数控加工误差补偿的关键技术与补偿技巧
- 格式:pdf
- 大小:222.30 KB
- 文档页数:3
数控机床几何误差前言提高机床精度有两种方法。
一种是通过提高零件设计、制造和装配的水平来消除可能的误差源,称为误差防止法(error prevention)。
该方法一方面主要受到加工母机精度的制约,另一方面零件质量的提高导致加工成本膨胀,致使该方法的使用受到一定限制。
另一种叫误差补偿法(error compensation),通常通过修改机床的加工指令,对机床进行误差补偿,达到理想的运动轨迹,实现机床精度的软升级。
研究表明,几何误差和由温度引起的误差约占机床总体误差的70%,其中几何误差相对稳定,易于进行误差补偿。
对数控机床几何误差的补偿,可以提高整个机械工业的加工水平,对促进科学技术进步,提高我国国防能力,继而极大增强我国的综合国力都具有重大意义。
1几何误差产生的原因普遍认为数控机床的几何误差由以下几方面原因引起:1.1 机床的原始制造误差是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。
1.2 机床的控制系统误差包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。
1.3 热变形误差由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。
1.4切削负荷造成工艺系统变形所导致的误差包括机床、刀具、工件和夹具变形所导致的误差。
这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。
1.5 机床的振动误差在切削加工时,数控机床由于工艺的柔性和工序的多变,其运行状态有更大的可能性落入不稳定区域,从而激起强烈的颤振。
导致加工工件的表面质量恶化和几何形状误差。
1.6 检测系统的测试误差包括以下几个方面:(1)由于测量传感器的制造误差及其在机床上的安装误差引起的测量传感器反馈系统本身的误差;(2)由于机床零件和机构误差以及在使用中的变形导致测量传感器出现的误差。
1.7 外界干扰误差由于环境和运行工况的变化所引起的随机误差。
解读数控机床误差补偿关键技术及具体应用
摘要:目前被绝大部分国外产品占领我国中高端数控机床市场,其中国内产品的在高端数控机床市场领域占有率仅为4%左右。
随着对零件加工的精密度要求越来越高的现代制造业不断发展,对高精度的数控机床的需求量将会越来越大,因此对提高我国机床产品的精度意义十分重大。
误差补偿技术是一项具有显著经济价值并十分有效的提高机床精度的手段。
国外的误差补偿技术开展得比较早,取得了不少成绩,但是在国内,误差补偿技术绝大部分还主要停留在实验室范围内,在具体应用中还不普遍。
随着我国国民经济的发展,对数控机床数量和质量的要求也越来越高。
因此,对数控机床补偿技术的研究和应用会更深入和更广泛。
关键词:数控机床;误差补偿;技术应用
1数控机床导轨误差补偿技术
1.1引起导轨导向误差的原因分析
1.1.1导轨的磨损变形
机床在工作过程中,由于导轨受到不规则的磨损变形使得导轨的直线度和扭曲度产生误差,直接影响到导轨的导向精度,从而会影响到零部件的加工精度。
导轨在机床连续的运行中受到持续的承载负荷,导轨的磨损就很难避免,如果是在粗加工的条件之下,导轨的磨损变形更加严重。
而且机床导轨的总长度上因为受到的磨损力不同,使用频率不同,所以在导轨总体上磨损的程度是不均匀的。
1.1.2导轨的热变形。
数控机床的刀具补偿与补偿方法数控机床是一种通过计算机编程来控制刀具自动运动的高精度机床。
而在数控机床的加工过程中,刀具磨损是不可避免的。
为了确保加工的精度和质量,需要对刀具的磨损进行补偿。
本文将介绍数控机床的刀具补偿及其方法。
刀具补偿是指在数控机床的程序中,通过计算机控制的方式,根据刀具磨损的情况进行刀补操作,使得机床能够保持加工精度。
刀具补偿主要分为几种类型:半径补偿、长度补偿、倾斜补偿、刀尖位置补偿等。
首先,半径补偿是常见的刀具补偿方式之一。
在数控机床中,刀具刃尖的磨损会导致加工半径发生变化,从而影响到加工结果。
为了纠正加工误差,可以通过半径补偿进行校正。
一般来说,半径补偿是通过在程序中输入一个补偿值,将刀具的半径进行相应的增加或减少,以保持加工精度。
其次,长度补偿也是常用的一种刀具补偿方法。
在数控机床中,切削刀具的长度磨损会导致切削深度的变化。
为了保持加工的一致性和精度,可以通过长度补偿来进行校正。
长度补偿的原理是通过在程序中输入一个补偿值,使刀具的位置发生相应的变化,从而达到加工深度的控制。
倾斜补偿是指在加工过程中,刀具出现倾斜现象,导致加工精度下降。
为了解决这个问题,可以通过倾斜补偿来进行校正。
倾斜补偿的原理是通过在程序中调整坐标偏移量,使得刀具在加工过程中能够保持正确的倾斜角度,从而保持加工精度。
最后,刀尖位置补偿是一种通过调整刀具运动轨迹来控制加工精度的方法。
在数控机床的切削过程中,刀尖的位置可能会发生偏移。
通过刀尖位置补偿,可以通过调整刀具的路径来保持刀尖的正确位置,从而实现精确的加工。
综上所述,数控机床的刀具补偿方法主要包括半径补偿、长度补偿、倾斜补偿和刀尖位置补偿等。
这些方法通过在数控机床的程序中输入相应的补偿值或调整坐标偏移量,能够对刀具磨损进行有效的补偿,从而保证加工的精度和质量。
刀具补偿是数控机床加工过程中不可或缺的一部分,它使得机床能够适应刀具磨损的变化,同时提高了加工的效率与精度。
数控加工的误差补偿在生产中的运用分析摘要:随着经济的发展,各种精密、超精密产品已应用于各种现代工业与第三产业中。
数控机床具有加工误差补偿高,加工效率高,加工范围广等特点,其中加工误差补偿是保证效率的重要措施。
本文首先探讨了数控加工误差产生的原因与分类,然后分析了数控机床的误差补偿处理措施与效果,最后提出了相关辅助措施。
