一台主变变压器有哪些保护
- 格式:doc
- 大小:20.50 KB
- 文档页数:1
主变压器都有哪些保护?
变压器一般装设以下保护:
1.防御变压器油箱内部故障和油面降低的瓦斯保护。
2.防御变压器绕组和引线的多相短路、中性点直接接地电网侧绕组和引线的接地短路以及绕组匝间短路的纵差动保护或电流速断保护。
对于主变差动和发电机进行大差。
3.防御外部相间短路并作瓦斯保护和纵差动保护或电流速断保护后备的过电流保护。
4.防御中性点直接接地电网中外部接地短路的零序电流保护.
防御对称过负荷的过负荷保护。
变压器主保护原理
变压器主保护的原理是通过监测和保护变压器的重要参数,如电流、温度、压力等,来确保变压器的安全运行。
主要的保护原理如下:
1. 过流保护:通过监测变压器主回路的电流,当电流超过变压器额定电流的设定值时,保护装置会及时切断电源,防止变压器过载损坏。
2. 短路保护:当变压器主回路出现短路故障时,保护装置会通过电流变化的快速监测,迅速切断电源,以避免短路电流对变压器造成更大的损害。
3. 远/近端差动保护:差动保护是保护变压器的一种重要手段。
它通过对变压器两侧电流的差值进行监测,当差值超过设定值时,表示存在故障。
远/近端差动保护根据保护范围的不同,
可以区别监测变压器近端和远端的电流。
4. 温度保护:变压器的温度是影响其正常运行的重要因素。
温度保护装置通过探测变压器的温度,当温度超过安全范围时,会切断电源或发送警报信号,以防止变压器过热引发事故。
5. 油位保护:变压器的油位保护装置可以监测和控制变压器油箱中的油位。
当油位低于安全限制时,保护装置会切断电源,以防止变压器因油位过低而无法正常冷却。
除了以上主要的保护原理外,还有一些辅助的保护原理,如过
压保护、欠压保护、过载保护、接地保护等,它们通过监测和控制变压器运行过程中的各种参数,从而确保变压器的安全运行。
培训内容5
1、互感器二次侧为什么要有一个可靠的接地点?
答案:其目的为了防止互感器一、二次线圈绝缘击穿时,一次侧高电压串入二次侧,危及人身和设备安全。
2、互感器的作用是什么?
答案:互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源。
将高电压、大电流的信息传递到低电压、小电流二次侧的计量、测量仪表及继电保护、自动装置的一种特殊变压器,是一次系统和二次系统的联络元件,其一次绕组接入电网,二次绕组分别与测量仪表、保护装置等互相连接。
互感器与测量仪表和计量装置配合,可以测量一次系统的电压、电流和电能;与继电保护和自动装置配合,可以构成对电网各种故障的电气保护和自动控制。
3、目前主变压器共有几种保护、保护动作范围及动作所跳什么开关?。
什么叫主变零序电压保护?1.中性点直接接地运行时的零序保护变压器零序保护由零序电流保护组成,电流元件接到变压器中性点电流互感器的二次侧。
为提高可靠性和满足选择性,变压器中性点均配置两段式零序电流保护,每段均设置两个延时。
零序保护I段的动作电流延时t1和t2与相邻元件单相接地保护I段相配合。
一般取t1=0.5~1.Os,而取t2=t1+△t为时限阶段。
零序保护I段以t1延时动作于母线解列,以缩小故障影响范围;动作后仍不能消除故障,再以t2延时动作于发变组解列灭磁。
设置I段的目的主要是对付母线及其附近的短路,因这类故障对电力系统影响特别严重,应尽快切除。
零序保护Ⅱ段的动作电流及相应的延时t3和t4与相邻元件零序保护的后备段相配合,而t4=t3+△t。
t3作用于母线解列,t4作用于解列灭磁。
为防止变压器与系统并列之前,在变压器高压侧发生单相接地而误跳母联断路器,零序保护动作于母线解列的出口回路应经主变高压侧断路器的辅助触点闭锁。
2.主变中性点不接地运行时的零序保护22OKV及以上的大型变压器高压绕组均采用分级绝缘,绝缘水平偏低,例如220kV变压器中性点冲击耐压为400kV,l0 min;工频耐压为200kV。
主变不接地运行时,单相接地故障引起的工频过电压将超过变压器中性点绝缘水平。
