n 的函数式即为数列{a n }的通项公式( ) (3)在等差数列{a n }中,当项数m 为偶数2n 时,则S 偶-S 奇=a n +1( ) 解析:(1)正确.由前n 项和的定义可知正确. (2)错误.例如数列{a n }中,S n =n 2+2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又∵a 1=S 1=3,∴a 1不满足a n =S n -S n -1=2n -1,故命题错误. (3)错误.当项数m 为偶数2n 时,则S 偶-S 奇=nd . 答案:(1)√ (2)× (3)×预习课本P42~45,思考并完成以下问题2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n (n +1)2解析:选D 因为a 1=1,d =1,所以S n =n +n (n -1)2×1=2n +n 2-n 2=n 2+n 2=n (n +1)2,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20, 即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2d =-5, 解得n =15或n =-4(舍).(2)由已知,得S8=8(a1+a8)2=8(4+a8)2=172,解得a8=39,又∵a8=4+(8-1)d=39,∴d=5.[活学活用]设S n是等差数列{a n}的前n项和,已知a2=3,a8=11,则S9等于() A.13B.35C.49 D.63解析:选D∵{a n}为等差数列,∴a1+a9=a2+a8,∴S9=9(a2+a8)2=9×142=63.[典例]已知数列{a n}的前n项和S n=-2n2+n+2.(1)求{a n}的通项公式;(2)判断{a n}是否为等差数列?[解](1)∵S n=-2n2+n+2,∴当n≥2时,S n-1=-2(n-1)2+(n-1)+2=-2n2+5n-1,∴a n=S n-S n-1=(-2n2+n+2)-(-2n2+5n-1)=-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4, 但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2; (2)S n =3n -1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质: S n ,S 2n -S n ,S 3n -S 2n 成等差数列. 所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53[活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18B .17C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n (3+2n +1)2=n 2+2n , 所以S nn =n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得 25×17+17×(17-1)2d =25×9+9×(9-1)2d , 解得d =-2, [法一 公式法] S n =25n +n (n -1)2×(-2)=-(n -13)2+169. 由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得⎩⎨⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2B .-32n 2-n 2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n (-1+2-3n )2=-32n 2+n 2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选C 由等差数列的性质及求和公式得,S 13=13(a 1+a 13)2=13a 7>0,S 15=15(a 1+a 15)2=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92(a 1+a 9)52(a 1+a 5)=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1 =(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n ,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45,即⎩⎪⎨⎪⎧a 2=11,a 3=9, 所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C.3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a nb n=a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -12(2n -1)b 1+b 2n -12(2n -1)=A 2n -1B 2n -1=7(2n -1)+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)求数列{a n }的通项公式;(2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14,a 2+a 3=14, 又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c , ∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧a 1=50,d =-3, ∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n . 当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n=2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝⎛⎭⎫-32×172+1032×17-⎝⎛⎭⎫-32n 2+1032n =32n 2-1032n +884. ∴S n=⎩⎨⎧-32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
2.3 等差数列的前n项和第1课时等差数列的前n项和公式基础过关练题组一等差数列前n项和的有关计算1.在等差数列{a n}中,已知a1=10,d=2,S n=580,则n=( )A.10B.15C.20D.302.已知一个等差数列共n项,且其前四项之和为21,末四项之和为67,前n项之和为286,则项数n为( )A.24B.26C.25D.283.设{a n}为等差数列,公差d=-2,S n为其前n项和.若S10=S11,则a1=( )A.18B.20C.22D.244.(2019福建福州长乐高中、城关中学、文笔中学高二期末)等差数列{a n}的前n 项和为S n,且S5=6,a2=1,则公差d等于( )A.15B.35C.65D.25.设等差数列{a n}的前n项和为S n,若a6=S3=12,则{a n}的通项公式a n= . 题组二数列的前n项和S n与a n的关系6.已知数列{a n}的前n项和S n=n2,则a n=( )A.nB.n2C.2n+1D.2n-17.在各项均大于零的数列{a n}中,首项a1=1,前n项和S n满足S n√S n-1-S n-1√S n=2√S n S n-1(n∈N*且n≥2),则a81=( )A.638B.639C.640D.6418.已知数列{a n}的前n项和S n=n2+n+1,则a6+a7+…+a10的值为.9.(1)已知数列{a n}的前n项和为S n=2n2+n+3,求数列{a n}的通项公式;(2)设各项均为正数的数列{a n}的前n项和S n满足S n=14(a n+1)2,求a n.题组三裂项相消法求和10.已知数列{a n}的通项公式为a n=1n(n+1),则其前10项和为( )A.910B.911C.1112D.101111.已知数列{a n}的通项公式为a n=√n+1+√n,则其前n项和S n= .12.已知数列{a n}的通项公式为a n=lg n+1n,则其前n项和S n= .13.已知等差数列{a n}满足a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a n2-1(n∈N*),求数列{b n}的前n项和T n.能力提升练一、选择题1.(2020吉林省实验中学高一期末,★★☆)记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=( )A.7B.8C.9D.102.(2020湖北荆州中学、宜昌一中高二期末联考,★★☆)已知数列{a n}满足2a n=a n-1+a n+1,S n是其前n项和,若a2,a2 019是函数f(x)=x2-6x+5的两个零点,则S2 020的值为( )A.6B.12C.2 020D.6 0603.(2018云南玉溪第一中学高三月考,★★☆)已知数列{a n}的首项a1=1,对于任意m,n∈N*,有a n+m=a n+3m,则数列{a n}前5项的和S5=( )A.121B.25C.31D.354.(2020山东日照高二月考,★★☆)已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|等于( )A.66B.65C.61D.565.(★★☆)设公差不为零的等差数列{a n}的前n项和为S n,若a4=2(a2+a3),则S7S4=( )A.74B.145C.7D.146.(2019广东佛山一中期末,★★☆)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于( )A.4B.5C.6D.77.(★★☆)已知数列{a n}满足a n+1+(-1)n a n=2n-1,S n为其前n项和,则S60=( )A.3 690B.1 830C.1 845D.3 660二、填空题8.(2019江苏南京高三上学情调研,★★☆)记等差数列{a n}的前n项和为S n,若a m=10,S2m-1=110,则m的值为.9.(2020广东深圳宝安高二期末,★★☆)若等差数列{a n}满足a5=11,a12=-3,且{a n}的前n项和S n的最大值为M,则lg M= .10.(2020吉林松原扶余一中高一期末,★★☆)已知单调递减数列{a n}的前n项和为S n,a1≠0,且4S n=2a n-a n2(n∈N*),则a5= .三、解答题11.(2020湖北荆门高二期末,★★☆)已知数列{a n}的前n项和为S n,且(a n+1-a n)2+2=3(a n+1-a n),a50=1,求S100的最小值.12.(2020安徽合肥一中、合肥六中高一期末,★★☆)已知等差数列{a n}的前n项和为S n,且S2=8,a3+a8=2a5+2.(1)求a n ;(2)设数列{1S n}的前n 项和为T n ,求证:T n <34.13.(★★☆)已知函数f(x)=14x +m(m>0),当x 1,x 2∈R 且x 1+x 2=1时,总有f(x 1)+f(x 2)=12.(1)求m 的值;(2)设数列{a n }满足a n =f(0)+f (1n )+f (2n )+…+f (n -1n)+f(1),求数列{a n }的前n 项和S n .14.(2019山东济宁一中月考,★★☆)数列{a n }中,a 1=1,当n≥2时,其前n 项和S n满足S n 2=a n ·(S n -12).(1)求S n的表达式;(2)设b n=S n,求数列{b n}的前n项和T n.2n+115.(2018黑龙江哈尔滨第六中学高三下考前押题卷,★★★)数列{a n}中,S n为其前n项和,且2S n=na n+n(n∈N*).(1)求证:{a n}是等差数列;(2)若a2=2,b n=n+2,T n是{b n}的前n项和,求T n.a n a n+12n第2课时等差数列前n项和的性质及应用基础过关练题组一 等差数列前n 项和的性质1.已知等差数列{a n }中,S n 是其前n 项和,a 1=-11,S 1010-S 88=2,则S 11=( )A.-11 B .11 C.10 D.-102.一个等差数列共有10项,其奇数项之和是12.5,偶数项之和是15,则它的首项与公差分别是( ) A.12,12B.12,1 C.1,12D.12,23.设S n 是等差数列{a n }的前n 项和,若a 7a 5=913,则S 13S 9= .4.已知等差数列{a n }的前10项和为30,前30项的和为10,则前40项的和为 .题组二 等差数列前n 项和的函数属性5.已知数列{a n }中,a 1=10,a n+1=a n -12,则它的前n 项和S n 的最大值为 . 6.在等差数列{a n }中,a 1>0,公差d<0,a 5=3a 7,且其前n 项和为S n ,则S n 取最大值时,n= .7.已知等差数列{a n }的前n 项和为S n ,公差为d. (1)若S 2 016>0,S 2 017<0,且S k 最大,则整数k= ; (2)若a 1=25,S 9=S 17<0,且S k 最大,则整数k= . 8.已知{a n }是等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项公式a n ;(2)求{a n }的前n 项和S n 的最大值.题组三等差数列的综合问题9.数列{a n}的首项为3,{b n}为等差数列,且b n=a n+1-a n(n∈N*),若b3=-2,b10=12,则a8=( )A.0B.3C.8D.1110.若a,b,c成等差数列,则二次函数y=ax2-2bx+c的图象与x轴的交点个数为( )A.0B.1C.2D.1或211.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小一份的量为( )A.52B.54C.53D.5612.(2019湖南长沙一中高二期末)已知等差数列{a n}的各项均为正数,其前n项和为S n,且满足a1+a5=27a32,S7=63.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=a1,且b n+1-b n=a n+1,求数列{1b n}的前n项和T n.能力提升练一、选择题1.(2020浙江高三期末,★★☆)已知公差不为零的等差数列{a n}满足a32=a1a4,S n为数列{a n}的前n项和,则S3S1的值为( )A.94B.-94C.32D.-322.(2019山东招远一中高二月考,★★☆)已知等差数列{a n}的前n项和为S n,若S4=1,S8=4,则a17+a18+a19+a20的值为( )A.9B.12C.16D.173.(2020浙江丽水高一期末,★★★)设等差数列{a n}的前n项和为S n,公差为d,已知a1≠0,S5=S17,则( )A.da11>0B.da12>0C.a1a12>0D.a1a11<04.(2020广东第二师范学院番禺附属中学高二期末,★★★)若等差数列{a n}的前n 项和S n有最大值,且a11a10<-1,则S n取正值时,项数n的最大值为( )A.15B.17C.19D.215.(2020江苏徐州高二期末,★★★)已知等差数列{a n}的前n项和为S n,若a1>0,公差d≠0,则下列结论不正确的是( )A.若S5=S9,则S14=0B.若S5=S9,则S7最大C.若S6>S7,则S7>S8D.若S6>S7,则S5>S6二、填空题6.(2019河北衡水中学高考猜题卷,★★☆)设等差数列{a n}的前n项和为S n,已知S13>0,S14<0,若a k·a k+1<0,则k= .7.(2018湖北黄石二中高二期中,★★☆)设等差数列{a n}的前n项和为S n,且S m= -2,S m+1=0,S m+2=3,则m= .8.(2019河北沧州一中高二期中,★★★)在等差数列{a n}中,前m(m为奇数)项和为135,其中偶数项之和为63,且a m-a1=14,则a100的值为.9.(★★★)无穷等差数列{a n}的前n项和为S n,若首项a1=32,公差d=1,则满足S k2=(S k)2的正整数k的值为.三、解答题10.