关键词:数控加工误差补偿在线检测1 数控加工误差产生的原因与分类1.1 误差产生的原因误差产生的原因有很多种,对于数控机床来说,误差产生的因素主要包括机床因素与测量因素。
(1)机床因素:机床本身的特性;各运动轴之间的旋转精度、定位精度、垂直度、传导精度;运动时的微细波动、热变形等。
(2)误差测量因素:误差测量仪的绝对精度、误差测量仪与产品的相对定位如坐标平移及倾斜引起的误差。
测量方法引起的误差,如测量大轴圆周长S来间接测量轴直径d时,因为公式d=SΠ中常数取近似值所造成的误差。
如图1所示为测量某工件时获得的一组数据,该数据序列中,点A和点B跃离光滑的连续曲线。
它们与正常点的坐标差大于误差限砰,可以判断这些数据点就是奇异项,必须予以剔除。
1.2 误差的分类1.2.1 几何误差包括机床、夹具、刀具的制造和磨损,尺寸链误差,机床传动链的静态和动态调整误差,产品、夹具、刀具的安装误差。
1.2.2 粗大误差粗大误差是指在一系列测量所得的数据中,经修正系统误差后如有个别数据与其他数据有明显差异,则这些数值很可能含有粗大误差。
粗大误差产生主要是由于在测量过程中系统受外界干扰不可避免会出现偶然性、突发性的测试不稳定状况。
1.2.3 系统误差系统误差是指在相同测量条件下重复测量某一被测量时,误差的大小和符号不变或按一定的规律变化,这样的测量误差称为系统误差。
系统误差对测量结果的影响较大。
因此,应认真分析,设法发现系统误差并予以消除或减小其对测量结果的影响。
对于数控机床在线检测系统来说,系统误差可以分为两类:一类是传感器系统误差,一类是机床系统误差。
数控机床误差实时补偿技术及应用数控机床误差实时补偿技术是一种通过测量和监控机床的误差,然后通过算法和控制系统来实时修正这些误差的技术。
它可以显著提高机床的加工精度和稳定性,使得加工的零件更加精确和一致。
下面将介绍数控机床误差实时补偿技术的原理、方法和应用。
数控机床误差实时补偿技术的原理是基于机床的误差源和误差特点进行建模,并通过控制系统实时调整机床的运动轨迹来补偿这些误差。
机床的误差主要包括几何误差、动态误差和热误差等。
几何误差是由机床结构、加工刀具和工件等因素引起的,例如导轨的尺寸偏差、传动装置的误差等。
动态误差是由机床运动过程中的惯性力、弹性变形等因素引起的,例如加工过程中的振动和共振等。
热误差是由于机床在工作过程中产生的热源,例如主轴的热膨胀和冷却液的温度变化等。
数控机床误差实时补偿技术的方法一般包括两个步骤:误差测量和误差补偿。
误差测量是通过传感器或测量仪器实时检测机床的误差,并将其反馈给控制系统。
常用的测量方法包括激光干涉法、电容法和光栅尺等。
误差补偿是在控制系统中根据误差测量结果进行数学建模和分析,并根据补偿算法调整控制指令,使得机床的运动轨迹达到期望的精度。
数控机床误差实时补偿技术在实际应用中具有广泛的应用领域。
首先,它可以应用于航空航天领域的高精度零件加工。
航空航天零件对精度和质量要求非常高,数控机床误差实时补偿技术可以有效提高加工精度,降低零件的尺寸偏差和表面光洁度,从而提高航空航天产品的性能和可靠性。
其次,它可以应用于汽车制造领域的模具加工。
模具制造对精度和一致性要求较高,数控机床误差实时补偿技术可以有效减少模具的尺寸和形状偏差,提高模具的加工质量和寿命。
此外,它还可以应用于医疗器械制造、光学仪器加工等领域。
总之,数控机床误差实时补偿技术是一种通过测量和监控机床的误差,并通过控制系统实时调整机床运动轨迹的技术。
它可以显著提高机床的加工精度和稳定性,广泛应用于航空航天、汽车制造、医疗器械等领域,为实现高精度和高质量的零件加工提供了重要的技术手段。
五轴数控机床误差补偿及精度可靠性评估五轴数控机床是一种高精度、高效率的加工设备,广泛应用于航空航天、汽车制造、模具制造等领域。
然而,由于各种因素的影响,五轴数控机床在加工过程中存在一定的误差。
为了提高加工精度和可靠性,需对误差进行补偿并进行评估。
五轴数控机床的误差主要包括几何误差和运动误差。
几何误差是由于机床结构的制造和组装误差、刚性变形等原因引起的,主要包括平行度误差、垂直度误差、位置误差和角度误差等。
运动误差是由于伺服系统、控制系统等原因引起的,主要包括滞后误差、迟滞误差和不平衡误差等。
这些误差会直接影响加工件的精度和表面质量,因此对误差进行补偿和控制是提高加工质量的关键。
误差补偿是通过测量和分析机床误差,通过数学模型将误差量归入控制系统,使其在加工过程中进行补偿。
起首需要对机床进行检测和测量,得到机床的误差信息。
常用的检测方法包括激光干涉仪、刚度测试仪等。
其次,通过数学建模和仿真,分析机床误差的来源和特性,建立误差补偿模型。
最后,将误差补偿模型嵌入控制系统中,实现误差的实时补偿。
误差评估是对机床的精度和可靠性进行评判和监控。
通过定期对机床进行精度测试和性能测试,可以得到机床的测量数据。
然后,对测试数据进行统计分析和处理,计算出机床的误差指标,并与加工要求进行比较。
例如,常用的误差指标包括定位误差、重复定位误差、轮廓误差等。
对于超出允许范围的误差,需要进行调整和修理,以确保机床的加工精度和可靠性。
同时,还可以接受传感器和监控系统对机床进行实时监测和预警。
通过安装传感器在关键部位,可以实时感知机床的工作状态和性能,监测其误差变化和趋势。
一旦发现异常状况,监控系统可以准时报警,并进行相关维护和处理。
这样可以防止机床在加工过程中出现严峻误差,保证加工质量和工作安全。
总结起来,五轴数控机床误差补偿和精度可靠性评估是提高加工质量和效率的重要手段。
通过对机床误差的测量、建模和补偿,以及对机床精度和可靠性的评估和监控,可以实现机床加工精度的提高和工作可靠性的保证。
数控加工中的误差及补偿方法分析摘要:数控机床现在应用十分普遍,相比普通机床,无论是生产效率还是加工精度均有了明显提升,可保证产品质量满足市场要求。
以提高数控加工精度为目的,分析各种误差产生的原因,以及寻求高精度误差补偿方法,保障数控机床可以稳定运行,维持高精度加工状态。
文章就数控加工误差类型以及补偿方法进行了简单的分析。