如220kV主变最高工作电压为242kV,而其中性点不能长时间耐受242/√3=140kV的稳态电压,同时暂态电压值可能高达252kV(取暂态系数为1.8),超过了工频过电压允许值200kV,这时中性点避雷器可能会在暂态过电压下放电。
避雷器按冲击过电压设计,热容量小,在工频过电压下放电后不能灭弧,将造成避雷器爆炸。
另外在系统故障引起断路器非全相跳、合闸时,若发生失步也会使中性点与地之间最高电压超过中性点耐压允许值,甚至引起避雷器爆炸。
对此,前述零序保护往往不能起到保护作用,故目前在变压器中性点装设了放电间隙作为过电压保护。
主变保护一、主变压器保护的配置1、主保护配置:(1)二次谐波制动和波形制动相配合的比率差动保护;(2)差流速断保护;2、后备保护配置:零序电流、零序过电压;3、非电量保护:主变重瓦斯、轻瓦斯;主变温度;机组负序电流、电压;失灵保护引入等。
二、主变压器保护的特点1、为了保护机组,必须实现主变高压侧开关全部三相跳闸后,立即联跳主变低压侧开关。
2、高压侧零序过流设两段时限,分别动作跳高压侧开关和低压侧开关。
但是两段时限必须整定为相同的时间定值:即t1=t23、间隙零序电流保护只设一段时限,短延时跳两侧开关:t=0.5s4、本装置不仅有启动失灵保护的回路,还具有失灵保护动作出口本保护装置的回路。
5、装置通过主变中性点地刀辅助接点信号,判断中性点直接接地零序保护和间隙接地保护。
三、保护动作条件及后果1、差动保护:反映主变内部相间短路,高压侧单相接地短路及主变匝间层间短路故障。
上述故障突变量电流分量大于或等于整定值保护瞬时动作出口,跳两侧开关。
2、差流速断保护:当任一相差动电流大于差动速断整定值时瞬时动作出口,跳两侧开关。
3、重瓦斯保护:反映主变器内部故障时,短路电流产生的电弧使变压器油和其他绝缘材料分解,而产生的大量可燃(称瓦斯气体)气体。
当变压器内部发生严重故障,瓦斯气体越多,流速越快。
瓦斯保护就是利用变压器油受到热分解所产生的热气流和热油流来动作保护,保护动作瞬时出口,跳两侧开关。
4、变压器油温过高保护:由于各种原因,如水冷式变压器冷却水中断、循环油泵电源中断、风冷式风机电源中断、负荷不平衡以及过负荷等致使变压器油温上升到整定值,并经一定延时(极限温度外)保护动作出口,跳两侧开关。
5、零序保护:作为变压器内部接地短路故障的近后备保护和外部接地短路时的远后备保护。
保护由两种方式构成:反映接地短路后出现的零序电流和反映接地短路后出现的零序过电压。
此保护是在主保护拒绝动作的情况下经过一定的延时动作出口,跳两侧开关。
主变保护分析与详解变压器是连续运行的静止设备,运行比较可靠,故障机会较少。
但由于绝大部分变压器安装在户外,并且受到运行时承受负荷的影响以及电力系统短路故障的影响,在运行过程中不可避免的出现各类故障和异常情况。
1、变压器的常见故障和异常变压器的故障可分为内部故障和外部故障。
内部故障指的是箱壳内部发生的故障,有绕组的相间短路故障、一相绕组的匝间短路故障、绕组与铁芯间的短路故障、绕组的断线故障等。
外部故障指的是变压器外部引出线间的各种相间短路故障、引出线绝缘套管闪络通过箱壳发生的单相接地故障。
变压器发生故障危害很大。
特别是发生内部故障时,短路电流所产生的高温电弧不仅会烧坏变压器绕组的绝缘和铁芯,而且会使变压器油受热分解产生大量气体,引起变压器外壳变形甚至爆炸。
因此变压器故障时必须将其切除。
变压器的异常情况主要有过负荷、油面降低、外部短路引起的过电流,运行中的变压器油温过高、绕组温度过高、变压器压力过高、以及冷却系统故障等。
当变压器处于异常运行状态时,应给出告警信号。
2、变压器保护的配置短路故障的主保护:主要有纵差保护、重瓦斯保护等。
短路故障的后备保护:主要有复合电压闭锁过流保护、零序(方向)过流保护、低阻抗保护等。
异常运行保护:主要有过负荷保护、过励磁保护、轻瓦斯保护、中性点间隙保护、温度油位及冷却系统故障保护等。
3、非电量保护利用变压器的油、气、温度等非电气量构成的变压器保护称为非电量保护。
主要有瓦斯保护、压力保护、温度保护、油位保护及冷却器全停保护。
非电量保护根据现场需要动作于跳闸或发信。