(2020湖南怀化高二期末,★★☆)已知数列{a n}满足1a1+1a2+1a3+…+1a n=n2(n∈N*),且b n=a n a n+1.(1)求{a n}和{b n}的通项公式;(2)若S n为数列{b n}的前n项和,对任意的正整数n,不等式S n>λ-12恒成立,求实数λ的取值范围.11.(★★☆)已知数列{a n}为等差数列,a1=1,a n>0,其前n项和为S n,且数列{√S n}也为等差数列.(1)求{a n}的通项公式;(2)设b n =a n+1S n ·S n+1,求数列{b n }的前n 项和.答案全解全析第1课时 等差数列的前n 项和公式基础过关练1.C 因为S n =na 1+12n(n-1)d=10n+12n·(n -1)×2=n 2+9n,所以n 2+9n=580,解得n=20或n=-29(舍).2.B 设该等差数列为{a n },由题意,得a 1+a 2+a 3+a 4=21,a n +a n-1+a n-2+a n-3=67. 又∵a 1+a n =a 2+a n-1=a 3+a n-2=a 4+a n-3, ∴4(a 1+a n )=21+67=88,∴a 1+a n =22. ∴S n =n (a 1+a n )2=11n=286,∴n=26.3.B 由S 10=S 11,得a 11=S 11-S 10=0,所以a 1=a 11+(1-11)d=0+(-10)×(-2)=20.4.A ∵等差数列{a n }的前n 项和为S n ,且S 5=6,a 2=1, ∴{S 5=5a 1+5×42d =6,a 2=a 1+d =1,解得{a 1=45,d =15.故选A. 5.答案 2n解析 设等差数列{a n }的首项为a 1,公差为d,由已知得{a 1+5d =12,3a 1+3d =12,解得{a 1=2,d =2,故a n =2n. 6.D 当n=1时,a 1=S 1=1;当n≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1. ∵当n=1时,此等式也成立,∴a n =2n-1(n∈N *),故选D.7.C 由已知S n √S n -1-S n-1√S n =2·√S n S n -1可得,√S n -√S n -1=2(n≥2),又a 1=1,∴√S 1=1,∴{√S n }是以1为首项,2为公差的等差数列,故√S n =2n-1,∴S n =(2n-1)2,∴a 81=S 81-S 80=1612-1592=640. 8.答案 80解析 由题意得,a 6+a 7+…+a 10=S 10-S 5=111-31=80.9.解析 (1)∵S n =2n 2+n+3,∴当n=1时,a 1=S 1=2×12+1+3=6;当n≥2时,a n =S n - S n-1=2n 2+n+3-[2(n-1)2+(n-1)+3]=4n-1.当n=1时,a 1不符合上式, ∴a n ={6(n =1),4n -1(n ≥2).(2)当n=1时,a 1=S 1=14(a 1+1)2,解得a 1=1;当n≥2时,a n =S n -S n-1=14(a n +1)2-14·(a n-1+1)2,即4a n =a n 2+2a n +1-(a n -12+2a n-1+1),∴a n 2-a n -12-2(a n +a n-1)=0,∴(a n +a n-1)(a n -a n-1-2)=0.∵数列{a n }的各项均为正数,∴a n +a n-1>0,∴a n -a n-1-2=0,即a n -a n-1=2, ∴数列{a n }是公差为2,首项为1的等差数列, ∴a n =1+2(n-1)=2n-1.10.D 设数列{a n }的前n 项和为S n .由a n =1n (n+1)=1n -1n+1得,S n =(1-12)+(12-13)+…+1n -1n+1=1-1n+1,所以S 10=1-111=1011.11.答案 √n +1-1 解析 由已知得, a n =√n+1+√n=√n +1-√n ,所以S n =a 1+a 2+…+a n =(√2-1)+(√3-√2)+…+(√n +1-√n )=√n +1-1. 12.答案 lg(n+1)解析 由已知得a n =lg(n+1)-lg n,所以S n =a 1+a 2+…+a n =(lg 2-lg 1)+(lg 3-lg 2)+…+[lg(n+1)-lg n]=lg(n+1). 13.解析 (1)设等差数列{a n }的首项为a 1,公差为d. 因为a 3=7,a 5+a 7=26, 所以{a 1+2d =7,2a 1+10d =26,解得{a 1=3,d =2.所以a n =3+2(n-1)=2n+1,S n =3n+n (n -1)2×2=n 2+2n.(2)由(1)知a n =2n+1, 所以b n =1a n 2-1=1(2n+1)2-1=14·1n (n+1)=14·(1n-1n+1),所以T n =14(1-12+12-13+ (1)-1n +1)=14(1-1n+1)=n4(n+1),即数列{b n }的前n 项和T n =n4(n+1). 能力提升练一、选择题1.D 由S 13=13a 7=91,可得a 7=7,所以a 5+a 7=10,从而a 1+a 11=a 5+a 7=10.2.D 由题意,得数列{a n }为等差数列.a 2,a 2 019是函数f(x)=x 2-6x+5的两个零点,等价于a 2,a 2 019是方程x 2-6x+5=0的两个根,∴a 2+a 2 019=6, ∴S 2 020=(a 1+a 2 020)·2 0202=(a 2+a 2 019)·2 0202=6 060,故选D.3.D 令m=1,有a n+1=a n +3,即a n+1-a n =3,又已知a 1=1,∴{a n }是首项为1,公差为3的等差数列,∴a n =1+3(n-1)=3n-2, ∴S 5=5(a 1+a 5)2=5a 3=5×(3×3-2)=35.4.A 当n≥2,n∈N *时,a n =S n -S n-1=n 2-4n+2-[(n-1)2-4(n-1)+2] =n 2-4n+2-(n 2-6n+7) =n 2-4n+2-n 2+6n-7=2n-5, 当n=1时,a 1=S 1=-1,不满足上式, ∴a n ={-1,n =1,2n -5,n ≥2,n ∈N *.∴|a 1|+|a 2|+…+|a 10|=1+1+1+3+5+…+15=2+(1+15)×82=2+64=66.5.C 解法一:设等差数列{a n }的首项为a 1,公差为d.根据等差数列的性质及a 4=2(a 2+a 3),得a 1+3d=2(a 1+d+a 1+2d),化简得a 1=-d,所以S 7S 4=7a 1+7×62d 4a 1+4×32d =14d 2d=7.解法二:由已知及等差数列的性质,得a 4=2(a 2+a 3)=2(a 1+a 4),又S 7S 4=7(a 1+a 7)24(a 1+a 4)2=7a 42(a 1+a 4),所以S7S 4=7.6.B 设该设备第n(n∈N *)年的运营费用为a n 万元,则数列{a n }是以2为首项,2为公差的等差数列,则a n =2n,则该设备到第n(n∈N *)年的运营费用总和为a 1+a 2+…+a n =2+4+…+2n=n (2+2n )2=(n 2+n)万元.设第n(n∈N *)年的盈利总额为S n 万元,则S n =11n-(n 2+n)-9=-n 2+10n-9=-(n-5)2+16,因此,当S n 取最大值时,n=5,故选B. 7.B 由题意得,当n 为奇数时,a n+1-a n =2n-1,n+1为偶数,所以a n+2+a n+1=2n+1,两式相减得a n+2+a n =2;当n 为偶数时,a n+1+a n =2n-1,n+1为奇数,所以a n+2-a n+1=2n+1,两式相加得a n+2+a n =4n. 故S 60=a 1+a 3+a 5+…+a 59+(a 2+a 4+a 6+…+a 60)=2×15+(4×2+4×6+…+4×58)=30+4×450=1 830.故选B. 二、填空题 8.答案 6解析 ∵{a n }是等差数列,且a m =10, ∴S 2m-1=a 2m -1+a 12×(2m -1)=(2m-1)a m =10(2m-1)=110,解得m=6.9.答案 2解析 设等差数列{a n }的首项为a 1,公差为d.∵a 5=11,a 12=-3,∴{a 1+4d =11,a 1+11d =-3,解得{d =-2,a 1=19.∴a n =19-2(n-1)=21-2n.令a n ≥0,解得n≤212.因此当n=10时,{a n }的前n 项和S n 取得最大值,且最大值M=10×19+10×92×(-2)=190-90=100,∴lg M=2. 10.答案 -10解析 当n=1时,4S 1=2a 1-a 12,∴a 1=-2. 当n≥2时,4S n =2a n -a n 2,① 4S n-1=2a n-1-a n -12,②①-②,得4a n =2a n -2a n-1-(a n 2-a n -12),化简,得a n -a n-1=-2或a n +a n-1=0,∵数列{a n }是递减数列,且a 1=-2,∴a n +a n-1=0舍去. ∴数列{a n }是首项为-2,公差为-2的等差数列,故a 5=-2+(5-1)×(-2)=-10. 三、解答题11.解析 由题意,得a n+1-a n =2或a n+1-a n =1.由a 50=1知,当n≤49时,a n ≤0;当n≥51时,a n >0.故当数列{a n }的前50项的公差为2,后50项的公差为1时,数列的前100项和最小. 所以(S 100)min =50×1+50×492×(-2)+50×2+50×492=-1 075.12.解析 (1)设数列{a n }的首项为a 1,公差为d,由题意得{2a 1+d =8,2a 1+9d =2a 1+8d +2,解得{a 1=3,d =2.所以a n =2n+1. (2)证明:由(1)知a n =2n+1,所以S n =n2(3+2n+1)=n 2+2n.所以1S n=1n (n+2)=12(1n -1n+2).所以T n =12[(1-13)+(12-14)+(13-15)+… +(1n -1-1n +1)+(1n-1n +2)]=12(1+12-1n+1-1n+2)<34. 13.解析 (1)令x 1=x 2=12,得f (12)=14=12+m,解得m=2.(2)由a n =f(0)+f (1n )+f (2n )+…+f (n -1n )+f(1),得a n =f(1)+f (n -1n )+…+f (1n )+f(0),两式相加,得2a n =[f(0)+f(1)]+[f (1n )+f (n -1n )]+…+[f(1)+f(0)]=12(n+1),即a n =14(n+1),显然数列{a n }是等差数列, 当n=1时,a 1=12,所以S n =n [12+14(n+1)]2=18n 2+38n.14.解析 (1)由a n =S n -S n-1(n≥2)得,S n 2=(S n -S n-1)(S n -12)=S n 2-12S n -S n-1S n +12S n-1,即S n-1-S n =2S n S n-1(n≥2), ∴1S n -1S n -1=2(n≥2),又1S 1=1a 1=1,∴{1S n}是以1为首项,2为公差的等差数列,∴1S n=2n-1,即S n =12n -1(n∈N *).(2)由(1)得b n =1(2n -1)(2n+1)=12(12n -1-12n+1), ∴T n =b 1+b 2+b 3+…+b n=12(1-13)+(13-15)+(15-17)+…+(12n -1-12n+1) =12(1-12n+1) =n 2n+1.15.解析 (1)证明:由2S n =na n +n(n∈N *)①,得2S n-1=(n-1)a n-1+(n-1)(n≥2)②, ①-②得,2a n =na n +n-(n-1)a n-1-(n-1), ∴(n -2)a n =(n-1)a n-1-1(n≥2)③, ∴(n -1)a n+1=na n -1(n∈N *)④,④-③得,(n-1)a n+1-(n-2)a n =na n -(n-1)a n-1,∴2(n -1)a n =(n-1)a n-1+(n-1)a n+1(n≥2),∴2a n =a n-1+a n+1, ∴{a n }是等差数列.(2)设等差数列{a n }的公差为d. 由题意得2S 1=a 1+1,∴a 1=1,又∵a 2=2,且由(1)知{a n }是等差数列, ∴d=a 2-a 1=1,∴a n =n, ∴b n =n+2n (n+1)·2n=12n -1·n -12n (n+1),∴T n =(1-14)+(14-112)+…+[12n -1·n -12n (n+1)]=1-12n (n+1).第2课时 等差数列前n 项和的性质及应用基础过关练1.A 因为{a n }为等差数列,所以{Sn n }也为等差数列,且首项S11=a 1=-11.设{Sn n }的公差为d,则S1010-S88=2d=2,所以d=1,所以S 1111=-11+10d=-1,所以S 11=-11.2.A 设等差数列为{a n },首项为a 1,公差为d,由S 偶-S 奇=5d=15-12.5=2.5,得d=0.5.再由S 10=10a 1+10×92×12=15+12.5,得a 1=0.5.3.答案 1解析 由等差数列前n 项和的性质得S13S 9=13a 79a 5=139×913=1.4.答案 -40解析 设等差数列{a n }的前n 项和为S n .解法一:由题易知数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等差数列.设其公差为d, 则前3项和为3S 10+3×22d=S 30=10,即S 10+d=103,又S 10=30,所以d=-803,所以S 40-S 30=S 10+3d=30+3×(-803)=-50,所以S 40=-50+S 30=-40.解法二:因为数列{a n }是等差数列,所以数列{S n n }也是等差数列,所以点(n ,S nn )在一条直线上,即(10,S 1010),(30,S 3030),(40,S4040)三点共线,于是S 3030-S 101030-10=S 4040-S 101040-10,将S 10=30,S 30=10代入,解得S 40=-40.5.答案 105解析 由题意得a n+1-a n =-12,∴数列{a n }是公差为-12的等差数列,又a 1=10,∴a n =-n 2+212(n∈N *).∵a 1=10>0,-12<0,∴设从第n 项起为负数,则-n 2+212<0(n∈N *), ∴n>21,∴前21项的和最大,最大值为S 21=105. 6.答案 7或8解析 由a 5=3a 7,得a 1+4d=3(a 1+6d),即a 1=-7d,所以a n =a 1+(n-1)d=-7d+(n-1)d=(n-8)d. 又因为a 1>0,d<0,所以当{a n ≥0,a n+1≤0时,S n 取得最大值,即{(n -8)d ≥0,(n -7)d ≤0,解得7≤n≤8.所以当S n 取最大值时,n=7或8. 7.答案 (1)1 008 (2)13解析 (1)由等差数列的性质可知,S 2 017=2 017a 1 009<0,所以a 1 009<0, 又S 2 016=2 016(a 1 008+a 1 009)2>0,即a 1 008+a 1 009>0,所以结合a 1 009<0可得a 1 008>0,因此S 1 008最大,故k=1 008. (2)解法一:由{a 1=25,S 9=S 17,可得{a 1=25,9a 1+9×4d =17a 1+17×8d ,解得d=-2,则S n =25n+n (n -1)2×(-2)=-(n-13)2+169,显然S 13最大,故k=13.解法二:同解法一得d=-2, 故a n =25+(-2)×(n -1)=27-2n,显然对于n∈N *,当n≤13时,a n >0;当n≥14时,a n <0.故S 13最大,k=13. 8.解析 (1)设{a n }的公差为d,则由a 2=1, a 5=-5,得d=a 5-a 25-2=-5-13=-2,∴a 1=a 2-d=3,∴a n =-2n+5. (2)由(1)得,S n =3n+n (n -1)2×(-2)=-n 2+4n=-(n-2)2+4,∴当n=2时,S n 取得最大值4.9.B 设数列{b n }的首项为b 1,公差为d,则由b 3=-2,b 10=12,得{b 1+2d =-2,b 1+9d =12,解得{b 1=-6,d =2,∴b n =-6+(n-1)×2=2n -8,∴a n+1-a n =2n-8,又a 1=3, ∴a 2-a 1=2×1-8, a 3-a 2=2×2-8,a 4-a 3=2×3-8, …… a 8-a 7=2×7-8,以上各式相加得,a 8-a 1=2×(1+2+3+…+7)-8×7=0,∴a 8=a 1=3.10.D 由a,b,c 成等差数列得2b=a+c,Δ=(-2b)2-4ac=(a+c)2-4ac=(a-c)2, 当a=c 时,Δ=0,有一个交点; 当a≠c 时,Δ>0,有两个交点.11.C 由题意可得中间的那份为20个面包.