关键词:数控加工;高精度;误差补偿数控加工存在着精度高且柔性自动化等特点,对于复杂零件的加工优势突出,被越发广泛的应用于制造业,且取得了显著成果。
为了进一步做到高精度加工,不断减小误差,就需要在生产加工中总结各类误差的表现形式,并分析其产生的原因,寻求更有效的误差补偿方法,例如通过控制温度与振动从根源上来减少甚至消除误差,或者是应用软件工程来进行纠错等,更大程度上实现高精度数控加工。
一、数控加工误差分析1.加工误差分类数据加工生产过程中受多种因素影响而产生加工误差,一类是根据误差条件可分为静态误差、准静态误差和动态误差。
其中,静态误差即数控加工过程中准确度和误差不会因为时间影响而发生变化。
准静态误差是在给定工作环境中会缓慢的发生变化,但是该条件下会始终保持不变,例如特定工作条件下产生的准静态误差本质并不会发生变化或者是变化速度非常缓慢[1]。
另一类则是根据误差来源可分为位置误差与非位置误差。
位置误差即数控加工生产过程中,随着零部件的运动,产生的运动轨迹以及位置与理想条件有着一定偏差,同时期望运动轨迹以及位置与指令相差较大,如几何误差。
数控机床不同零件与零件在生产运动过程中因外界条件的干扰,零部件的实际运行轨迹以及位置与理想条件偏差较大,包括力误差、热误差以及刀具磨损误差等。
2.误差产生原因数控加工生产中因各因素的影响不可避免的会有误差形成,促使切削工艺中工件与刀具的位置发生变化,影响零部件加工精度。
一般数控加工误差产生原因可从加工方法误差与调安误差两个方面分析,只有当误差总和低于允许差值时,才能够做到高精度数控加工。
数控机床的进给误差检测与修正方法数控机床是现代制造业中关键的加工设备之一,具有高效、精确、灵活等优点。
然而,在加工过程中,由于复杂的机械结构和运动控制系统的限制,难免会产生进给误差。
进给误差会对零件的精度和表面质量产生直接影响,因此准确检测和修正进给误差显得尤为重要。
本文将介绍数控机床的进给误差检测与修正方法。
一、进给误差的分类及原因数控机床的进给误差主要包括常值误差和变化型误差两种。
常值误差是指在整个加工过程中,机床进给轴的位移偏差始终保持不变,主要由机床结构刚度、传动系统误差等因素引起。
变化型误差是指在加工过程中,机床进给轴的位移偏差呈周期性或随机性变化,主要由传动系统、机床导轨等因素引起。
进给误差的主要原因包括机床结构的刚度不足、传动系统的误差、机床导轨的磨损以及热变形等。
这些因素的存在导致了机床进给轴的位移偏差,进而产生加工误差。
二、进给误差的检测方法1. 静态检测方法静态检测是通过测量机床进给轴的位移偏差来判断进给误差的大小。
常用的静态检测方法包括光栅尺、激光干涉仪以及红外线测量等。
光栅尺是利用一对光学栅尺和测量头将机床进给轴的位移转化为电信号进行测量的方法。
它具有测量范围大、分辨率高、抗干扰性能强等优点,成为目前最常用的进给误差检测方法之一。
激光干涉仪则利用激光干涉现象测量进给轴的静态位移误差,它具有高精度、无接触、测量速度快等优点,适用于高要求的进给误差检测。
红外线测量方法是利用红外线光栅和接收器进行测量,通过红外光栅发射器发射的光束到达接收器时,测量红外光栅的位移,从而获得进给轴的位移误差。
这种方法具有测量范围大、精度高、适用于恶劣环境等特点。
2. 动态检测方法动态检测是通过分析工件在加工过程中的轨迹和加工力信息来判断进给误差的变化特性。
常用的动态检测方法包括切削力测量、加工轨迹分析等。
切削力测量是通过测量工件在加工过程中的切削力大小和方向来间接推算进给误差的变化规律。
这种方法适用于加工过程中切削力变化显著的情况,但要求测量设备精度高且能承受大的切削力。
摘要加工精度是机床最重要的性能指标之一。
本课题运用多体系统运动学为核心的误差分析理论体系,对三轴数控机床精度问题进行了系统、全面的分析,并重点在数控机床误差测量、误差分析建模、误差辨识以及误差补偿等方面的研究,通过建立误差模型,得出误差在刀具运动过程中的传递规律,给出了过程,为了提高加工精度,从而对机床进行了软件误差补偿。
本文主要从以下几个方面的内容进行了研究和探讨:(1) 研究了机床的精度分析的基本理论,对多体系统运动学以及基于该理论的机床误差建模、误差辨识及误差补偿的方法作了科学性的研究。
数控机床误差参数的正确辨识是数控机床补偿的必要前提条件。
(2) 详细分析了三坐标9线误差分析方法,以沿X向运动为例,算得六项误差参数,为例,具体给出其计算继而同理可以推算出沿Y向和Z向的十二项误差参数,之后又以xy方法,同理可推算出其余两项垂直度误差。
由此得到21项误差,并以X向为例,做实验,将测得值和计算的两个误差进行比较,发现误差相差比较小。
(3) 详细阐述了软件补偿数控指令的修正算法,再根据此建立了软件补偿系统,分别对软件系统的软硬件流程进行详细阐述,最后通过此项技术的误差补偿,数控机床的各项误差都有所降低,达到了本课题提高机床加工精度的目的。
但是本课题的成果尚未应用到生产实际中,在今后的研究中,还要进行大量的实验去获取大量的实际数据,为今后该方法的实际应用奠定基础。
关键词:数控机床;几何误差;多体系统;误差补偿AbstractThe machining accuracy is one of the most important performance indexes for machinetools.Theoretical analysis of system error based on the kinematics of multi-body system as the core, the three axis CNC machine tool accuracy problem analyzed system, comprehensive, and focus on the NC machine tool error measurement, error analysis, error identification and the error compensation model