(1)瓦斯保护当变压器内部发生故障时,由于短路电流和短路点电弧的作用,变压器内部会产生大量气体,同时变压器油流速度加快,利用气体和油流来实现的保护称为瓦斯保护。
轻瓦斯保护:当变压器内部发生轻微故障或异常时,故障点局部过热,引起部分油膨胀,油内气体形成气泡进入气体继电器,轻瓦斯保护动作,发出轻瓦斯信号。
重瓦斯保护:当变压器油箱内发生严重故障时,故障电流较大,电弧使变压器油大量分解,产生大量气体和油流,冲击档板使重瓦斯继保护动作,发出重瓦斯信号并出口跳闸,切除变压器。
收藏!详细讲解变压器纵差保护及其他差动保护Part 1:变压器的故障及保护配置变压器故障可分为内部故障与外部故障。
变压器内部故障指变压器油箱内发生的故障,具体包括各绕组的相间短路、绕组的匝间短路、绕组与铁芯间的短路故障、单相绕组或引出线通过外壳发生的单相接地故障、绕组断线故障等。
变压器外部故障指变压器油箱外部绝缘套管及其引出线上发生的各种故障,具体包括绝缘套管闪络或破碎而造成的单相接地短路、引出线之间相间短路等。
此外,变压器有若干种不正常工作状态,主要包括油面降低、油温或压力过高、变压器中性点电压升高、过负荷、过电流、过励磁等。
为监测不同的故障或不正常工作状态,我们设置了不同保护,这其中又分为主保护与后备保护,主保护具有速动特性。
以上瓦斯保护属非电量保护的一种,非电量保护还包括本体与有载调压装置的油温保护、压力释放保护、风冷保护、过载闭锁带负荷调压保护。
Part 2:纵差保护纵差保护是变压器主保护之一,保护瞬时动作,跳开各侧开关。
其保护区域是构成差动保护各侧电流互感器之间的部分,包括了变压器本体、电流互感器与变压器之间的引出线。
2017年某220kV变电站2号主变35kV侧避雷器发生AB相闪络,避雷器底架被放电击穿;因为35kV避雷器位于主变低压侧流变与主变之间,故处于纵差保护范围内,两套主变保护均正确动作,隔离了故障。
01纵差保护的基本逻辑现有变压器纵差保护均采用微机保护装置,各相电流分别进入保护装置,由软件算法实现纵差保护。
我们以一相为例,说明纵差保护的基本原理。
保护装置“感受”到的差流为两个线圈二次电流矢量和。
如图1所示,当系统正常运行或外部短路时,两个线圈二次电流大小相同极性相反,差流为0,此时保护不动作。
如图2所示,当保护范围内发生接地故障时,二次电流大小相等极性相同,差流为二次电流大小之和,当达到差动启动值时保护动作。
图1 变压器正常运行/外部短路差流示意图图2 变压器区内短路差流示意图纵差保护在以上流变二次线圈接入方式的基础上增加对不同侧电流矢量进行相位调整、零序电流消除、幅值转换,形成差动电流计算方法,再引入比率制动特性曲线,构成保护的基本逻辑。
主变指的是一个单位或者变电站的总降压变压器,其容量一般比较大。
其他的变压器作为配电来使用,一般称为配电变压器,容量稍小。
关于主变的保护,作为主变压器,一般来说容量比较大,要求工作的可靠性较高。
对于不同容量的变压器,所要求装设的保护类别也不尽相同。
对于一般的主变来讲,主保护包括:1、瓦斯保护,具有有载调压功能时,包含本体瓦斯和有载瓦斯两个部分,且一般重瓦斯动作于跳闸,轻瓦斯报信号。
2、变压器纵连差动保护,一般采用三相式。
后备保护用于在主保护故障拒动情况下,保护变压器。
一般包含:1、高压侧复合电压启动的过电流保护;2、低压侧复合电压启动的过电流保护;3、防御外部接地短路的零序电流、零序电压保护;4、防止对称过负荷的过负荷保护;5、和高压侧母线相联的保护:高压侧母线差动保护、断路器失灵保护;6、和低压侧母线相联的相关保护:低压侧母线差动保护等。
具体每台变压器需要安装那些保护,可以查看设计手册,不同容量的变压器要求配置的保护种类是不同的。
1.在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0。
如果在三相四线中接入一个电流互感器,这时感应电流为零。
当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)。
这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件跳闸。