设最小的一份为a 1,公差为d,由题意可得[20+(a 1+3d)+(a 1+4d)]×17=a 1+(a 1+d),解得a 1=53,故选C.12.解析 (1)解法一:设等差数列{a n }的公差为d,由题意,得a n >0,且{a 1+a 1+4d =27(a 1+2d )2,7a 1+21d =63,∴{a 1=3,d =2.∴a n =2n+1.解法二:∵{a n }是等差数列,且a 1+a 5=27a 32,∴2a 3=27a 32.又a n >0,∴a 3=7. ∵S 7=7(a 1+a 7)2=7a 4=63,∴a 4=9,∴d=a 4-a 1=2, ∴a n =a 3+(n-3)d=2n+1. (2)∵b n+1-b n =a n+1,且a n =2n+1, ∴b n+1-b n =2n+3. ∴当n≥2时,b n =(b n -b n-1)+(b n-1-b n-2)+…+(b 2-b 1)+b 1=(2n+1)+(2n-1)+…+5+3 =n(n+2),当n=1时,b 1=3满足上式, ∴b n =n(n+2). ∴1b n =1n (n+2)=12(1n -1n+2), ∴T n =1b 1+1b 2+…+1b n -1+1b n=12[(1-13)+(12-14)+(13-15)+ …+(1n -1-1n +1)+(1n-1n +2)]=12(1+12-1n+1-1n+2) =34-2n+32(n+1)(n+2).能力提升练一、选择题1.A 设数列{a n }的公差为d(d≠0),由a 32=a 1a 4得(a 1+2d)2=a 1(a 1+3d),整理,得a 1d+4d 2=0,因为d≠0,所以a 1=-4d,所以S 3=3a 1+3d=-9d,所以S 3S 1=-9d -4d =94,故选A.2.A 由等差数列前n 项和的性质得, S 4,S 8-S 4,S 12-S 8,…成等差数列. 由S 4=1,S 8=4可得,其公差为2, 所以S 36=S 4+(S 8-S 4)+…+(S 36-S 32)=9×1+9×82×2=81.又因为S 36=36×(a 1+a 36)2,所以a 1+a 36=8118=92,所以a 17+a 18+a 19+a 20=2(a 17+a 20)=2(a 1+a 36)=9. 3.B 由a 1≠0,S 5=S 17,得5a 1+5×42d=17a 1+17×162d,化简,得2a 1+21d=0,即a 11+a 12=0.因为a 1≠0,所以d≠0,所以a 11,a 12符号相反.若d>0,则a 11<0,a 12>0,a 1<0,所以da 11<0,da 12>0,a 1a 12<0,a 1a 11>0;若d<0,则a 11>0,a 12<0,a 1>0,所以da 11<0,da 12>0,a 1a 12<0,a 1a 11>0.综上,选B. 4.C 设等差数列{a n }的首项为a 1,公差为d.由S n 有最大值,得d<0.由a11a 10<-1,得a 11<0<a 10,且a 11+a 10<0.由a 10>0,得2a 10=a 1+a 19>0,所以S 19>0.由a 10+a 11<0,得a 1+a 20=a 10+a 11<0,所以S 20<0.所以S n 取正值时,n 的最大值为19. 5.D 由S 5=S 9得a 6+a 7+a 8+a 9=0,即a 1+a 14=0,所以S 14=14×(a 1+a 14)2=0,故A 中结论正确.由S 5=S 9得5a 1+10d=9a 1+36d,即d=-213a 1.因为a 1>0,所以d<0. 再由S n 对应的二次函数的图象知,对称轴为n=5+92=7,所以S 7最大,故B 中结论正确. 由S 6>S 7得a 7<0.又a 1>0,所以d<0,所以a 8<0,所以S 7>S 8.但a 6的符号不确定,所以S 5与S 6的大小无法比较,故C 中结论正确,D 中结论错误.故选D. 二、填空题 6.答案 7解析 因为S 13>0,S 14<0,所以{13(a 1+a 13)2>0,14(a 1+a 14)2<0,即{a 1+a 13>0,a 1+a 14<0, ∴{a 1+a 13=2a 7>0,a 1+a 14=a 7+a 8<0,∴{a 7>0,a 8<0, 又a k ·a k+1<0,∴k=7. 7.答案 4解析 因为S n 是等差数列{a n }的前n 项和,所以数列{Sn n}是等差数列,所以S m m+S m+2m+2=2S m+1m+1,即-2m +3m+2=0,解得m=4.8.答案 101解析 ∵在前m 项中偶数项之和为S 偶=63,∴奇数项之和为S 奇=135-63=72.设等差数列{a n }的公差为d,则S 奇-S 偶=2a 1+(m -1)d2=72-63=9.∵a m =a 1+d(m-1),∴a 1+a m2=9.由题意得m (a 1+a m )2=135,∴m=15,又∵a m -a 1=14, ∴a 1=2,d=14m -1=1,∴a 100=a 1+99d=101.9.答案 4解析 解法一:由题意,得S n =32n+n (n -1)2×1=12n 2+n,则S k 2=12k 4+k 2,(S k )2=(12k 2+k)2,∴12k 4+k 2=(12k 2+k)2,即14k 4-k 3=0,解得k=0或k=4.∵k∈N *,∴k=4.解法二:∵数列{a n }为等差数列,∴不妨设S n =An 2+Bn,其中A=d2,B=a 1-d2,则S k 2=A(k 2)2+Bk 2,S k =Ak 2+Bk.由S k 2=(S k )2,得k 2(Ak 2+B)=k 2(Ak+B)2.∵k∈N *,∴Ak 2+B=(Ak+B)2,即(A 2-A)·k 2+2ABk+B 2-B=0,又A=d 2=12,B=a 1-d2=1,∴14k 2-k=0,解得k=0(舍去)或k=4.三、解答题10.解析 (1)∵1a 1+1a 2+1a 3+…+1a n=n 2(n∈N *)①,∴当n≥2时,1a 1+1a 2+1a 3+…+1a n -1=(n-1)2②.①-②,得1a n=2n-1(n≥2),经检验,1a 1=1满足上式,∴1a n=2n-1(n∈N *),∴a n =12n -1.∴b n =1(2n -1)(2n+1)=12(12n -1-12n+1).(2)由(1)及已知得S n =12·(1-13+13-15+…+12n -1-12n+1)=n2n+1. 又S n =n 2n+1=12-14n+2,n∈N *,∴S n ∈[13,12),∴不等式S n >λ-12恒成立等价于13>λ-12,∴λ<56.故实数λ的取值范围为(-∞,56).11.解析 (1)设等差数列{a n }的公差为d(d≥0),则S 1=a 1=1,S 2=2+d,S 3=3+3d. ∵数列{√S n }为等差数列, ∴2√2+d =1+√3+3d ,解得d=2. ∴a n =1+2(n-1)=2n-1. (2)由(1)得a n+1=2n+1, S n =n+n (n -1)2×2=n 2, ∴b n =a n+1S n ·S n+1=2n+1n 2·(n+1)2=1n2-1(n+1)2.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =(112-122)+(122-132)+…+[1n 2-1(n+1)2]=1-1(n+1)2=n 2+2n(n+1)2.。
[A 组 学业达标]1.已知数列{a n }的前n 项和为S n ,若a n +1=a n -1,a 1=4,则S 5等于( ) A .25 B .20 C .15D .10解析:依题意a n +1-a n =-1,故数列{a n }是等差数列,故S 5=5×4+5×42×(-1)=10. 答案:D2.设等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 9=24,则S 9=( ) A .36 B .72 C .144D .70解析:由等差数列的性质得,a 2+a 4+a 9=3a 1+12d =24,则a 5=a 1+4d =8.S 9=9(a 1+a 9)2=9a 5=72. 答案:B3.已知a 1,a 2,a 3,a 4成等差数列,若S 4=32,a 2∶a 3=1∶3,则公差d 为( ) A .8 B .16 C .4D .0解析:∵S 4=32,∴2(a 2+a 3)=32, ∴a 2+a 3=16.又a 2a 3=13,即a 3=3a 2,∴a 2=4,a 3=12,∴d =a 3-a 2=8.故选A. 答案:A4.设a 1,a 2,…和b 1,b 2,…都是等差数列,其中a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }前100项之和为( ) A .0 B .100 C .10 000D .50 500解析:易知数列{a n +b n }为常数列,且各项均为100,故S 100=100+1002×100=10000.故选C. 答案:C5.在等差数列{a n }中,a 3+a 9=18-a 6,S n 表示数列{a n }的前n 项和,则S 11=( ) A .66 B .99 C .198D .297解析:∵a 3+a 9=18-a 6,∴3a 6=18,∴a 6=6. ∴S 11=112(a 1+a 11)=11a 6=11×6=66,故选A. 答案:A6.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 解析:数列{a n }是以1为首项,以12为公差的等差数列,所以S 9=9×1+9×82×12=9+18=27. 答案:277.在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n =________. 解析:因为S 9=9(a 1+a 9)2=9a 5=18,所以a 5=2,又S n=n (a 5+a n -4)2=n (2+30)2=240,所以n =15. 答案:158.在一个等差数列中,已知a 10=10,则S 19=________. 解析:S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190.答案:1909.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,求a 9. 解析:设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎨⎧ a 1+d =1,2a 1+5d =8,解得⎩⎨⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.10.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的取值范围; (2)数列{a n }的前几项的和最大?解析:(1)由题意得⎩⎪⎨⎪⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得⎩⎨⎧12a 1+66d >0,13a 1+78d <0,a 1+2d =12,解得-247<d <-3.(2)由(1)知d <0,∴a 1>a 2>a 3>…>a 12>a 13>…. ∵S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0.∵S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0,∴a 7<0,a 6>0,故数列{a n }的前6项和S 6最大.[B 组 能力提升]11.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .27 B .36 C .45D .54解析:∵在等差数列{a n }中,2a 8=a 5+a 11=6+a 11, ∴a 5=6,故S 9=9(a 1+a 9)2=9a 5=54.故选D.答案:D12.已知数列{a n }是等差数列,满足a 1+2a 2=S 5,下列结论中错误的是( ) A .S 9=0 B .S 5最小 C .S 3=S 6D .a 5=0解析:由题意知a 1+2(a 1+d )=5a 1+5×42d ,则a 5=0,∴a 4+a 6=0,∴S 3=S 6,且S 9=9a 5=0,故选B. 答案:B13.等差数列{a n }满足a n -1+a n +a n +1=3n (n ≥2),函数f (x )=2x ,b n =log 2f (a n ),则函数{b n }的前n 项和为________.解析:∵等差数列{a n }满足a n -1+a n +a n +1=3n (n ≥2), ∴3a n =3n ,即a n =n , ∵函数f (x )=2x ,∴f (a n )=2n ,则b 1+b 2+…+b n =log 2[f (a 1)·f (a 2)·…·f (a n )]=log 2(2×22×…×2n )=log 221+2+…+n =n (n +1)2. 答案:n (n +1)214.等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为________.解析:由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值. 答案:815.已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解析:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n . 所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35可得2k -k 2=-35, 即k 2-2k -35=0.解得k =7或k =-5.又k ∈N *,故k =7为所求结果.16.已知{a n }是各项为正数的等差数列,S n 为其前n 项和,且4S n =(a n +1)2. (1)求a 1,a 2的值及{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫S n -72a n 的最小值.解析:(1)因为4S n =(a n +1)2,所以当n =1时,4a 1=(a 1+1)2,解得a 1=1, 当n =2时,4(1+a 2)=(a 2+1)2, 解得a 2=-1或a 2=3,因为{a n }是各项为正数的等差数列, 所以a 2=3,所以{a n }的公差d =a 2-a 1=2,所以{a n }的通项公式a n =a 1+(n -1)d =2n -1. (2)因为4S n =(a n +1)2, 所以S n =(2n -1+1)24=n 2,所以S n -72a n =n 2-72(2n -1)=n 2-7n +72=⎝ ⎛⎭⎪⎫n -722-354,所以当n =3或n =4时,S n -72a n 取得最小值为-172.。