etc., by establishing the error model, transfer of error in the tool motion process in conclusion, given the process, in order to improve the machining precision, thus the software error compensation of machine tools. The following issues are mainly studied and addressed in this thesis:(1) Research on the basic theory analysis of the accuracy of machine tools, the kinematics of multi-body system and method of the theory of the machine tool error modeling, error identification and the error compensation based on the scientific study. Correctly identifying the geometric error parameters is a necessary prerequisite for compensation of NC machine.(2) After establishing the precision model of machine tools,the measurement and evaluation of their error parameters have been started.There are many kinds of error parameters in the machine tool to influence its machining accuracy.The recognized strategies of error measurements and evaluations for machine tools are introduced.After that,this paper has detailed a new method defined as twelve—line method for the sake of making the most of double.frequency laser interferometers to measure and evaluate 21 geometric errors of three-axis system.Based on these researches,the problems of the error measurement and evaluation of machine tools in the application process of MBS theories are resolved perfectly.(3) This paper put forward index systems of machining contour errors,through error compensation of this technology, the NC machine tool error are reduced, reaches the aim of improving the machining accuracy of machine tools. But the result has not been applied to the actual production, in future research, but also a large number of experiments to obtain a large number of actual data, and lay the foundation for the future application of the method.Key words:machine center; geometric error; multi-body system; error compensation目录摘要 (I)ABSTRACT (II)目录 (V)1 绪论 (1)1.1数控机床加工误差补偿技术的研究内容和意义 (1)1.2国内外的发展概况及分析 (1)1.3误差补偿技术研究应达到的要求 (1)1.3.1 研究的指导思想 (1)1.3.2 应要达到的要求 (2)2 数控机床的主要误差来源及补偿方法的研究 (3)2.1数控机床的误差来源及分类 (3)2.1.1 数控机床的误差产生的原因及分析 (3)2.1.2 数控机床的误差分类 (3)2.1.3 数控机床的误差补偿技术研究 (4)2.2基于多体系统理论的几何误差模型 (4)2.2.1多体系统拓扑结构的描述 (4)2.2.2 实际情况下多体系统的位置关系 (5)2.3误差分析及参数辨识 (7)2.3.1 三坐标误差分析 (7)2.3.2 数控机床误差补偿的误差参数辨识 (7)2.3.3 误差补偿的实验与结论 (9)2.5本章小结 (10)3数控机床加工误差补偿系统 (11)3.1几何误差软件补偿法选择与分析 (11)3.1.1 误差补偿方法的分类与选择 (11)3.1.2 软件补偿数控指令修正算法 (11)3.2误差补偿系统的硬件设计分析 (14)3.2.1 软件补偿数控指令修正算法 (14)3.2误差补偿系统的软件设计分析 (15)3.3本章小结 (19)4 数控机床加工的误差补偿及仿真验证 (20)4.1误差补偿系统的软件补偿实验 (20)V4.1.1 数控机床类型及约束参数的设定 (20)4.1.2 机床误差参数辨识模块 (21)4.1.3 共建位置及刀具参数输入 (22)4.2数控机床误差补偿软件的仿真验证 (23)4.2.1 针对X向测出的误差前后数据记录 (24)4.2.2 三坐标轴上误差补偿前后误差值的分析 (25)4.3本章小结 (27)5 结论 (28)5.1全文总结 (28)5.2存在的问题及分析 (28)5.3数控机床加工误差补偿技术的展望 (28)致谢 (29)参考文献 (30)附录 (31)数控机床加工误差补偿技术的研究1 绪论1.1 数控机床加工误差补偿技术的研究内容和意义在现今高科技环境下, 制造领域正向高精度、高质量、高集成度和智能化方向发展,人们对机械产品的精度和质量要求越来越高,要求必须采用高精密制造加工技术,而作为制造加工的主要设备数控机床的精度技术,已成为提高制造水平和国际竞争力的关键技术[1]。