这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。
主保护指能满足系统稳定性和设备安全性的要求。
能快速有选择性的切除被保护设备和线路的故障的保护。
后备保护指,当主保护或断路器拒动时,用来切除故障的保护。
后备保护分为选后备保护和近后备保护。
选后备保护指,当主保护拒动时,相邻线路或电器设备保护动作来切除故障,来实现的后备保护。
1、变压器保护功能及原理⼀、变压器保护分类1、500KV⾃耦变压器1.1 500KV⾃耦变压器主保护分为三类差动:1)纵联差动(纵联差动速断保护、纵联⽐率差动保护、纵联⽐率变化量差动保护):由⾼、中、低各侧开关CT组成的传统纵联差动保护。
2)分相差动(分相差动速断保护、分相⽐率差动保护、分相⽐率变化量差动保护):由⾼、中压侧开关CT及低压侧三⾓绕组(套管)CT 组成的分相差动保护。
3)分侧差动:由⾼、中压侧开关CT、公共绕组套管CT组成。
1.2 500KV变压器差动保护差流计算:1)纵联差动:差动电流与制动电流的相关计算,都是在电流相位校正和平衡补偿后的基础上进⾏。
变压器各侧CT⼆次电流相位由软件⾃动校正,采⽤在Y侧进⾏校正相位。
例如对于Y0/Δ-11的接线,其校正⽅法如下:IA’ = (IA-IB)/根号3;IA’为校正后的Y侧校正后的电流差动电流=⾼压侧校正后电流 + 中压侧平衡系数中压侧校正后电流 +低压侧平衡系数低压侧相电流2)分相差动:差动电流=⾼压侧相电流 + 中压侧平衡系数中压侧相电流 + 低压套管CT侧平衡系数低压套管绕组相电流中压侧平衡系数 = (中压侧CT变⽐/⾼压侧CT变⽐)(中压侧额定电压/⾼压侧额定电压);低压套管CT侧平衡系数 = (低压套管CT变⽐/⾼压侧CT变⽐)(低压侧额定电压根号3/⾼压侧额定电压)3)分侧差动差动电流=⾼压侧相电流 + 中压侧平衡系数中压侧相电流 + 公共绕组平衡系数*公共绕组相电流中压侧平衡系数 = 中压侧CT变⽐/⾼压侧CT变⽐;公共绕组平衡系数 = 公共绕组CT变⽐/⾼压侧CT变⽐1.3 差动保护异常检测和⼀些判别1)CT断线:正常情况下判断CT断线是通过检查构成差动的所有相别的电流中有⼀相或两相⽆流且差流⼤于差流越限门槛值,即判为CT断线。
2)PT断线:PT断线检测逻辑分为三相断线和不对称断线两种判据:第⼀三相电压均⼩于18V,判断为PT三相断线,延时10s发PT断线告警信号;第⼆⾃产3U0 ⼤于18V,且三个线电压不相等并且存在两个线电压之差⼤于18V(⽤于区分⼩电流接地系统的⼀点接地),判断为PT不对称断线,1延时0s发PT断线告警信号;第三保护启动后不再进⾏PT断线检测。
本体保护:是一种非电量保护,包括本体轻、重瓦斯保护,有载调压轻、重瓦斯保护以及压力释放。
原理是变压器发生故障时,往往会对变压器的绝缘油造成影响,从而导致气体的产生,这时变压器的瓦斯继电器动作,本体保护就是根据不同瓦斯继电器的动作来跳闸或告警。
差动保护:反映变压器内部故障(包括三侧或两侧CT之间的电缆)。
以三圈变为例,采集变压器三侧的电流。
正常情况,根据KCL定理,流入变压器电流等于流出变压器电流,即差流为零;如果变压器内部故障,肯定有一侧的电流比较大,从而导致差流不为0,保护动作。
如果是外部故障,流入变压器电流仍然等于流出变压器电流,保护不会动作。
常见的差动有差流速断、比率差动等。
两圈变同理。
距离保护:目前用的非常少,但有用的。
简单的讲就是采集电压和电流,计算阻抗,再根据计算的阻抗来判断是否动作。
不建议采用。
过流保护:用于变压器后备保护。
反映的是变压器故障和母线故障、馈线故障。
一般不仅作为变压器后备,还可以作为母线后备、馈线保护后备等。
过流保护包括:相电流、负序、零序;还有定时限、反时限等。
间隙过流和间隙过压保护:采集变压器放电间隙的电量,对付接地故障限制性接地保护:国外用的很多。
采用零序电流来判断,好像也有叫零序差动保护的。
过负荷:包括告警、启动风冷、闭锁有载调压等热过负荷:根据变压器提供的热积累特性,根据负荷电流计算变压器的热积累,分为告警和跳闸两个阶段。
好像电气化铁道上比较多。