新北师大版九年级数学上册《特殊的平行四边形》单元课堂测试题练习卷
- 格式:doc
- 大小:156.00 KB
- 文档页数:7
单元检测卷:《特殊的平行四边形》时间:100分钟满分:100分一.选择题(每题3分,共36分)1.下列说法中错误的是()A.平行四边形的对边相等B.菱形的对角线平分一组对角C.对角线互相垂直的四边形是菱形D.矩形的对角线互相平分2.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时▱ABCD为矩形B.当AB=AD时▱ABCD为正方形C.当∠ABC=90°时▱ABCD为菱形D.当AC⊥BD时▱ABCD为正方形3.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB =6,菱形ABCD的面积为54,则OE的长为()A.4 B.4.5 C.8 D.94.如图,已知△ABC中,AD是BC边上的中线,则下列结论不一定正确的是()A.B.BD=CD C.D.5.下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD6.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC 7.如图,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形的周长为36,则AB的长为()A.6 B.9 C.12 D.48.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AB=4,则矩形对角线的长等于()A.6 B.8 C.D.9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA =48,则OH的长为()=6,S菱形ABCDA.4 B.8 C.D.610.如图,正方形ABCD中,DE=2AE=4,F是BE的中点,点H在CD上,∠EFH=45°,则FH的长度为()A.B.5 C.D.211.如图所示,长方形ABCD被分割成五个长方形,且MH=PF,则下列等式:①MN•BF=NP•AE;②EN•PQ=PF•NP中可以判断甲、乙两个矩形面积相等的是()A.①②都不可以B.仅①可以C.仅②可以D.①②都可以12.如图,矩形ABCD中,AB=6,AD=4,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.4 B.4.5 C.4.8 D.5二.填空题(每题3分,共15分)13.如图,已知菱形ABCD的对角线AC、BD交于点O,OC=2cm,∠ABO=30°,则菱形ABCD 的面积是.14.如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.15.如图,在正方形ABCD中,过D作射线DN平行于AC,以A为圆心,AC长为半径画弧,交射线DN于点E,连接AE交CD于F,则∠ECF的度数为.16.边长为90公尺的正方形跑道ABCD,顺着A,B,C,D,A,B,C,D…的方向,今甲在A 顶点以每分钟65公尺的速度,乙在B顶点以每分钟72公尺的速度同时出发,直到两人并列时就停止跑步.请问他们停止跑步的位置是正方形ABCD的边上.17.如图,已知正方形ABCD,P是边BA延长线上的动点(不与点A重合),且AP<AB,△CBE由△DAP平移得到,若过点E作EQ⊥AC,点Q为垂足,则有以下结论:①四边形PECD 为菱形;②无论点P运动到何处,△DPQ都为等腰直角三角形;③若∠DQC=60°,则有2BE=DP;④无论点P运动到何处,∠CQP一定大于135°.其中正确结论的序号为.三.解答题(共49分)18.(8分)已知:在菱形ABCD中,∠B=60°,点E和点F分别在BC边和CD边上,连接AE、AF、AC,∠EAF=60°.(1)如图1,求证:BE=CF;(2)如图2,当点E是BC边中点时,连接对角线BD分别交AE、AC、AF于点M、O、N,连接EF交对角线AC于点P,在不添加任何辅助线和字母的情况下,请直接写出图2中面积等于△PEC面积3倍的三角形或四边形.19.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若△ABC是边长为2的正三角形,求四边形AODE的面积.20.(8分)点E是正方形ABCD对角线BD上的一个动点(不与点B、D重合),连结CE.(1)如图①,连结AC,若CE平分∠ACD,过点E作EF⊥CE,交AB于点F,求证:BF=DE;(2)如图②,点G在BC上,连结AG、GE,当GE=CE时,试探索AG与CE之间的数量关系,并说明理由.21.(8分)已知正方形ABCD 如图所示,连接其对角线AC ,∠BCA 的平分线CF 交AB 于点F ,过点B 作BM ⊥CF 于点N ,交AC 于点M ,过点C 作CP ⊥CF ,交AD 延长线于点P .(1)求证:BF =DP ;(2)若正方形ABCD 的边长为4,求△ACP 的面积;(3)求证:CP =BM +2FN .22.(8分)如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 边的中点,连接DC 过D 作DE ⊥DC 交AC 于点E .(1)求∠EDA 的度数;(2)如图2,F 为BC 边上一点,连接DF ,过D 作DG ⊥DF 交AC 于点G ,请判断线段CF 与EG 的数量关系,并说明理由.23.(9分)如图所示,在矩形ABCD 中,AB =12,AC =20,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形OBB 1C ,对角线相交于点A 1,再以A 1B 1、A 1C 为邻边作第2个平行四边形A 1B 1C 1C ,对角线相交于点O 1;再以O 1B 1、O 1C 1为邻边作第3个平行四边形O 1B 1B 2C 1…依此类推.(1)求矩形ABCD 的面积;(2)求第1个平行四边形OBB 1C 的面积是第2个平行四边形A 1B 1C 1C 是第3个平行四边形OB1B2C的面积是(3)第n个平行四边形的面积是.参考答案一.选择题1. C.2. A.3. B.4. C.5. D.6. C.7. A.8. B.9. A.10. A.11. D.12. C.二.填空题13. 