94㊀㊀农机使用与维修2024年第3期数控机床伺服控制系统误差补偿及加工质量优化鲍㊀镇(无锡立信高等职业技术学校,江苏无锡214000)摘㊀要:随着科学技术的快速发展进步,数控机床的功能日渐完善,在机械制造业应用普及程度不断提升,已成为现代加工领域的重要基础设备㊂在实际加工过程中,应用伺服控制系统的数控机床尽管技术先进,但仍不可避免因存在系统误差而导致加工质量降低㊂该文结合伺服控制系统特征分析了数控机床的伺服控制系统在制造过程中的误差来源,介绍了误差补偿的有效方法,并给出了伺服控制下数控机床加工质量的优化方式,以期为提高数控机床加工精度提供理论支持㊂关键词:数控机床;伺服控制;误差补偿;质量中图分类号:TG659㊀㊀㊀㊀㊀㊀㊀㊀文献标识码:Adoi :10.14031/ki.njwx.2024.03.029Error Compensation and Machining Quality Optimization of Servo Control System for CNC Machine ToolsBAO Zhen(Wuxi Lixin Higher Vocational School Jiangsu,Wuxi 214000,China)Abstract :With the rapid development of science and technology,the function of CNC machine tools is becoming more and more perfect,the popularity of the application in the machinery manufacturing industry is increasing,and has be-come an important basic equipment in the field of modern processing.In the actual processing,the application of servo control system of CNC machine tools,despite the technical cash,but Rong inevitably due to the existence of systematic errors and lead to reduced processing quality.The paper combined with the servo control system characteristic analysis of the servo control system of CNC machine tools in the manufacturing process of the source of error,introduces the effec-tive method of error compensation,and gives the servo control of CNC machine tools under the optimization of the qualityof machining,with a view to improving the processing accuracy of CNC machine tools to provide theoretical support.Keywords :CNC machine tools;servo control;error compensation;quality作者简介:鲍镇(1981 ),男,江苏无锡人,学士,讲师,研究方向为数控技术㊂0㊀引言数控机床是机械加工领域应用的高精度㊁高效率的加工设备,具有显著的自动化优势,其在工业生产㊁汽车制造㊁农业机械㊁航空航天等领域应用十分广泛[1]㊂伺服控制系统是数控机床发展应用的一项自动控制系统,具有数字控制和机电控制等特征,伺服控制数控机床相比于传统机床在技术先进性和加工质量方面提升明显[2]㊂而在实际应用中,伺服控制系统可能会受到系统㊁机械结构㊁热变形等多种误差影响,导致加工质量下降㊂因此,要达到理想的加工制造精度,研究数控机床伺服控制系统的误差补偿技术具有重要意义㊂1㊀伺服控制系统特征伺服控制系统主要由控制器㊁电机㊁功率调节装置㊁反馈装置组成,其中控制器是伺服控制系统的大脑,能够通过对比反馈值和给定值之间的差异对控制方案进行调节;功率调节装置主要起到两方面的作用:一是通过调节电能改变电动机转矩的大小,二是把恒压恒频电转换为电动机所需的交流电或直流电;电机是获取电能后驱动数控机床机械结构运转的动力装置;反馈装置是监测机床加工部件位置㊁速度等信息并将其反馈给控制系统的装置[3-4]㊂图1㊀伺服控制系统原理现阶段应用的伺服控制系统主要包括液压伺服控制系统㊁交流伺服控制系统㊁DC 伺服控制系统,数控机床以交流伺服控制系统和DC 