高中数学学习材料(灿若寒星 精心整理制作)2.3 等差数列的前n 项和练习一.选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的,把它选出来填在题后的括号内.1.等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482.从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 3603.已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )A.有最小值且是整数B. 有最小值且是分数C. 有最大值且是整数D. 有最大值且是分数4.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2605.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为( )A. 0B. 100C. 1000D. 100006.若关于x 的方程20x x a -+=和20x x b -+=()a b ≠的四个根组成首项为14的等差数列,则a b +=( )A. 38B. 1124C. 1324D. 3172二.填空题:本大题共4小题,每小题 4分,共16分,把正确答案写在题中横线上.7.等差数列{}n a 中,若638a a a =+,则9s = .8.等差数列{}n a 中,若232n S n n =+,则公差d = .9.在小于100的正整数中,被3除余2的数的和是 .10.若两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且满足733n n S n T n +=+,则88a b = . 【整合提高】三.解答题(本大题共2小题,每小题10分,共20分,解答应写出文字说明.证明过程或演算步骤,11.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.12.设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0,①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.参考答案:1.B2.C3.A4.C5.D6.D7.08.69.1650 10.611.∵40.8a =,11 2.2a =,∴由1147a a d =+得0.2d =,∴51114010.2a a d =+= ∴5152805130293029303010.20.239322a a a a d ⨯⨯+++=+=⨯+⨯=. 12.①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩,又∵2437d -<<-∴{}n a 是递减数列, ∴1212,,,S S S 中6S 最大.。
第二章 2.3 第2课时一、选择题1.记等差数列{a n }的前n 项和为S n .若d =3,S 4=20,则S 6=( ) A .16 B .24 C .36 D .48[答案] D[解析] 由S 4=20,4a 1+6d =20,解得a 1=12⇒S 6=6a 1+6×52×3=48.2.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 [答案] B[解析] 由题设求得:a 3=35,a 4=33,∴d =-2,a 1=39,∴a n =41-2n ,a 20=1,a 21=-1,所以当n =20时S n 最大.故选B .3.13×5+15×7+17×9+…+113×15=( ) A .415B .215C .1415D .715[答案] B[解析] 原式=12(13-15)+12(15-17)+…+12(113-115)=12(13-115)=215,故选B .4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A .100101B .99101C .99100D .101100[答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15 ∴5(a 1+5)2=15,∴a 1=1.∴d =a 5-a 15-1=1,∴a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1. 则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101.故选A .5.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为( )A .5B .6C .7D .8[答案] B[解析] 解法一:∵a 1>0,S 4=S 8,∴d <0,且a 1=112d ,∴a n =-112d +(n -1)d =nd -132d ,由⎩⎪⎨⎪⎧a n ≥0a n +1<0,得⎩⎨⎧nd -132d ≥0(n +1)d -132d <0,∴512<n ≤612,∴n =6,解法二:∵a 1>0,S 4=S 8, ∴d <0且a 5+a 6+a 7+a 8=0, ∴a 6+a 7=0,∴a 6>0,a 7<0, ∴前六项之和S 6取最大值.6.设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值[答案] C[解析] 由S 5<S 6知a 6>0,由S 6=S 7知a 7=0,由S 7>S 8知a 8<0,C 选项S 9>S 5即a 6+a 7+a 8+a 9>0,∴a 7+a 8>0,显然错误. 二、填空题7.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________. [答案] 25[解析] 由⎩⎪⎨⎪⎧ a 1=1a 4=7得⎩⎪⎨⎪⎧a 1=1d =2,∴S 5=5a 1+5×42×d =25.8.(2014·北京理,12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.[答案] 8[解析] 本题考查了等差数列的性质与前n 项和.由等差数列的性质,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,于是有a 8>0,a 8+a 9<0,故a 9<0,故S 8>S 7,S 9<S 8,S 8为{a n }的前n 项和S n 中的最大值,等差数列{a n }中首项a 1>0公差d <0,{a n }是一个递减的等差数列,前n 项和有最大值,a 1<0,公差d >0,{a n }是一个递增的等差数列,前n 项和有最小值.三、解答题9.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 取最大值的n 的值.[解析] (1)设公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =5a 1+9d =-9,解得⎩⎪⎨⎪⎧a 1=9d =-2.∴a n =a 1+(n -1)d =-2n +11.(2)由(1)知S n =na 1+n (n -1)2d =10n -n 2=-(n -5)2+25,∴当n =5时,S n 取得最大值.10.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .[解析] (1)设等差数列{a n }的首项为a ,公差为d , 由于a 3=7,a 5+a 7=26, ∴a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.∴a n =2n +1,S n =n (n +2). (2)∵a n =2n +1, ∴a 2n -1=4n (n +1),∴b n =14n (n +1)=14(1n -1n +1).故T n =b 1+b 2+…+b n=14(1-12+12-13+…+1n -1n +1) =14(1-1n +1)=n4(n +1),∴数列{b n }的前n 项和T n =n4(n +1).一、选择题1.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或9[答案] C[解析] a n =120+5(n -1)=5n +115, 由a n <180得n <13且n ∈N *, 由n 边形内角和定理得,(n -2)×180=n ×120+n (n -1)2×5.解得n =16或n =9 ∵n <13,∴n =9.2.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21 [答案] B[解析] ∵S n 有最大值,∴a 1>0,d <0, ∵a 11a 10<-1, ∴a 11<0,a 10>0,∴a 10+a 11<0, ∴S 20=20(a 1+a 20)2=10(a 10+a 11)<0,又S 19=19(a 1+a 19)2=19a 10>0,故选B .3.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A .a 8B .a 9C .a 10D .a 11[答案] D[解析] S 11=5×11=55=11a 1+11×102d =55d -55,∴d =2,S 11-x =4×10=40,∴x =15, 又a 1=-5,由a k =-5+2(k -1)=15得k =11.4.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .7[答案] A[解析] ∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5, 又∵a 1·a 2·a 3=105,∴a 1a 3=21,由⎩⎪⎨⎪⎧a 1a 3=21a 1+a 3=10及{a n }递减可求得a 1=7,d =-2,∴a n =9-2n ,由a n ≥0得n ≤4,∴选A .二、填空题5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________. [答案] 110[解析] 设等差数列{a n }的首项为a 1,公差为D . a 3=a 1+2d =16,S 20=20a 1+20×192d =20,∴⎩⎪⎨⎪⎧a 1+2d =16,2a 1+19d =2,解得d =-2,a 1=20. ∴S 10=10a 1+10×92d =200-90=110.6.等差数列{a n }中,d <0,若|a 3|=|a 9|,则数列{a n }的前n 项和取最大值时,n 的值为______________.[答案] 5或6[解析] ∵a 1+a 11=a 3+a 9=0, ∴S 11=11(a 1+a 11)2=0,根据二次函数图象的性质,由于n ∈N *,所以当n =5或n =6时S n 取最大值. 三、解答题7.一等差数列共有偶数项,且奇数项之和与偶数项之和分别为24和30,最后一项与第一项之差为10.5,求此数列的首项、公差以及项数.[解析] 解法1:设此数列的首项a 1,公差d ,项数2k (k ∈N *). 根据题意,得⎩⎪⎨⎪⎧S 奇=24S偶=30a2k -a 1=212,即⎩⎪⎨⎪⎧S 偶-S 奇=6,a 2k -a 1=212, ∴⎩⎪⎨⎪⎧ kd =6,(2k -1)d =212,解得⎩⎪⎨⎪⎧k =4,d =32. 由S 奇=k 2(a 1+a 2k -1)=24,可得a 1=32.∴此数列的首项为32,公差为32,项数为8.解法二:设此数列的首项为a 1,公差为d ,项数为2k (k ∈N *), 根据题意,得⎩⎪⎨⎪⎧S 奇=24,S偶=30,a2k -a 1=212,即⎩⎪⎨⎪⎧12k (a 1+a 2k -1)=24,12k (a 2+a 2k)=30,(2k -1)d =212,∴⎩⎪⎨⎪⎧k [a 1+(k -1)d ]=24,k (a 1+kd )=30,(2k -1)d =212,解得⎩⎪⎨⎪⎧a 1=32,d =32,k =4.∴此数列的首项为32,公差为32,项数为8.8.设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.[解析] (1)依题意⎩⎨⎧S12=12a 1+12×112d >0S13=13a 1+13×122d <0,即⎩⎪⎨⎪⎧2a 1+11d >0, ①a 1+6d <0. ② 由a 3=12,得a 1+2d =12.③将③分别代入②①,得⎩⎪⎨⎪⎧24+7d >03+d <0,解得-247<d <-3.(2)由d <0可知{a n }是递减数列,因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得 a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
第二章 2.3 第2课时一、选择题1.记等差数列{a n }的前n 项和为S n .若d =3,S 4=20,则S 6=( ) A .16 B .24 C .36 D .48[答案] D[解析] 由S 4=20,4a 1+6d =20,解得a 1=12⇒S 6=6a 1+6×52×3=48.2.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 [答案] B[解析] 由题设求得:a 3=35,a 4=33,∴d =-2,a 1=39,∴a n =41-2n ,a 20=1,a 21=-1,所以当n =20时S n 最大.故选B .3.13×5+15×7+17×9+…+113×15=( ) A .415B .215C .1415D .715[答案] B[解析] 原式=12(13-15)+12(15-17)+…+12(113-115)=12(13-115)=215,故选B .4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A .100101B .99101C .99100D .101100[答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15∴5a 1+52=15,∴a 1=1.∴d =a 5-a 15-1=1,∴a n =n . ∴1a n a n +1=1nn +1=1n -1n +1. 则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101.故选A .5.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为( )A .5B .6C .7D .8[答案] B[解析] 解法一:∵a 1>0,S 4=S 8,∴d <0,且a 1=112d ,∴a n =-112d +(n -1)d =nd -132d ,由⎩⎨⎧a n ≥0a n +1<0,得⎩⎪⎨⎪⎧nd -132d ≥0n +1d -132d <0,∴512<n ≤612,∴n =6,解法二:∵a 1>0,S 4=S 8, ∴d <0且a 5+a 6+a 7+a 8=0, ∴a 6+a 7=0,∴a 6>0,a 7<0, ∴前六项之和S 6取最大值.6.设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值[答案] C[解析] 由S 5<S 6知a 6>0,由S 6=S 7知a 7=0,由S 7>S 8知a 8<0,C 选项S 9>S 5即a 6+a 7+a 8+a 9>0,∴a 7+a 8>0,显然错误. 二、填空题7.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________. [答案] 25[解析] 由⎩⎨⎧ a 1=1a 4=7得⎩⎨⎧a 1=1d =2,∴S 5=5a 1+5×42×d =25.8.(2014·北京理,12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.[答案] 8[解析] 本题考查了等差数列的性质与前n 项和.由等差数列的性质,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,于是有a 8>0,a 8+a 9<0,故a 9<0,故S 8>S 7,S 9<S 8,S 8为{a n }的前n 项和S n 中的最大值,等差数列{a n }中首项a 1>0公差d <0,{a n }是一个递减的等差数列,前n 项和有最大值,a 1<0,公差d >0,{a n }是一个递增的等差数列,前n 项和有最小值.三、解答题9.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 取最大值的n 的值.[解析] (1)设公差为d ,由已知得⎩⎨⎧ a 1+2d =5a 1+9d =-9,解得⎩⎨⎧a 1=9d =-2.∴a n =a 1+(n -1)d =-2n+11.(2)由(1)知S n =na 1+n n -12d =10n -n 2=-(n -5)2+25,∴当n =5时,S n 取得最大值.10.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n . [解析] (1)设等差数列{a n }的首项为a ,公差为d ,由于a 3=7,a 5+a 7=26, ∴a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.