8cm2.14.+1.15. 30°.16. AD.17.②③④.三.解答题18.(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD,AC⊥BD,AB∥CD,AC平分∠BCD,∴∠BCD+∠B=180°,∵∠B=60°,∴∠ACD=120°﹣60°=60°=∠B,△ABC是等边三角形,∴AB=AC,∠BAC=∠BCA=60°,∵∠BAC=∠BAE+∠EAC=60°,∠EAF=∠CAF+∠EAC=60°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)解:图2中面积等于△PEC面积3倍的三角形为△AEP和△AFP,四边形为四边形BOPE 和四边形△DOPF;理由如下:由(1)得:△ABE≌△ACF,∴BE=CF,AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∵点E是BC边中点,∴AE⊥BC,CE=BE=BC=CD=CF,∴F是CD的中点,∴EF是△BCD的中位线,∴EF∥BD,∴EP是△BOC的中位线,∴PE=OB,∵AC⊥BD,∠BCD=120°,∴EF⊥AC,∠CEF=∠CFE=30°,∴PC=CE,设PC=x,则CE=2x,PE=x,AE=CE=2x,∵△PEC的面积=PC×PE=×x×x=x2,△AEC的面积=CE×AE=×2x×2x=2x2,∴△AEC的面积=4△PEC的面积,∴△AEP的面积=3△PEC的面积,同理:△AFP的面积=3△PEC的面积;∵PE∥OB,PE=OB,∴△OBC的面积=4△PEC的面积,∴四边形BOPE的面积=4△PEC的面积,同理:四边形DOPF的面积=4△PEC的面积.19.(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵△ABC是边长为2的正三角形,∴AB=AC=2,∠ABC=60°,∵四边形ABCD为菱形,∴AO=AC=1,OD=OB,∵∠AOB=90°,∴OB===,∴OD=OB=,∵四边形AODE是矩形,∴四边形AODE的面积=×1=.20.解:(1)如图1,过点E分别作AB,BC的垂线,垂足分别为M,N,∴∠EMB=∠ENB=∠MBN=90°,∴四边形MENB为矩形,∴∠MEN=90°,∵四边形ABCD为正方形,∴∠DCA=×90°=45°=∠CDB=∠CBD=∠ABD,∴ME=NE,∴矩形MENB为正方形,∵EF⊥CE,∴FEN+∠NEC=90°,∠FEN+∠MEF=90°,∴∠MEF=∠NEC,又∵∠EMF=∠ENC=90°,∴△EMF≌△ENC(ASA),∴EF=EC,∵CE平分∠ACD,∴∠DCE=∠ACE=ACD=22.5°,∵EN∥CD,∴∠NEC=∠DCE=22.5°,∴∠MEF=22.5°,∴∠BEF=∠BEM﹣∠MEF=45°﹣22.5°=22.5°,∴∠BEF=∠DCE,又∵FBE=∠EDC=45°,EF=EC,∴△FBE≌△EDC(AAS),∴BF=DE;(2)如图2,连接AE,过点E分别作AB,BC的垂线,垂足分别为M,N,∵四边形ABCD为正方形,∴AD=CD,∠ADE=∠CDE=×90°=45°,又∵DE=DE,∴△ADE≌△CDE(SAS),∴AE=CE,∵GE=CE,∴AE=GE,由(1)知,四边形MENB为正方形,∴ME=NE,又∵∠EMA=∠ENG=90°,∴Rt△EMA≌Rt△ENG(HL),∴∠AEM=∠GEN,∵∠GEN+∠MEG=90°,∴∠AEG=90°,∴△AEG为等腰直角三角形,∴AG=GE,即AG=CE.21.证明:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠CAD=∠ACD=45°,∵CP⊥CF,∴∠FCP=90°=∠BCD,∴∠BCF=∠DCP,∵CD=CB,∠CBF=∠CDP=90°,∴△CDP≌△CBF(ASA)∴BF=DP;(2)∵CF平分∠ACB,∴∠ACF=∠BCF=22.5°,∴∠BFC=67.5°,∵△CDP≌△CBF,∴∠P=∠BFC=67.5°,且∠CAP=45°,∴AC=AP,∵AC=AB=4,=AP×CD=8;∴S△ACP(3)在CN上截取NH=FN,连接BH,∵△CDP≌△CBF,∴CP=CF,∵FN=NH,且BN⊥FH,∴BH=BF,∴∠BFH=∠BHF=67.5°,∴∠FBN=∠HBN=∠BCH=22.5°,∴∠HBC=∠BAM=45°,∵AB=BC,∠ABM=∠BCH,∴△AMB≌△BHC(ASA),∴CH=BM,∴CF=BM+2FN,∴CP=BM+2FN.22.(1)解:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵D为AB边的中点,∴CD=BD=AD,∴△BCD是等边三角形,∠ACD=∠A=30°,∵∠CDE=90°,∴∠CED=60°,∴∠EDA=30°;(2)FC=GE.23.解:(1)∵四边形ABCD矩形,∴∠ABC=90°,OB=OC,∴BC===16,∴矩形ABCD的面积=12×16=192;(2)∵四边形OBB1C是平行四边形,OB=OC,∴四边形OBB1C是菱形,∴BA1=CA1=8,∴OA1是△ABC的中位线,∴OA1=AB=6,∴OB1=2OA1=12,∴平行四边形四边形OBB1C的面积=×12×16=96;故答案为:96;根据题意得:四边形A1B1C1C是矩形,∴第2个平行四边形A1B1C1C=A1C×A1B1=8×6=48;故答案为:48;同理:第3个平行四边形OB1B2C的面积=×8×6=24;故答案为:24;(3)由(2)得出规律,第n个平行四边形的面积是;故答案为×96.。