伺服控制系统应用较多[5]㊂伺服控制系统在数控机床中应用具有以2024年第3期农机使用与维修95㊀下优势:1)性能稳定㊂在外界干扰作用下,预设方案执行仅需短暂调节,系统即可达到新的或者恢复到原有的平衡状态㊂2)响应迅速㊂跟踪指令信号响应时间短,调节迅速,能满足复杂化加工的需求㊂3)加工精确㊂系统预期加工量与实际加工量契合度高,稳态误差可控,加工偏差值相对更低㊂2㊀伺服控制系统的误差来源导致数控机床伺服控制系统产生误差的原因是多方面的,其主要包括以下几大因素㊂2.1㊀硬件误差硬件误差指伺服系统中的配套硬件因不适配或结构特性引起的误差,如编码器误差,若编码器精度和分辨率达不到系统需求或编码器故障,则可能引起反馈精度降低,导致产生加工误差[6];再如伺服驱动过程受到电机非线性㊁滞后等影响,导致在实际输出与理想输出之间存在误差㊂2.2㊀软件误差系统软件主要指伺服系统的程序设置不当或考虑不周引起的误差,例如,软件系统没有充分考虑电机启动过程或反向运转转换过程产生的时间延迟,导致系统控制进度快而电机执行滞后,产生加工误差,或是由于忽视传动机构中的间隙㊁导轨运动副间的摩擦力等客观因素,而直接执行相关程序,造成位置误差㊂此外,伺服系统缺少对执行过程的监测,导致缺少适时调节加工方案的后续程序,也会产生程序跟踪误差㊂2.3㊀机械传动误差机械传动误差是指数控机床的机械结构因受到间隙㊁摩擦等非线性因素影响,在传动或运转过程出现能量损失和效率下降,引起实际传动效率与理论传动效率之间产生差异,引起加工精度降低,或因机械传动部件之间长时间接触产生疲劳磨损或接触性局部损坏,导致控制过程实际加工位置与理论加工位置之间产生偏差,也会产生机械性误差[7]㊂2.4㊀环境因素引起的误差导致伺服控制系统在控制数控机床加工过程中产生误差的环境因素是多方面的,总体上看,影响最大的四个方面包括:温度㊁湿度㊁震动㊁噪音㊂其中,温度和湿度对于金属材料的热膨胀系数影响较大,在机械加工过程中,随着温度的升高,金属材料会产生热膨胀效应,并同时降低弹性形变能力,则易因为热胀冷缩的原因导致加工质量降低;机械运转过程中还会不可避免地产生震动和噪声,震动和噪声往往相伴存在,会造成金属零件在微观层面上持续位移,影响加工后的精度及表面质量㊂3㊀误差补偿方法针对上文提及的伺服控制系统误差来源应通过硬件升级与软件修正的方式进行误差补偿,现阶段最直观且有效的误差补偿方式包括以下几类㊂3.1㊀伺服驱动误差补偿首先,结合数据机床伺服驱动原理及特性进行分析,充分了解电机特性及相关控制原件的响应特性等因素,测量电机在启动过程的驱动延迟及在反转控制过程中的转向变换延迟等重要参数[8],归纳总结各个重要伺服驱动原件存在的非线性㊁滞后性等数据特征,并对其进行列表分析,对应调整伺服控制的软件程序,弥补驱动过程产生时间延迟问题,从而有效消除伺服驱动过程中实际输出与理想输出之间的误差㊂3.2㊀编码器误差补偿编码器的误差补偿主要从三方面开展工作:一是选用更高精度及更高分辨率的编码器,从而有效避免因编码器性能不足导致产生驱动控制的误差;二是对现有编码器进行性能校正,减少编码器自身存在的影响,提高编码器对于电机转速及速度的获取精确度;三是修正编码器控制逻辑,大多数先进的编码器可以通过伺服控制器的程序调整进行修正,通过对编码器误差特性进行分析,对比编码器生成的电机监测转速与实际电机转速之间的差异,即可有效提高编码器的监测精度和系统整体的控制精度㊂3.3㊀软件误差补偿软件误差补偿的重点主要在于修正最初软件功能设计中所忽视的易引起误差问题,以伺服控制的机床各类与结构特点为基础,分析现阶段应用过程中导致问题产生的原因,对比系统中已有参数与机床实际的位置㊁转速㊁刀具尺寸等差异,及时修正软件程序中的错误,同时在软件功能中做好执行性能监测,必要时增设适当的硬件传感器与软件相配套,实现加工环境变化的实时感知,并做到根据环境变化及时科学调整加工方案㊂3.4㊀机械传动误差补偿由于机械传动误差是实时产生的,要做到提高控制机床加工的精确性就必须要养成定期检查㊁维96㊀㊀农机使用与维修2024年第3期修㊁保养机床的习惯,发现重要传动结构配合间隙磨损㊁松旷或部件损坏,应及时进行调整和维修,调整维修后测量好新的尺寸,并在软件系统进行适当的程序修正㊂同时,对机械传动整体可进行建模及参数辨识,做到重要机械传动的间隙可通过软件对应功能和程度编制进行误差补偿,从而提高加工质量和精确度㊂3.5㊀环境因素误差补偿环境因素的误差补偿复杂度很高[9],要实现这一功能主要应从两方面进行优化,一是升级伺服驱动系统环境感知传感器性能,实现对加工区域的温湿度㊁震动㊁噪声等环境因素的监测与数据获取,并实时传输给伺服控制系统进行数据分析判断,用以决策和选择新的加工方案;二是要引进环境误差因素影响模型,能够结合加工原材料的种类㊁机械加工方式㊁温湿度等环境因素,预判可能出现的金属形变㊁理化性能改变等影响,并快速形成补偿控制方案,弥补因环境因素造成的加工误差㊂4㊀加工质量的优化方式4.1㊀机加方案合理设计尽管数控机床应用了先进的伺服控制系统,但机加方案的合理性仍然是决定零件加工质量的关键㊂要提高数控机床的加工质量,就必须结合伺服控制系统的技术特征和原理合理设计加工方案㊂首先,应结合加工要求和生产条件,设计合理的加工工艺流程,明确加工设备㊁工序㊁切削用量等关键参数;其次,应选择合适的加工设备和辅助设备,根据零件的结构特点和加工要求,做好夹具和工具设计,采用更高精度的刀具和夹具,减小由于刀具和夹具误差对加工质量的影响,并降低加工的难度;再次,要做好生产管理与质量监管,制定严格的质量控制标准和检测手段,加强生产过程的质量检查,避免产生批量不合格零件㊂4.2㊀做好伺服技术升级伺服系统的技术先进性直接影响数控机床加工质量,伺服系统的响应速度和精度是影响加工质量的关键,要提高加工精度和降低制造误差,应当通过软硬件升级伺服系统的性能,例如通过引进模糊控制㊁神经网络控制等先进的控制算法和技术,提高系统的运算效率和控制精度,减少加工过程中的振动和变形,进而实现加工质量的提升,也可通过优化数控程序,减少加工过程中的刀具路径长度和换刀次数,降低加工误差;再如更换更为先进的编码器㊁伺服电机等硬件,也能显著缩短硬件响应时间,提高制造精度和加工质量㊂4.3㊀做好机床的调试保养定期对数控机床进行维护和保养,检查和维护机床的各个部件,发现传动㊁配合结构故障及时维修,发现气动或液压系统密封不良及时更换密封件;做好机床的清洁和润滑,确保各个润滑点的润滑油量充足,使机床处于良好工作状态㊂此外,对于数控机床的伺服控制系统,也应定期进行维护保养,做好各个系统的重要参数和性能指标的检查调整,确保系统的稳定性和可靠性㊂5㊀结语综上所述,伺服控制系统对于提高数控机床具有积极作用,其具备较高的响应速度和精度,能够有效提高生产加工质量㊂但受到多种因素影响,伺服控制系统在控制数控加工过程也容易存在一定加工误差,导致生产品质降低,为进一步提高现代数控加工质量,伺服控制系统应引入更为先进的控制算法和技术㊁优化机械结构和控制模式,并积极建立加工质量监测和反馈系统,从而有效提高加工精度,并降低生产成本,全面提高机械制造质量,促进现代制造业的发展㊂参考文献:[1]㊀陈杰,泮进明.