∴a n =2n +1,S n =n (n +2). (2)∵a n =2n +1, ∴a 2n -1=4n (n +1), ∴b n =14nn +1=14(1n -1n +1). 故T n =b 1+b 2+…+b n =14(1-12+12-13+…+1n -1n +1) =14(1-1n +1) =n4n +1,∴数列{b n }的前n 项和T n =n4n +1.一、选择题1.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或9[答案] C[解析] a n =120+5(n -1)=5n +115, 由a n <180得n <13且n ∈N *, 由n 边形内角和定理得, (n -2)×180=n ×120+n n -12×5.解得n =16或n =9 ∵n <13,∴n =9.2.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21[答案] B[解析] ∵S n 有最大值,∴a 1>0,d <0,∵a 11a 10<-1, ∴a 11<0,a 10>0,∴a 10+a 11<0, ∴S 20=20a 1+a 202=10(a 10+a 11)<0,又S 19=19a 1+a 192=19a 10>0,故选B .3.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A .a 8B .a 9C .a 10D .a 11[答案] D[解析] S 11=5×11=55=11a 1+11×102d =55d -55,∴d =2,S 11-x =4×10=40,∴x =15, 又a 1=-5,由a k =-5+2(k -1)=15得k =11.4.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .7 [答案] A[解析] ∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5, 又∵a 1·a 2·a 3=105,∴a 1a 3=21,由⎩⎨⎧a 1a 3=21a 1+a 3=10及{a n }递减可求得a 1=7,d =-2,∴a n =9-2n ,由a n ≥0得n≤4,∴选A .二、填空题5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________. [答案] 110[解析] 设等差数列{a n }的首项为a 1,公差为D .a 3=a 1+2d =16,S 20=20a 1+20×192d =20, ∴⎩⎨⎧a 1+2d =16,2a 1+19d =2,解得d =-2,a 1=20.∴S 10=10a 1+10×92d =200-90=110.6.等差数列{a n }中,d <0,若|a 3|=|a 9|,则数列{a n }的前n 项和取最大值时,n 的值为______________.[答案] 5或6[解析] ∵a 1+a 11=a 3+a 9=0, ∴S 11=11a 1+a 112=0,根据二次函数图象的性质,由于n ∈N *,所以当n =5或n =6时S n 取最大值. 三、解答题7.一等差数列共有偶数项,且奇数项之和与偶数项之和分别为24和30,最后一项与第一项之差为10.5,求此数列的首项、公差以及项数.[解析] 解法1:设此数列的首项a 1,公差d ,项数2k (k ∈N *).根据题意,得⎩⎪⎨⎪⎧S 奇=24S 偶=30a 2k-a 1=212,即⎩⎨⎧S 偶-S 奇=6,a2k -a 1=212,∴⎩⎨⎧kd =6,2k -1d =212,解得⎩⎨⎧k =4,d =32.由S 奇=k 2(a 1+a 2k -1)=24,可得a 1=32.∴此数列的首项为32,公差为32,项数为8.解法二:设此数列的首项为a 1,公差为d ,项数为2k (k ∈N *),根据题意,得⎩⎪⎨⎪⎧S 奇=24,S 偶=30,a 2k-a 1=212,即⎩⎪⎨⎪⎧12k a 1+a 2k -1=24,12k a 2+a2k=30,2k -1d =212,∴⎩⎪⎨⎪⎧k [a 1+k -1d ]=24,k a 1+kd =30,2k -1d =212,解得⎩⎪⎨⎪⎧a 1=32,d =32,k =4.∴此数列的首项为32,公差为32,项数为8.。
课时跟踪检测(九) 等差数列的前n 项和一、选择题1.设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .242.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .233.等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-14.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .275.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .5B .4C .3D .2二、填空题6.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.7. 已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________.8.已知S n 为等差数列{a n }的前n 项和,且a 4=2a 3,则S 7S 5= ________.三、解答题9.设数列{a n }的前n 项和为S n ,点(n ,S n n)(n ∈N *)均在函数y =3x -2的图象上.求数列{a n }的通项公式.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15,(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值.答 案课时跟踪检测(九)1.选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.选C 由a 2+a 4=4,a 3+a 5=10,可知d =3,a 1=-4.∴S 10=-40+10×92×3=95. 3.选D 由题意,得⎩⎪⎨⎪⎧a n =11,S n =35, 即⎩⎨⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35.解得⎩⎪⎨⎪⎧ n =5,a 1=3,或⎩⎪⎨⎪⎧n =7,a 1=-1. 4.选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列.所以S 3+(S 9-S 6)=2(S 6-S 3),即S 9-S 6=2S 6-3S 3=2×36-3×9=45.5.选C 由题意得S 偶-S 奇=5d =15,∴d =3.或由解方程组⎩⎪⎨⎪⎧5a 1+20d =15,5a 1+25d =30 求得d =3,故选C.6.解析:设{a n }的公差为d , 则⎩⎪⎨⎪⎧ a 1+5d =12,3a 1+3×22d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2, 于是a n =2+(n -1)×2=2n .答案:2n7.解析:设{a n }的首项,公差分别是a 1,d ,则 ⎩⎨⎧ a 1+2d =16,20a 1+20×(20-1)2×d =20,解得a 1=20,d =-2,∴S 10=10×20+10×92×(-2)=110. 答案:1108.解析:由等差数列的性质知S 7S 5=7a 45a 3=75×a 4a 3=75×2=145. 答案:1459.解:依题意得,S n n=3n -2, 即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5, 因a 1=S 1=1,满足a n =6n -5,所以a n =6n -5(n ∈N *).10.解:(1)设{a n }的首项,公差分别为a 1,d .则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d =-15,解得a 1=-9,d =3,∴a n =3n -12.(2)S n =n (a 1+a n )2=12(3n 2-21n ) =32(n -72)2-1478, ∴当n =3或4时,前n 项的和取得最小值为-18.。
2.3 等差数列的前n 项和(二)自主学习知识梳理1.前n 项和S n 与a n 之间的关系对任意数列{a n },S n 是前n 项和,S n 与a n 的关系可以表示为a n =⎩⎪⎨⎪⎧(n =1), (n ≥2).2.等差数列前n 项和公式S n =____________=____________.3.等差数列前n 项和的最值(1)在等差数列{a n }中当a 1>0,d <0时,S n 有________值,使S n 取到最值的n 可由不等式组____________确定;当a 1<0,d >0时,S n 有________值,使S n 取到最值的n 可由不等式组____________确定.(2)因为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有____________值;当d <0时,S n 有________值;且n 取最接近对称轴的自然数时,S n 取到最值.4.一个有用的结论:若S n =an 2+bn ,则数列{a n }是等差数列.反之亦然.自主探究在等差数列{a n }中,a n =2n -14,试用两种方法求该数列前n 项和S n 的最值.对点讲练知识点一 已知前n 项和S n ,求a n例1 已知数列{a n }的前n 项和为S n ,且S n =2n 2-3n ,求通项公式a n .总结 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示.变式训练1 已知数列{a n }的前n 项和S n =3n +b ,求a n .知识点二等差数列前n项和最值问题例2在等差数列{a n}中,a1=25,S17=S9,求S n的最大值.总结在等差数列中,求S n的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或零,而它后面的各项皆取负(正)值,则从第1项起到该项的各项的和为最大(小).由于S n为关于n的二次函数,也可借助二次函数的图象或性质求解.变式训练2等差数列{a n}中,a1<0,S9=S12,该数列前多少项的和最小?知识点三已知{a n}为等差数列,求{|a n|}的前n项和例3已知等差数列{a n}中,记S n是它的前n项和,若S2=16,S4=24,求数列{|a n|}的前n项和T n.总结等差数列{a n}前n项的绝对值之和,由绝对值的意义,应首先分清这个数列的哪些项是负的,哪些项是非负的,然后再分段求出前n项的绝对值之和.变式训练3数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0 (n∈N*).(1)求数列{a n}的通项公式;(2)设S n=|a1|+|a2|+…+|a n|,求S n.1.公式a n =S n -S n -1并非对所有的n ∈N *都成立,而只对n ≥2的正整数才成立.由S n求通项公式a n =f (n )时,要分n =1和n ≥2两种情况分别计算,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表示.2.求等差数列前n 项和的最值(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意n ∈N *,结合二次函数图象的对称性来确定n 的值,更加直观.(2)通项法:当a 1>0,d <0,⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0时,S n 取得最大值;当a 1<0,d >0,⎩⎪⎨⎪⎧a n ≤0,a n +1≥0时,S n 取得最小值.3.求等差数列{a n }前n 项的绝对值之和,关键是找到数列{a n }的正负项的分界点.课时作业一、选择题1.设数列{a n }是等差数列,且a 2=-8,a 15=5,S n 是数列{a n }的前n 项和,则( )A .S 9<S 10B .S 9=S 10C .S 11<S 10D .S 11=S 102.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( )A .9B .8C .7D .63.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( ) A.310 B.13 C.18 D.194.数列{a n }的前n 项和S n =3n -2n 2 (n ∈N *),则当n ≥2时,下列不等式成立的是( )A .S n >na 1>na nB .S n >na n >na 1C .na 1>S n >na nD .na n >S n >na 15.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值题 号1 2 3 4 5 答 案二、填空题6.数列{a n }的前n 项和为S n ,且S n =n 2-n (n ∈N *),则通项a n =________.7.等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使前n 项和S n 取得最大值的自然数n 是______.8.在等差数列{a n }中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n =________.三、解答题9.已知f (x )=x 2-2(n +1)x +n 2+5n -7(1)设f (x )的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列;(2)设f (x )的图象的顶点到x 轴的距离构成{b n },求{b n }的前n 项和.10.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的范围;(2)问前几项的和最大,并说明理由.§2.3 等差数列的前n 项和(二)知识梳理1.S 1 S n -S n -12.n (a 1+a n )2 na 1+n (n -1)2d 3.(1)最大 ⎩⎪⎨⎪⎧ a n ≥0a n +1≤0 最小 ⎩⎪⎨⎪⎧a n ≤0a n +1≥0 (2)最小 最大 自主探究解 方法一 ∵a n =2n -14,∴a 1=-12,d =2. ∴a 1<a 2<…<a 6<a 7=0<a 8<a 9<….∴当n =6或n =7时,S n 取到最小值.易求S 7=-42,∴(S n )min =-42.方法二 ∵a n =2n -14,∴a 1=-12.∴S n =n (a 1+a n )2=n 2-13n =⎝⎛⎭⎫n -1322-1694. ∴当n =6或n =7时,S n 最小,且(S n )min =-42. 对点讲练例1 解 当n =1时,a 1=S 1=-1,当n ≥2时,a n =S n -S n -1=4n -5.又∵a 1=-1,适合a n =4n -5,∴a n =4n -5 (n ∈N *).变式训练1 解 当n =1时,a 1=S 1=3+b .n ≥2时,a n =S n -S n -1=2·3n -1.因此,当b =-1时,a 1=2适合a n =2·3n -1,∴a n =2·3n -1.当b ≠-1时,a 1=3+b 不适合a n =2·3n -1,∴a n =⎩⎪⎨⎪⎧ 3+b (n =1)2·3n -1 (n ≥2). 综上可知,当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧ 3+b (n =1)2·3n -1 (n ≥2). 例2 解 方法一 利用前n 项和公式和二次函数性质.由S 17=S 9,得25×17+172×(17-1)d =25×9+92×(9-1)d , 解得d =-2,所以S n =25n +n 2(n -1)(-2)=-(n -13)2+169, 由二次函数性质可知,当n =13时,S n 有最大值169.方法二 先求出d =-2,因为a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0, 得⎩⎨⎧ n ≤1312,n ≥1212.