北师大新版九上数学《特殊的平行四边形》单元训练题一.选择题(共12小题)1.下列命题错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.对角线相等的四边形是矩形D.矩形的对角线相等2.菱形的周长等于高的8倍,则此菱形的较大内角是()A.60°B.90°C.120°D.150°3.已知菱形的周长为9.6cm,两个邻角的比是1:2,这个菱形较短的对角线的长是()A.2.1cm B.2.2cm C.2.3cm D.2.4cm4.如图,矩形ABCD中,E是BC上的点,F是CD上的点,已知S△ABE=S△ADF=S ABCD,则S△AEF:S△CEF的值等于()A.2B.3C.4D.55.在下面的性质中,菱形具有而平行四边形不一定具有的性质是()A.内角和360°B.对角线互相垂直C.邻角互补D.对边平行且相等6.下列说法错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相垂直平分且相等的四边形是正方形C.对角线相等的平行四边形是矩形D.一组对边平行,一组对角相等的四边形是平行四边形7.在△ABC中,AB≠AC,D是边BC上的一点,DE∥CA交AB于点E,DF∥BA交AC于点F.要使四边形AEDF是菱形,只需添加条件()A.AD⊥BC B.∠BAD=∠CAD C.BD=DC D.AD=BC8.下列判断正确的是()A.有一个角是直角的四边形是矩形B.有一组邻边相等的四边形是菱形C.有三个角是直角的四边形是矩形D.有三条边相等的四边形是菱形9.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2B.2.2C.2.4D.2.510.如图,正方形ABCD的边长为8,E在CD上,DE=6,过点B作EB⊥FB,交DA的延长线于点F,则FD的长为()A.6B.8C.9D.1011.如图,在矩形ABCD中,对角线AC、BD相交于点O,且∠AOD=120°,AC=6,则图中长度为3的线段有()A.2条B.4条C.5条D.6条12.如图,P为菱形ABCD的对角线AC上的一定点,Q为AD边上的一点,AP的垂直平分线分别交AB,AP于点F,G,∠DAB=30°,若PQ的最小值为3,则AF的长为()A.3B.3C.6D.9二.填空题(共5小题)13.如图,菱形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AB和CD于点E、F,BD=6,AC=4,则图中阴影部分的面积和为.14.如图,已知菱形ABCD中,∠ABC是钝角,DE垂直平分边AB,若AE=2,则DB=.15.已知矩形AOBC的边AO、OB分别在y轴、x轴正半轴上,点C的坐标为(8,6),点E是x轴上任意一点,连接EC,直线EC交AB所在直线于点F,当△ACF为等腰三角形时,EF的长为.16.如图,将两个边长为的正方形沿对角线剪开,将所得的四个三角形拼成一个大正方形,则这个大正方形的边长是.17.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P 的坐标为.三.解答题(共18小题)18.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC的外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.19.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.20.如图所示,△ABC中,D是BC中点,E是AD的中点,过点A作BC的平行线交CE 的延长线于F,连接BF.(1)判断并证明四边形AFBD;(2)当△ABC满足什么条件时,四边形AFBD是矩形,证明你的结论.21.如图,在四边形ABCD中,AB∥CD,AB=AD,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)过点C作CE⊥AC,交AB的延长线于点E,若AB=5,AC=8,求四边形ADCE 的周长.22.如图,在▱ABCD中,对角线AC,BD交于点E,CF∥BE,BF∥CE.(1)当BC平分∠EBF时,求证:▱ABCD为矩形.(2)在以下命题中:①当BF⊥CF时,▱ABCD为正方形.②当时,▱ABCD为正方形.③当AB=CF时,四边形EBFC为菱形.④当∠ABD=∠DCA时,四边形EBFC为菱形.正确的有:,请选择一个正确的命题进行证明.23.如图,已知矩形ABCD.(1)在图中作出△CDB沿对角线BD所在直线对折后的△C′DB,C点的对应点为C′(用尺规作图,保留作图痕迹,简要写明作法,不要求证明);(2)设C′B与AD的交点为E.①若DC=3cm,BC=6cm,求△BED的面积;②若△BED的面积是矩形ABCD的面积的,求的值.24.正方形ABCD中,点E为AB的中点,若将△BCE沿CE对折,点B将落在点F处,连接EF并延长交AD、CD的延长线分别于G、H.(1)若BC=4,求FG的长.(2)求证:CH=5DH.25.已知:正方形ABCD,E为BC延长线上一点,AE交BD于F,交DC于G,M为GE 中点,求证:CF⊥CM.26.如图,在矩形ABCD中,AB=4 cm,BC=8 cm、点P,Q分别在AD,BC上,且点P 从点D出发向点A运动,点Q从点B出发向点C运动,点P,Q同时出发,运动速度都是1 cm/s.那么在点P,Q运动过程中,四边形AQCP可能是菱形吗?如果可能,求出使四边形AQCP为菱形时点P,Q已运动的时间x,并求此时菱形AQCP的周长和面积.27.如图,在四边形ABCD中,对角线AC、BD相交于点O,AB∥CD且AB=CD,∠BAC =∠BDC,求证:四边形ABCD是矩形.28.将等腰三角形ABC折叠,使顶点B与底边AC的中点D重合,折线分别交AB,BC于点F,E,连接DF,DE.(1)如图1,求证:四边形DFBE是菱形;(2)如图2,延长FD至点G,使FD=DG,连接GC,并延长GC交FE的延长线于点H,在不添加任何辅助线的情况下,请直接写出图2中的所有平行四边形(不包括以BF 为一边的平行四边形).29.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.30.如图,在矩形ABCD中,将△ABC绕AC对折至△AEC位置,CE与AD交于点F,如图.试说明EF=DF.31.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.求证:四边形ADCF是矩形.32.已知:如图1,在平行四边形ABCD中,连结BD,∠DBC=90°,点E,F分别为DC,BC的中点,连结EF并延长交AB的延长线于点G.(1)如图1,若BC=3,BD=4,求四边形BGED的周长;(2)如图2,连结BE,CG.求证:四边形BGCE是菱形.33.已知四边形ABCD中,BC=CD.连接BD,过点C作BD的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.求∠CED的大小.34.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠P AC.35.如图,已知,在矩形ABCD中,∠BAD的平分线分别与边BC及边DC的延长线相交于点E,F,G,点G为EF中点,连接DG.(1)如果AB=2,BC=4,求△ADG的面积;(2)联结BD,求∠BDG的度数.。