数控压机伺服控制系统复合控制器I-ABC与PID优化[J/OL].机械设计与制造:1-5[2023-10-30].https:///10.19356/ki.1001-3997.20230719.003.[2]㊀查秀梅.基于ARM的实时混合试验控制系统研究[D].南京:南京林业大学,2023.[3]㊀张凯铭.数控机床加工误差分析及优化研究[J].现代工业经济和信息化,2023,13(8):145-147.[4]㊀郭双双.数控机床位移装置健康状态评估方法研究[D].西安:西安工业大学,2023.[5]㊀顾美.数控机床伺服控制技术体系与加工精度优化途径[J].农机使用与维修,2023(10):53-55+59. [6]㊀刘奎良.数控机床加工误差原因及改进措施[J].造纸装备及材料,2023,52(4):58-60.[7]㊀王雪,张宁.数控加工工艺对汽车零部件质量和性能的影响分析[J].内燃机与配件,2023(18):108-110.[8]㊀袭迪.数控加工中自动找正和在线测量技术的应用[J].南方农机,2023,54(15):152-154+172. [9]㊀潘芝云.提高数控机床机械加工效率的方法分析[J].电子技术,2023,52(9):380-381.(05)。
数控机床的误差补偿技术研究摘要:随着科学技术的不断发展,高集成、高质量、高精度已经成为了未来机械行业主要的发展方向,在进行数控机床加工的过程中,加工精度正逐渐成为对国际竞争力和制作水平进行提高的主要技术,为了对我国制作生产的竞争力进行提高,需要对数控机床的加工精度进行提升,其中误差补偿技术就是一种对加工精度进行提升的主要方法。
本文根据国内外对误差补偿的研究情况,对误差补偿过程中主要技术存在的相关问题进行探讨。
关键词:数控机床;误差;补偿1.数控机床中的误差补偿关键技术数控机床误差补偿的主要技术数控机床的误差补偿是对加工精度进行提高的主要措施,进行误差补偿时,主要会使用到补偿实施技术、测量技术、建模技术。
1.1补偿实施技术进行误差测量和建模主要是为了进行误差补偿,在实际补偿的过程中,可以分为离线补偿和实时补偿两个方面,其中离线补偿指的是按照具体测量到的误差对数控加工工序进行调整,使数控机床根据新的加工工序进行误差补偿。
1.2测量技术测量技术主要是为了确定机床的原始误差参数,在进行直接误差测量时,主要使用激光干涉仪器、机械干涉仪器等对不同温度、不同位置机床的误差进行测量,虽然对误差进行直接测量,精确度高,但是比较费工,工作效率低,因此,多用来对单项误差进行测量,间接误差主要是用来对误差相关指标进行测量,然后使用误差模型转换成技术误差。
使用此方法进行测量,效率比较高,多用来测量综合误差。
1.3误差建模误差建模主要由误差元素建模和误差综合建模构成,其中,综合误差建模是根据加工过程中刀具和工件之间的相对位移表示运动模型,误差建模是用来对更加有效的模型进行寻找,将机床存在的误差准确的反映出来。
2.误差补偿关键技术的步骤数控机床操作中误差补偿关键技术的执行,必须遵循操作流程,体现补偿技术的优质性,排除不良因素影响。
第一,检测发生误差的关键点,分析引发误差的原因。
明确各个误差间的关系,通过热变形思想,得出控制点,利用控制点补偿数控机床操作中的误差点,迅速补偿给误差模型,便于及时处理机床制造的误差。
数控加工中的误差及补偿方法摘要:数控机床是制造价值创造的基础,是基础制造能力的核心。
数控机床的水平在一定程度上反映了制造水平。
高精度的误差补偿是先进数控机床的主要发展方向。
如何提高数控机床的精度:一是在应用良好的温度和振动控制的同时减小误差,消除或减少设计和制造过程中可能产生误差的原因,提高数控机床的机械精度和动态性能,控制机床内外环境的措施、气流湍流等方法来减少误差原因的影响。
二是通过软件工程和人为制造错误消除数控机床故障的纠错方法。
相对而言,数控机床精度的提高会遇到很多困难,其中包括改进空间的限制、高昂的成本、不断改变的加工条件、机器故障等。
因此要想提高数控机床的精度,需要进一步研究数控机床的误差补偿技术。
关键词:数控加工;误差;补偿方法引言近年来,随着经济的迅速发展,我国已步入信息技术时代,自动化机械设备数量日益增多,对工业发展和人们日常生活的影响程度不断提升。
数控机床是数字控制下机床的简称,是一种带有程序控制系统的自动化机床,能够有效地解决和处理复杂、精密、多样化、小批量零部件的加工,代表着现代机床控制技术的发展趋势和方向,属于典型的机电一体化产品。
在实际加工过程中,数控机床受诸多因素的影响,会出现加工误差,影响其工作质量,导致其加工的产品出现误差,影响生产企业的经济效益和未来的发展。
1数控机床误差分类1.1操刀问题企业对相关产品实施加工与制造中,想要确保加工与制造的质量与效率,就需选择好操刀路线与换刀方法,特别是大规模生产与制造中,若操刀的线路缺乏合理性、操刀的位置不够准确,就会导致换刀的时间延长,影响到生产的效率提高。
鉴于此,在操作中,需确保操作的熟练度,做好操刀线路的控制,对刀具与换刀的顺序进行合理选择,以确保机械加工的效率,并实现企业的生产效益提升。
1.2设备运行产生的误差①传统轴反转误差。