所以当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169. 因此S n 的最大值为169.方法三 由S 17=S 9,得a 10+a 11+…+a 17=0,而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14,故a 13+a 14=0.由方法一知d =-2<0,又因为a 1>0,所以a 13>0,a 14<0,故当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169. 因此S n 的最大值为169.变式训练2 解 方法一 由S 9=S 12,得d =-110a 1, 由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ≤0a n +1=a 1+nd ≥0, 得⎩⎨⎧ 1-110(n -1)≥01-110n ≤0,解得10≤n ≤11.∴当n 为10或11时,S n 取最小值,∴该数列前10项或前11项的和最小.方法二 由S 9=S 12,得d =-110a 1, 由S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,得S n =⎝⎛⎭⎫-120a 1·n 2+⎝⎛⎭⎫2120a 1·n =-a 120⎝⎛⎭⎫n -2122+44180a 1 (a 1<0), 由二次函数性质可知n =212=10.5时,S n 最小. 但n ∈N *,故n =10或11时S n 取得最小值.所以该数列前10项或者前11项的和最小.例3 解 由S 2=16,S 4=24,得⎩⎨⎧ 2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧ 2a 1+d =16,2a 1+3d =12. 解得⎩⎪⎨⎪⎧ a 1=9,d =-2. 所以等差数列{a n }的通项公式为a n =11-2n (n ∈N *).(1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n .(2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n=2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧ -n 2+10n (n ≤5),n 2-10n +50 (n ≥6). 变式训练3 解 (1)∵a n +2-2a n +1+a n =0. ∴a n +2-a n +1=a n +1-a n =…=a 2-a 1.∴{a n }是等差数列且a 1=8,a 4=2,∴d =-2,a n =a 1+(n -1)d =10-2n .(2)T n =a 1+a 2+…+a n =n (8+10-2n )2=9n -n 2. ∵a n =10-2n ,令a n =0,得n =5.当n >5时,a n <0;当n =5时,a n =0;当n <5时,a n >0.∴当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=T 5-(T n -T 5)=2T 5-T n=2×(9×5-25)-9n +n 2=n 2-9n +40,当n ≤5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =T n =9n -n 2.∴S n =⎩⎪⎨⎪⎧ 9n -n 2, (n ≤5)n 2-9n +40, (n >5) n ∈N *. 课时作业1.B [由已知得d =a 15-a 215-2=1,∴a 1=-9, ∴a 10=a 1+9d =0,∴S 10=S 9+a 10=S 9.]2.B [由a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2,∴a n =2n -10. 由5<2k -10<8,得:7.5<k <9,∴k =8.]3.A [方法一 S 3S 6=3a 1+3d 6a 1+15d =13,∴a 1=2d ,S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13, 得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列, 公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3, S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.] 4.C [由a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1(n ≥2), 解得a n =5-4n .∴a 1=5-4×1=1,∴na 1=n ,∴na n =5n -4n 2, ∵na 1-S n =n -(3n -2n 2)=2n 2-2n =2n (n -1)>0. S n -na n =3n -2n 2-(5n -4n 2)=2n 2-2n >0.∴na 1>S n >na n .]5.C [由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0.]6.2n -27.5或6解析 d <0,|a 3|=|a 9|,∴a 3>0,a 9<0且a 3+a 9=0, ∴a 6=0,∴a 1>a 2>…>a 5>0,a 6=0,0>a 7>a 8>….∴当n =5或6时,S n 取到最大值.8.10解析 由已知,a 1+a 2+a 3=15,a n +a n -1+a n -2=78,两式相加,得 (a 1+a n )+(a 2+a n -1)+(a 3+a n -2)=93,即a 1+a n =31.由S n =n (a 1+a n )2=31n 2=155,得n =10. 9.(1)证明 f (x )=[x -(n +1)]2+3n -8,∴a n =3n -8,∵a n +1-a n =3,∴{a n }为等差数列.(2)解 b n =|3n -8|.当1≤n ≤2时,b n =8-3n ,b 1=5.S n =n (5+8-3n )2=13n -3n 22. 当n ≥3时,b n =3n -8,S n =5+2+1+4+…+(3n -8)=7+(n -2)(1+3n -8)2=3n 2-13n +282. ∴S n =⎩⎨⎧13n -3n 22 (1≤n ≤2),3n 2-13n +282 (n ≥3).10.解 (1)根据题意,有:⎩⎨⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧ 2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3. (2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…,而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0. 又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0, ∴a 6>0.∴数列{a n }的前6项和S 6最大.。
高中数学学习材料金戈铁骑整理制作2.3 等差数列的前n 项和(人教A 版必修5)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题3分,共27分)1.已知数列{}n a 为等差数列,公差2d =-,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.242.若11a =,2d =,224k k S S +-=,则k =( ) A.8 B.7 C.6 D.53.等差数列{}n a 的前n 项和为n S ,若1a =12,4S =20,则6S =( ) A.16 B.24 C.36 D.484.等差数列{}n a 的前n 项和为n S ,已知11m m a a -++-2ma =0,21m S -=38,则m =( )A.38B.20C.10D.95.数列{}n a 是等差数列,12324a a a ++=-,1819a a ++2078a =,则此数列的前20项和等于( )A.160B.180C.200D.2206.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,2811a a a ++是一个定值,则下列各数中也为定值的是( )A.7SB.8SC.13SD.15S7.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A.138B.135C.95D.238.已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( ) A.24 B.26 C.27 D.289.已知等差数列{}n a 的前n 项和为n S ,若1OB a OA=200a OC +且,,A B C 三点共线(该直线不过点O ),则200S =( )A.100B.101C.200D.201二、填空题(每小题4分,共16分)10.在等差数列{}n a 中,10a >,d =12,n a =3,n S =152,则1a = ,n = . 11. 设等差数列的前n 项和为n S ,若972S =,则249a a a ++= .12.已知等差数列{}n a 的前n 项和为18,若3S =1,n a 123n n a a --++=,则n = .13.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 . 三、解答题(共57分)14.(8分)在等差数列{}n a 中:(1)已知51058a a +=,4950a a +=,求10S ; (2)已知742S =,510n S =,345n a -=,求n .15.(8分) 已知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的项构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?16.(8分)已知等差数列{}n a , (1)若271221a a a ++=,求13S ; (2)若1575S =,求8a .17.(9分)已知在正整数数列{}n a 中,前n 项和n S 满足:n S =18(n a +2)2.(1)求证:{}n a 是等差数列;(2)若n b =12n a -30,求数列{}n b 前n 项和的最小值.18.(12分)设等差数列}{n a 的前n 项和为n S ,且4S =-62, 6S =-75,求:(1)}{n a 的通项公式及前n 项和n S ;(2)|1a |+|2a |+|3a |+…+|14a |.19.(12分)已知数列{}n a 的前n 项和278n S n n =--. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .2.3 等差数列的前n和(人教A版必修5)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9答案二、填空题10. 11. 12. 13.三、解答题14.15.16.17.18.19.2.3 等差数列的前n项和(人教A版必修5)答案1.B 解析:由1011S S =,得1111100a S S =-=,111(111)0(10)(2)20a a d ⨯=+-=+--=.2.D 解析:∵ 212111(1)2(21)21(21)24424k k k k S S a a a kd a k d a k d k k ⨯⨯+++-=+=++++=++=++=+=,∴ 5k =.3.D 解析:设等差数列{}n a 的公差为d ,∵ 1a =12,4S =4×12+4×32d =2+6d =20,∴ d =3,故6S =6×12+6×52×3=48,故选D.4.C 解析:由等差数列的性质,得112m m m a a a -++=,∴ 22m m a a =.由题意得0m a ≠,∴ 2m a =.又21m S -=121(21)()2(21)22m m m a a a m --+-==2(21)m -=38,∴ m =10.5.B 解析:∵ {}n a 是等差数列,∴ 120219318a a a a a a +=+=+.又12324a a a ++=-,18192078a a a ++=,∴ 12021931854a a a a a a +++++=. ∴ 1203()54a a +=.∴ 12018a a +=.∴ 20S =12020()2a a +=180. 6.C 解析:由已知28111173183(6)3a a a a d a d a ++=+=+=为定值,则13S =11313()2a a +=137a 也为定值,故选C. 7.C 解析:设等差数列{}n a 的首项为1a ,公差为d ,则24354,10.a a a a +=⎧⎪⎨+=⎪⎩①②②-①,得2d =6,∴ d =3.∴ 2411113242434a a a d a d a d a ⨯+=+++=+=+=.∴ 14a =-.∴ 10S =10×(-4)+10×92×3=-40+135=95.故选C.8.B 解析:设该等差数列为{}n a ,由题意得123421a a a a +++=,12367n n n n a a a a ---+++=. 又∵ 1213243n n n n a a a a a a a a ---+=+=+=+,∴ 14()216788n a a +=+=,∴ 122n a a +=, ∴ n S =1()2n n a a +11286n ==,∴ 26n =. 9.A 解析:∵ 1200OB a OA a OC =+,且,,A B C 三点共线, ∴ 12002001a a S +=,=1200200()2a a +100=.二、填空题10.23 解析:由题意,得1113(1)21511=(1),222a n na n n ⎧=+-⨯⎪⎪⎨⎪+⨯-⨯⎪⎩,解得12,3.a n =⎧⎨=⎩ 11.24 解析:∵ }{n a 是等差数列,972S =,599,S a ∴=58a =.∴2492945645()()324a a a a a a a a a a ++=++=++==. 12.27 解析:由题意得1()182n n n a a S +==. 由121233,1,n n n a a a a a a --++=⎧⎨++=⎩得13()4n a a +=,即1n a a +=43,故n =136362743na a ==+. 13.3 解析:1357915S a a a a a 奇=++++=,24681030S a a a a a 偶=++++=,∴ 515S S d 偶奇-==,∴ 3d =.14.(1)解法一:由已知条件得510149121358,21150,a a a d a a a d +=+=⎧⎨+=+=⎩解得13,4.a d =⎧⎨=⎩∴ 10110S a =+10(101)2d ⨯-⨯103⨯=+1092⨯4210⨯=. 解法二:由已知条件得51011049110458,250,a a a a d a a a a d +=++=⎧⎨+=++=⎩∴ 11042a a +=,∴ 10S =11010()2a a ⨯+542210⨯==.解法三:由51049()()25850a a a a d +-+==-,得4d =; 由4950a a +=,得121150a d +=,∴ 13a =. 故10103S ⨯=+10942102⨯⨯=. (2)解:7S =177()2a a +4742a ==,∴ 46a =. ∴ n S =()()()14345510222-+++===6n n n a a n a a n .∴ 20n =.15.解:设新数列为{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则即3=2+4d ,∴ 14d =,∴ 172(1)44n n b n +=+-⨯=. 1(43)7(1)114n n a a n n -+=+-⨯=+=又,∴ 43n n a b -=.即原数列的第n 项为新数列的第(4n -3)项.(1)当n =12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项; (2)由4n -3=29,得n =8,故新数列的第29项是原数列的第8项. 16.