新北师大版九年级数学上册《特殊的平行四边形》
单元课堂测试题练习卷
班级:______________ 姓名:________________ 座位号:________ 家长签名:
一.选择题(每小题3分,共30分)
1. 菱形具有而一般平行四边形不具有的性质是()
A. 对边相等
B. 对角相等
C. 对角线互相平分
D. 对角线互相垂直
2. 矩形具有而菱形不具有的性质是()
A. 两组对边分别平行
B. 对角线相等
C. 对角线互相平分
D. 两组对角分别相等
3. 正方形具有而菱形不具有的性质是()
A. 对角线平分一组对角
B. 对角线相等
C. 对角线互相垂直平分
D. 四条边相等
4. 将一张长方形纸片如图所示折叠后,再展开,
如果∠1=56°,那么∠2等于( )
A. 56°
B. 62°
C. 66°
D. 68°
5. 如图,菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,
菱形ABCD的周长为28,则OE的长等于( )
1。
《特殊的平行四边形》单元测试卷一.选择题(每小题3分,满分36分)1.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等3.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.54.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°5.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1B.C.2D.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.328.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)10.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAO,则AB的长为()A.3B.4C.D.11.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD 于点E,则AE的长是()A.4B.C.5D.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE =S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④二.填空题(每小题3分,满分12分)13.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC 的长为.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是.16.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.三.解答题(17题—20题,每题7分,21题—23题,每题8分,满分52分)17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.19.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.20.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.23.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.参考答案一.选择题(共12小题)1.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度【解答】解:A.有两边和一角分别相等的两个三角形全等;不正确;B.有一组对边平行,且对角线相等的四边形是矩形;不正确;C.如果一个角的补角等于它本身,那么这个角等于45°;不正确;D.点到直线的距离就是该点到该直线的垂线段的长度;正确;故选:D.2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等【解答】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.3.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5【解答】解:∵四边形ABCD为菱形,∴CD=BC==5,且O为BD的中点,∵E为CD的中点,∴OE为△BCD的中位线,∴OE=CB=2.5,故选:A.4.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°【解答】解:在正方形ABCD中,AB=AD,∠BAD=90°,在等边△ABE中,AB=AE,∠BAE=∠AEB=60°,在△AD E中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,所以,∠AED=(180°﹣150°)=15°,所以∠BED=∠AEB﹣∠AED=60°﹣15°=45°.故选:C.5.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1B.C.2D.【解答】解:连接CE,如图所示:∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=8﹣x,在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即DE=;故选:B.