数控机床在运转的过程中,坐标轴移动或静止都会使机床驱动轴经过加速或者是减速的流程,在此过程中受设备运行的惯性作用以及驱动加、减速度的影响,容易产生加工误差。
五轴数控加工中的误差补偿算法研究五轴数控加工是现代制造业中的一项重要技术,在如此精密的工艺中,准确控制加工机床的误差十分关键。
然而,在加工过程中,由于各种原因,加工质量往往无法完全满足设计要求。
因此,在五轴数控加工加工中采用误差补偿算法是一种有效手段。
误差来源在五轴数控加工中,误差来源主要有机械误差、热变形误差、刀具磨损、零件安装姿态变化等因素。
这些误差会导致实际工件与模型之间存在差异,最终影响工件的加工精度。
误差补偿算法误差补偿算法是通过对加工系统进行监控和检测,从而获得机床的误差信息,然后根据误差信息对加工轨迹进行调整,修正零件形状和大小的方法。
根据补偿方式不同,常用的误差补偿算法主要有后补偿算法和前补偿算法。
后补偿算法是在加工完成后对实际加工数据进行纠正,以达到准确的加工目的。
而前补偿算法则是在加工前预先计算好修正量,通过对加工程序进行修改实现自动补偿。
常用的误差补偿算法1. 工具中心点补偿(TCP补偿)工具中心点补偿是一种常见且简单易行的误差补偿方法,其原理为通过调整工具刀具轴与工件表面的距离,以实现工件表面精度的提高。
该方法适用于直线轨迹或二次曲线轨迹的加工,精度达到0.01mm,但是该方法只能对加工尺寸进行粗略调整而无法精细修正。
2. 堆积误差补偿堆积误差补偿方法是指通过计算加工误差累积值来进行补偿,该方法适用于复杂曲面的加工,可达到较高的加工精度。
其流程为:先测量出第一次加工后工件的实际位置与理论位置之间的差异,然后通过相应的算法来修正加工轨迹,以修正误差造成的影响。
3. 动态误差补偿(DEC)动态误差补偿是一种基于数控系统连续迭代优化技术的方法,该方法能够实现在线误差监测、实时补偿,提高加工装备的定位精度。
总结五轴数控加工误差补偿算法的研究是现代制造业发展的重要方向。
当前,随着加工精度要求的不断提高,各种误差补偿算法也不断得到改进和创新。
未来,应继续开展相关研究,将研究成果真正应用于实际生产中,为提高五轴数控加工质量和效率做出更大的贡献。
三种补偿在数控加工中有3种补偿:刀具长度的补偿;刀具半径补偿;夹具补偿。
这三种补偿基本上能解决在加工中因刀具外形而产生的轨迹问题。
下面是三种补偿在一般加工编程中的应用。
一、刀具长度补偿:1.刀具长度的概念刀具长度是一个很重要的概念。
我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。
每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm 的钻头和一把长为350mm的丝锥。
先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,假如两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。
此时假如设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z (或Z)补偿了丝锥的长度,保证了加工零点的正确。
2.刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。
另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。
3.刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。
使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。
使用刀具长度作为刀长补偿的理由如下:首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。
数控机床误差补偿关键技术及其应用一、本文概述随着现代制造技术的飞速发展,数控机床作为精密制造的核心设备,其加工精度和效率直接决定了产品质量和生产效益。
然而,在实际应用过程中,数控机床不可避免地会受到各种误差的影响,如几何误差、热误差、力误差等,这些误差的存在严重影响了机床的加工精度和稳定性。
因此,对数控机床误差补偿关键技术的研究与应用,已成为当前制造业领域的研究热点和难点。
本文旨在深入探讨数控机床误差补偿关键技术及其应用。
对数控机床误差的来源和分类进行详细分析,明确误差补偿的重要性和必要性。
重点介绍了几种常用的误差补偿方法,包括基于误差模型的补偿、基于在线测量的补偿以及基于的补偿等,并对各种方法的优缺点进行了比较和评价。
结合具体的应用案例,详细阐述了误差补偿技术在提高数控机床加工精度和效率方面的实际效果,为实际生产和科研工作提供了有益的参考和借鉴。
本文的研究不仅有助于深化对数控机床误差补偿技术的理解,也为推动制造业的转型升级和提高产品质量提供了有力的技术支持。
二、数控机床误差来源与分类数控机床作为现代制造业的核心设备,其加工精度直接决定了产品的质量和性能。
然而,在实际运行过程中,数控机床会受到多种因素的影响,导致误差的产生。
这些误差不仅会影响机床的加工精度,还会缩短机床的使用寿命。
因此,对数控机床的误差来源进行深入分析,并采取有效的补偿措施,对于提高机床的加工精度和稳定性具有重要意义。
几何误差:这是指由于机床结构本身的设计、制造和装配不当所导致的误差。
例如,机床床身、导轨、主轴等部件的几何形状误差、位置误差以及运动误差等。
热误差:数控机床在工作过程中,由于内部热源和外部热环境的影响,会产生温度变化,从而导致机床结构发生热变形,产生误差。
热误差是数控机床误差中的重要组成部分,对加工精度的影响较大。
动态误差:这是指机床在运动过程中,由于惯性力、切削力等动态因素导致的误差。
例如,机床在高速运动时,由于惯性力的作用,会使机床结构发生弹性变形,从而影响加工精度。