解:(1)∵ 21211372a a a a a +=+=,271221a a a ++=, ∴ 7321a =,即7a =7. ∴ 13S =11313()2a a +=71322a ⨯=91. (2)∵ 15S =11515()2a a +=81522a ⨯=75,∴ 8a =5. 17.(1)证明:由21(2)8n n S a =+,得2111(2)8n n S a --=+(n ≥2).当n ≥2时,n a =n S -1n S -=182(2)n a +-1821(2)n a -+,整理,得11()(4)0n n n n a a a a --+--=.∵ 数列{}n a 为正整数数列,∴ 10,n n a a +≠- ∴ 14n n a a --=,即{}n a 为等差数列.(2)解:∵ 1S =1821(2)a +,∴ 1a =1821(2)a +,解得1a =2.∴ n a =2+4(n -1)=4n -2.∴ n b =12n a -30=12(4n -2)-30=2n -31.令n b <0,得n <312. ∴ 15S 为前n 项和的最小值,即151215S b b b =+++=2(1+2+…+15)-15×31=-225. 18.解:设等差数列的首项为1a ,公差为d ,依题意得⎩⎨⎧-=+-=+,,75156626411d a d a解得120,3.=⎧⎨=⎩-a d(1)2)23320(2)(,233)1(11-+-=+=-=-+=n n n a a S n d n a a n n n 234322n n =-.(2){}120,3,n a d a n =-=∴的项随着的增大而增大.1Z 202300,32303(1)230,(),7,337+≤≥-≤+-≥∴≤≤∈=k k a a k k k k k 设且得且数.即第项及之前均为负∴ 123141278914||||||||()()a a a a a a a a a a ++++=-+++++++1472147S S =-=.19.解:(1)当n =1时,11a S ==-14; 当n ≥2时,1n n n a S S -=-=2n -8, 故n a =14(1),28(2).n n n -=⎧⎨-≥⎩(2)由n a =2n -8可知:当n ≤4时,n a ≤0;当n ≥5时,0n a >. ∴ 当1≤n ≤4时,278n n T S n n =-=-++;当n ≥5时,22444()2782(20)732n n n T S S S S S n n n n ⨯=-+-=-=----=-+.∴ n T =2278(14),732(5).n n n n n n ⎧-++≤≤⎪⎨-+≥⎪⎩。
2.3 等差数列的前n 项和第1课时数列的前n 项和与等差数列的前n 项和A 级 基础巩固一、选择题1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( )A .12B .24C .36D .48解析:由S 10=10(a 1+a 10)2,得a 1+a 10=S 105=1205=24. 答案:B2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( )A .2B .3C .6D .7解析:法一:由⎩⎨⎧S 2=2a 1+d =4,S 4=4a 1+6d =20.解得d =3.法二:由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3.答案:B3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27解析:因为a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即S 9-S 6=2S 6-3S 3=2×36-3×9=45.答案:B4.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( )A .12B .14C .16D .18解析:因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.答案:B5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( ) A .1 B .-1 C .2 D.12解析:S 9S 5=92(a 1+a 9)52(a 1+a 5)=9×2a 55×2a 3=9a 55a 3=95×59=1. 答案:A二、填空题6.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 11等于________.解析:设⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1的公差为d ,则有1a 7+1=1a 3+1+4d , 解得d =124,所以1a 11+1=1a 3+1+8d , 即1a 11+1=12+1+13, 解得a 11=12. 答案:127.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A8.已知数列{a n }的通项公式为a n =2n -30,S n 是{|a n |}的前n 项和,则S 10=________.解析:a n =2n -30,令a n <0,得n <15,即在数列{a n }中,前14项均为负数,所以S 10=-(a 1+a 2+a 3+…+a 10)=-102(a 1+a 10)=-5[(-28)+(-10)]=190. 答案:190三、解答题9.等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .解:(1)设数列{a n }的首项为a 1,公差为d .则⎩⎨⎧a 10=a 1+9d =30,a 20=a 1+19d =50,解得⎩⎨⎧a 1=12,d =2.所以a n =a 1+(n -1)d =12+(n -1)×2=10+2n .(2)由S n =na 1+n (n -1)2d 以及a 1=12, d =2,S n =242,得方程242=12n +n (n -1)2·2, 即n 2+11n -242=0,解得n =11或n =-22(舍去).故n =11.10.已知等差数列{a n }的公差劲d =1,前n 项和为S n .(1)若1,a 1,a 3成等比数列,求a 2;(2)若S 5>a 1a 9求a 1的取值范围.解:(1)因为数列{a n }的公差d =-1,且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2),即a 21-a 1-2=0,解得a 1=-1或2.(2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 21+8a 1,即a 21+3a 1-10<0,解得-5<a 1<2.故a 1的取值范围是(-5,2).B 级 能力提升1.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *), 则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:因为a n +1-a n =-3,所以数列{a n }是以19为首项,-3为公差的等差数列,所以a n =19+(n -1)×(-3)=22-3n .设前k 项和最大,则有⎩⎨⎧a k ≥0,a k +1≤0,所以⎩⎨⎧22-3k ≥0,22-3(k +1)≤0,所以193≤k ≤223,因为k ∈N *,所以k =7.故满足条件的n 的值为7.答案:B2.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则满足S n <0的n 的最大值为________.解析:因为a 10<0,a 11>0,且a 11>|a 10|,所以a 11>-a 10,a 1+a 20=a 10+a 11>0,所以S 20=20(a 1+a 20)2>0. 又因为a 10+a 10<0,所以S 19=19×(a 10+a 10)2=19a 10<0,故满足S n <0的n 的最大值为19.答案:193.设数列{a n }的前n 项和为S n ,点⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,求数列{b n }的前n 项和T n . 解:(1)依题意,得S n n=3n -2, 即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5;当n =1时,a 1=1也适合.即a n =6n -5.(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]= 12⎝ ⎛⎭⎪⎪⎫16n -5-16n +1,故T n =b 1+b 2+…+b n = 12⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎪⎫16n -5-16n +1=12⎝ ⎛⎭⎪⎪⎫1-16n +1.。
2.3《等差数列的前n 项和》作业(第二课时)1.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是( )A.5B.4C. 3D.22.在等差数列{}n a 中,若1264=+a a ,S n 是数列{}n a 的前n 项和,则9S 的值为 ( )(A )48 (B)54 (C)60 (D)663.设S n 是等差数列{}n a 的前n 项和,若3163=S S ,则=126S S ( ) (A )103 (B ) 31 (C )8 (D )91 4.已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .1005.设{}n a 是公差为正数的等差数列,若80,15321321==++a a a a a a ,,则111213a a a ++= ( )A . 120B . 105C . 90D .756. {}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( )(A )667 (B )668 (C )669 (D )6707. 若等差数列{}n a 的前三项和93=S 且11=a ,则2a 等于( )A .3B .4C .5D .68. 等差数列{}n a 的前n 项和为n S 若=则432,3,1S a a ==( )A .12B .10C .8D .69.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .2710. 等差数列{}n a 的公差是正数,且4,126473-=+-=a a a a ,求它的前20项的和.11. 已知数列{}n a 为等差数列,前30项的和为50,前50项的和为30,求前80项的和。
2.3 等差数列的前n 项和第1课时 等差数列的前n 项和课后篇巩固提升基础巩固1.已知S n 为等差数列{a n }的前n 项和,a 2+a 5=4,S 7=21,则a 7的值为( ) A.6B.7C.8D.9{a n }的公差为d ,则{a 1+d +a 1+4d =4,7a 1+7×62d =21,解得{a 1=-3,d =2,所以a 7=a 1+6d=-3+6×2=9,故选D .2.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项的和S 11=( ) A .58 B .88C .143D .176S 11=11(a 1+a 11)2,a 1+a 11=a 4+a 8=16, ∴S 11=11×162=88,故选B .3.已知数列{a n }的前n 项和S n =n 2,则a n 等于( ) A.n B.n 2 C.2n+1 D.2n-1n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1,且a 1=1适合上式,故a n =2n-1(n ∈N *).4.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:相逢时良马比驽马多行( ) A.1 125里B.920里C.820里D.540里{a n },则{a n }是以103为首项,以13为公差的等差数列,其前n 项和为A n ,驽马每天所行路程为{b n },则{b n }是以97为首项,以-12为公差的等差数列,其前n 项和为B n ,设共用n 天二马相逢,则A n +B n =2×1 125,所以103n+n (n -1)2×13+97n+n (n -1)2(-12)=2 250,化简得n 2+31n-360=0,解得n=9. A 9=103×9+9×82×13=1 395,B 9=2 250-1 395=855,A 9-B 9=1 395-855=540.5.已知数列{a n }的通项公式为a n =2n+1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( ) A.70B.75C.80D.85a n =2n+1,∴数列{a n }是等差数列,首项a 1=3,其前n 项和S n =n (a 1+a n )2=n (3+2n+1)2=n 2+2n ,∴b n =1nS n =n+2,∴数列{b n }也是等差数列,首项b 1=3,公差为1,∴其前10项和T 10=10×3+10×92×1=75,故选B .6.设数列{a n }是等差数列,且a 2+a 3+a 4=15,则该数列的前5项和S 5= .a 2+a 3+a 4=15,得3a 3=15,解得a 3=5,故S 5=5(a 1+a 5)2=5a 3=25.7.在等差数列{a n }中,其前n 项和为S n ,若S 12=8S 4,则a1d =.S 12=12a 1+12×112d ,S 4=4a 1+4×32d ,∴12a 1+66d=32a 1+48d.∴20a 1=18d. ∴a1d =1820=910.8.已知数列{a n }的前n 项和为S n =n ·2n -1,则a 3+a 4+a 5= .3+a 4+a 5=S 5-S 2=(5×25-1)-(2×22-1)=152.9.设数列{a n }的前n 项和为S n ,点(n ,S nn)(n ∈N *)均在函数y=3x-2的图象上,求数列{a n }的通项公式.,得Sn n=3n-2,即S n =3n 2-2n.当n ≥2时,a n =S n -S n-1=(3n 2-2n )-[3(n-1)2-2(n-1)]=6n-5. 因为a 1=S 1=1,满足a n =6n-5, 所以a n =6n-5(n ∈N *).10.已知数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2. (1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.∵a n+2=2a n+1-a n +2,∴a n+2-a n+1=a n+1-a n +2,即b n+1=b n +2.又b1=a2-a1=2-1=1,∴数列{b n}是以1为首项,2为公差的等差数列.(2)由(1)可知,a n+1-a n=1+2(n-1)=2n-1,∴a n-a n-1=2(n-1)-1,a n-1-a n-2=2(n-2)-1,……a2-a1=2×1-1,累加,得a n-a1=2×n(n-1)2-(n-1)=n2-2n+1,∴a n=a1+n2-2n+1=n2-2n+2,∴数列{a n}的通项公式为a n=n2-2n+2.能力提升1.在等差数列{a n}中,2a4+a7=3,则数列{a n}的前9项和S9等于()A.3B.6C.9D.12{a n}的公差为d,因为2a4+a7=3,所以2(a1+3d)+a1+6d=3,整理,得a1+4d=1,即a5=1,所以S9=9(a1+a9)2=9a5=9.2.若公差不为0的等差数列{a n}的前21项的和等于前8项的和,且a8+a k=0,则正整数k的值为()A.20B.21C.22D.23{a n}的前n项和为S n,由题意,得S21=S8,即a9+a10+…+a21=0.根据等差数列的性质,得13a15=0,即a15=0.故a8+a22=2a15=0,即k=22.故选C.3.已知等差数列{a n},a2=6,a5=15,若b n=a2n,则数列{b n}的前5项和等于()A.30B.45C.90D.186{a n}易得公差d1=3.又b n=a2n,所以{b n}也是等差数列,公差d2=6.故S5=b1+b2+b3+b4+b5=a2+a4+a6+a8+a10=5×6+5×42×6=90.4.设S n为等差数列{a n}的前n项和,S n=336,a2+a5+a8=6,a n-4=30(n≥5,n∈N*),则n等于()A.8B.16C.21D.32a2+a5+a8=6,得3a5=6,所以a5=2.因为a5+a n-4=a1+a n=2+30=32,所以S n=n(a1+a n)2=32n2=336,解得n=21.5.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5=.n ≥2时,由S n =2a n -1,得S n-1=2a n-1-1.两式相减,得a n =2a n -2a n-1,所以a n =2a n-1.因为a 1=2a 1-1,所以a 1=1,故a 5=2a 4=22a 3=23a 2=24a 1=16.6.在数列{a n }中,a n =4n-52,a 1+a 2+…+a n =an 2+bn+c ,n ∈N *,其中a ,b 为常数,则ab+c= .a n =4n-52,即a n 是关于n 的一次函数,所以数列{a n }是等差数列,所以a 1+a 2+…+a n =n (32+4n -52)2=2n 2-12n ,因此a=2,b=-12,c=0,故ab+c=2×(-12)+0=-1.17.已知数列{a n }的前n 项和为S n (S n ≠0),且满足a n +2S n ·S n-1=0(n ≥2),a 1=12. (1)求证:{1S n}是等差数列;(2)求数列{a n }的通项公式.-a n =2S n S n-1(n ≥2),∴-S n +S n-1=2S n S n-1(n ≥2).又S n ≠0(n=1,2,3,…),∴1S n−1S n -1=2.又1S 1=1a 1=2,∴{1S n}是以2为首项,2为公差的等差数列.(1)可知1S n=2+(n-1)·2=2n ,∴S n =12n.当n ≥2时,a n =S n -S n-1=12n −12(n -1)=-12n (n -1)(或当n ≥2时,a n =-2S n S n -1=-12n (n -1));当n=1时,S 1=a 1=12.故a n ={12,n =1,-12n (n -1),n≥2.8.设S n 为数列{a n }的前n 项和,S n =λa n -1(λ为常数,n=1,2,3,…).(1)若a 3=a 22,求λ的值;(2)是否存在实数λ,使得数列{a n }是等差数列?若存在,求出λ的值;若不存在,请说明理由.因为S n =λa n -1,所以a 1=λa 1-1,a 2+a 1=λa 2-1,a 3+a 2+a 1=λa 3-1. 由a 1=λa 1-1,可知λ≠1, 所以a 1=1λ-1,a 2=λ(λ-1)2,a 3=λ2(λ-1)3. 因为a 3=a 22,所以λ2(λ-1)3=λ2(λ-1)4,解得λ=0或λ=2.(2)假设存在实数λ,使得数列{a n }是等差数列,则2a 2=a 1+a 3, 由(1)可得2λ(λ-1)2=1λ-1+λ2(λ-1)3,所以2λ(λ-1)2=2λ2-2λ+1(λ-1)3=2λ(λ-1)2+1(λ-1)3,即1(λ-1)3=0,显然不成立,所以不存在实数λ,使得数列{a n}是等差数列.。
§2.3 等差数列的前n 项和(二)课时目标1.熟练掌握等差数列前n 项和的性质,并能灵活运用. 2.掌握等差数列前n 项和的最值问题. 3.理解an 与Sn 的关系,能根据Sn 求an.1.前n 项和Sn 与an 之间的关系对任意数列{an},Sn 是前n 项和,Sn 与an 的关系可以表示为an =⎩⎨⎧S1=,Sn -Sn -2.等差数列前n 项和公式 Sn =+2=na1+-2d.3.等差数列前n 项和的最值 (1)在等差数列{an}中当a1>0,d<0时,Sn 有最大值,使Sn 取到最值的n 可由不等式组⎩⎨⎧an≥0an +1≤0确定;当a1<0,d>0时,Sn 有最小值,使Sn 取到最值的n 可由不等式组⎩⎨⎧an≤0an +1≥0确定.(2)因为Sn =d 2n2+⎝ ⎛⎭⎪⎫a1-d 2n ,若d≠0,则从二次函数的角度看:当d>0时,Sn 有最小值;当d<0时,Sn 有最大值;且n 取最接近对称轴的自然数时,Sn 取到最值. 一个有用的结论:若Sn =an2+bn ,则数列{an}是等差数列.反之亦然.一、选择题1.已知数列{an}的前n 项和Sn =n2,则an 等于( ) A .n B .n2 C .2n +1 D .2n -1 答案 D2.数列{an}为等差数列,它的前n 项和为Sn ,若Sn =(n +1)2+λ,则λ的值是( ) A .-2 B .-1 C .0 D .1 答案 B解析 等差数列前n 项和Sn 的形式为:Sn =an2+bn , ∴λ=-1.3.已知数列{an}的前n 项和Sn =n2-9n ,第k 项满足5<ak<8,则k 为( ) A .9 B .8 C .7 D .6 答案 B解析 由an =⎩⎨⎧S1, n =1Sn -Sn -1, n≥2,∴an =2n -10.由5<2k -10<8,得7.5<k<9,∴k =8.4.设Sn 是等差数列{an}的前n 项和,若S3S6=13,则S6S12等于( ) A.310 B.13 C.18 D.19 答案 A解析 方法一 S3S6=3a1+3d 6a1+15d =13⇒a1=2d ,S6S12=6a1+15d 12a1+66d =12d +15d 24d +66d =310.方法二 由S3S6=13,得S6=3S3.S3,S6-S3,S9-S6,S12-S9仍然是等差数列,公差为(S6-S3)-S3=S3,从而S9-S6=S3+2S3=3S3⇒S9=6S3, S12-S9=S3+3S3=4S3⇒S12=10S3,所以S6S12=310.5.设Sn 是等差数列{an}的前n 项和,若a5a3=59,则S9S5等于( ) A .1 B .-1 C .2 D.12 答案 A解析 由等差数列的性质,a5a3=2a52a3=a1+a9a1+a5=59,∴S9S5=92+52+=95×59=1.6.设{an}是等差数列,Sn 是其前n 项和,且S5<S6,S6=S7>S8,则下列结论错误的是( ) A .d<0 B .a7=0C .S9>S5D .S6与S7均为Sn 的最大值 答案 C解析 由S5<S6,得a6=S6-S5>0.又S6=S7⇒a7=0,所以d<0. 由S7>S8⇒a8<0,因此,S9-S5=a6+a7+a8+a9 =2(a7+a8)<0即S9<S5. 二、填空题7.数列{an}的前n 项和为Sn ,且Sn =n2-n ,(n ∈N*),则通项an =________. 答案 2n -28.在等差数列{an}中,a1=25,S9=S17,则前n 项和Sn 的最大值是________. 答案 169解析 方法一 利用前n 项和公式和二次函数性质.由S17=S9,得25×17+172×(17-1)d =25×9+92×(9-1)d ,解得d =-2, 所以Sn =25n +n2(n -1)×(-2) =-(n -13)2+169,由二次函数性质可知,当n =13时,Sn 有最大值169. 方法二 先求出d =-2,因为a1=25>0,由⎩⎨⎧an =25--,an +1=25-2n≤0,得⎩⎪⎨⎪⎧n≤1312,n≥1212.所以当n =13时,Sn 有最大值. S13=25×13+-2×(-2)=169.因此Sn 的最大值为169.方法三 由S17=S9,得a10+a11+…+a17=0, 而a10+a17=a11+a16=a12+a15=a13+a14, 故a13+a14=0.由方法一知d =-2<0, 又因为a1>0,所以a13>0,a14<0,故当n =13时,Sn 有最大值. S13=25×13+-2×(-2)=169.因此Sn 的最大值为169.9.在等差数列{an}中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n =________. 答案 10解析 由已知,a1+a2+a3=15,an +an -1+an -2=78,两式相加,得 (a1+an)+(a2+an -1)+(a3+an -2)=93,即a1+an =31. 由Sn =+2=31n2=155,得n =10.10.等差数列{an}中,a1<0,S9=S12,该数列在n =k 时,前n 项和Sn 取到最小值,则k 的值是________. 答案 10或11解析 方法一 由S9=S12,得d =-110a1,由⎩⎨⎧an =a1+-an +1=a1+nd≥0,得⎩⎪⎨⎪⎧1-110-1-110n≤0,解得10≤n≤11.∴当n 为10或11时,Sn 取最小值, ∴该数列前10项或前11项的和最小. 方法二 由S9=S12,得d =-110a1,由Sn =na1+-2d =d 2n2+⎝ ⎛⎭⎪⎫a1-d 2n , 得Sn =⎝ ⎛⎭⎪⎫-120a1·n2+⎝ ⎛⎭⎪⎫2120a1·n =-a120⎝ ⎛⎭⎪⎫n -2122+44180a1 (a1<0),由二次函数性质可知n =212=10.5时,Sn 最小. 但n ∈N*,故n =10或11时Sn 取得最小值. 三、解答题11.设等差数列{an}满足a3=5,a10=-9. (1)求{an}的通项公式;(2)求{an}的前n 项和Sn 及使得Sn 最大的序号n 的值. 解 (1)由an =a1+(n -1)d 及a3=5,a10=-9得 ⎩⎨⎧ a1+2d =5,a1+9d =-9,可解得⎩⎨⎧a1=9,d =-2, 所以数列{an}的通项公式为an =11-2n. (2)由(1)知,Sn =na1+-2d =10n -n2.因为Sn =-(n -5)2+25, 所以当n =5时,Sn 取得最大值.12.已知等差数列{an}中,记Sn 是它的前n 项和,若S2=16,S4=24,求数列{|an|}的前n 项和Tn.解由S2=16,S4=24,得⎩⎪⎨⎪⎧2a1+2×12d =16,4a1+4×32d =24.即⎩⎨⎧ 2a1+d =16,2a1+3d =12. 解得⎩⎨⎧a1=9,d =-2.所以等差数列{an}的通项公式为an =11-2n (n ∈N*).(1)当n≤5时,Tn =|a1|+|a2|+…+|an|=a1+a2+…+an =Sn =-n2+10n.(2)当n≥6时,Tn =|a1|+|a2|+…+|an|=a1+a2+…+a5-a6-a7-…-an =2S5-Sn =2×(-52+10×5)-(-n2+10n)=n2-10n +50, 故Tn =⎩⎨⎧-n2+10n ,n2-10n +能力提升13.数列{an}的前n 项和Sn =3n -2n2 (n ∈N*),则当n≥2时,下列不等式成立的是( ) A .Sn>na1>nan B .Sn>nan>na1 C .na1>Sn>nan D .nan>Sn>na1 答案 C解析 方法一 由an =⎩⎨⎧S1=Sn -Sn -,解得an =5-4n.∴a1=5-4×1=1,∴na1=n , ∴nan =5n -4n2,∵na1-Sn =n -(3n -2n2)=2n2-2n =2n(n -1)>0. Sn -nan =3n -2n2-(5n -4n2)=2n2-2n>0. ∴na1>Sn>nan.方法二 ∵an =5-4n , ∴当n =2时,Sn =-2, na1=2,nan =-6, ∴na1>Sn>nan.14.设等差数列{an}的前n 项和为Sn ,已知a3=12,且S12>0,S13<0. (1)求公差d 的范围;(2)问前几项的和最大,并说明理由.解 (1)根据题意,有:⎩⎪⎨⎪⎧12a1+12×112d>0,13a1+13×122d<0,a1+2d =12,整理得:⎩⎨⎧2a1+11d>0,a1+6d<0,a1+2d =12.解之得:-247<d<-3. (2)∵d<0, 而S13=+2=13a7<0,∴a7<0.又S12=+2=6(a1+a12)=6(a6+a7)>0,∴a6>0.∴数列{an}的前6项和S6最大.1.公式an =Sn -Sn -1并非对所有的n ∈N*都成立,而只对n≥2的正整数才成立.由Sn 求通项公式an =f(n)时,要分n =1和n≥2两种情况分别计算,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表示.2.求等差数列前n 项和的最值(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意n ∈N*,结合二次函数图象的对称性来确定n 的值,更加直观.(2)通项法:当a1>0,d<0,⎩⎨⎧ an≥0,an +1≤0时,Sn 取得最大值;当a1<0,d>0,⎩⎨⎧an≤0,an +1≥0时,Sn取得最小值.3.求等差数列{an}前n 项的绝对值之和,关键是找到数列{an}的正负项的分界点.。
- 1 -
第二章 2.3 第1课时
一、选择题
1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )
A .-6
B .-4
C .-2
D .2
[答案] A
[解析] 本题考查数列的基础知识和运算能力. ⎩⎪⎨⎪⎧ S 3=4a 3a 7=-2⇒⎩⎪⎨⎪⎧ 3a 1+3d =4a 1+8d a 1+6d =-2⇒⎩⎪⎨⎪⎧ a 1=10d =-2
. ∴a 9=a 1+8d =-6.
2.四个数成等差数列,S 4=32,a 2a 3=13,则公差d 等于( )
A .8
B .16
C .4
D .0 [答案] A
[解析] ∵a 2a 3=13,∴a 1+d
a 1+2d =13,∴d =-2a 1. 又S 4=4a 1+4×32
d =-8a 1=32,∴a 1=-4, ∴d =8.
3.等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=14.记S n =a 1+a 2+a 3+…+a n ,则S 13=
( )
A .168
B .156
C .152
D .
286
- 1 -
[答案] D
[解析] ∵⎩⎪⎨⎪⎧ a 3+a 7-a 10=8a 11-a 4=14,∴⎩⎪⎨⎪⎧
a 1-d =87d =14, ∴⎩⎪⎨⎪⎧
d =2a 1=10
,∴S 13=13a 1+13×122d =286. 4.在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )
A .0
B .4475
C .8950
D .10 000 [答案] C
[解析] 设c n =a n +b n ,则c 1=a 1+b 1=40,c 100=a 100+b 100=139,{c n }是等差数列,
∴前100项和S 100=100c 1+c 1002=100×40+1392
=8950. 5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )
A .5
B .4
C .3
D .2 [答案] C
[解析] 设等差数列为{a n },公差为d , 则⎩⎪⎨⎪⎧ a 1+a 3+a 5+a 7+a 9=15a 2+a 4+a 6+a 8+a 10=30
, ∴5d =15,∴d =3.
6.设S n 是等差数列{a n }的前n 项和,若a 7a 5=9
13,
旗开得胜 - 1 - 则S 13S 9=( ) A .1 B .- 1 C .2 D .1
2
[答案] A
[解析] S 13S 9=13a 79a 5=139×9
13=1,故选A .
二、填空题
7.已知数列{a n }的通项公式a n =-5n +2,则其前n 项和S n =________.
[答案] -5n 2
+n
2
[解析] ∵a n =-5n +2,
∴a n -1=-5n +7(n ≥2),
∴a n -a n -1=-5n +2-(-5n +7)=-5(n ≥2). ∴数列{a n }是首项为-3,公差为-5的等差数列. ∴S n =n a 1+a n 2=n -5n -1
2=-5n 2+n
2.
8.设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________.
[答案] 24
[解析] ∵S 9=9·a 1+a 9
2=72,
∴a 1+a 9=16,即a 1+a 1+8d =16, ∴a 1+4d =8,
又a 2+a 4+a 9=a 1+d +a 1+3d +a 1+8d =3(a 1+4d )=3×8=24.
三、解答题。