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.32【解答】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28①∵菱形的边长为6,∴OD2+OA2=36②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.8.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.【解答】解:如图,设BC=x,则CE=1﹣x易证△ABC∽△FEC∴===解得x==××1=∴阴影部分面积为:S△ABC故选:A.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.10.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAO,则AB的长为()A.3B.4C.D.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠B AE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴36+AB2=4AB2,∴AB=2故选:C.11.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD于点E,则AE的长是()A.4B.C.5D.【解答】解:∵四边形ABCD是菱形,∴AO=AC,OB=BD,AC⊥BD,∵AC:BD=3:4,∴AO:OB=3:4,设AO=3x,OB=4x,则AB=5x,∵AB=5,∴5x=5,x=1,∴AC=6,BD=8,S菱形ABCD=,∴,AE=,故选:B.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE =S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④【解答】解:①四边形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE =AF ,∴AC 垂直平分EF .(故①正确).②设BC =a ,CE =y ,∴BE +DF =2(a ﹣y )EF =,∴BE +DF 与EF 关系不确定,只有当y =()a 时成立,(故②错误).③当∠DAF =15°时,∵Rt△ABE ≌Rt△ADF ,∴∠DAF =∠BAE =15°,∴∠EAF =90°﹣2×15°=60°,又∵AE =AF∴△AEF 为等边三角形.(故③正确).④当∠EAF =60°时,设EC =x ,BE =y ,由勾股定理就可以得出:∴x 2=2y (x +y )∵S △CEF =x 2,S △ABE =,∴S △ABE =S △CEF .(故④正确).综上所述,正确的有①③④,故选:C .二.填空题(共4小题)13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN =4,则AC 的长为16.【解答】解:∵M 、N 分别为BC 、OC 的中点,∴BO =2MN =8.∵四边形ABCD 是矩形,∴AC=BD=2BO=16.故答案为16.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.16.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【解答】解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴PA==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).三.解答题(共7小题)17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.19.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.20.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2﹣OD2=OE2,∴OE=,∴EF=2OE=.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.23.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.。
九年级数学上册《第一章特殊平行四边形》单元测试卷-附带答案(北师大版)一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.197.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm212.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形∴OA=OC=3,OB=OD,AC⊥BD在Rt△AOB中,∠AOB=90°根据勾股定理,得:OB===4∴BD=2OB=8故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图设正方形S1的边长为x∵△ABC和△CDE都为等腰直角三角形∴AB=BC,DE=DC,∠ABC=∠D=90°∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD∴AC=BC=2CD又∵AD=AC+CD=6∴CD==2∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°∴AM=MO∵MO=MN∴AM=MN∴M为AN的中点∴S2的边长为3∴S2的面积为3×3=9∴S1+S2=8+9=17.故选B.【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾股定理可求得斜边的长,由此得解【解答】解:∵Rt△ABC中,AC=cm,且∠ACB=90°,∠B=30°∴AB=2∴AB边上的中线CD=AB=cm.故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°∴∠ADE=150°.∵AD=DE∴∠DAE=∠DEA=15°∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDE=∠AED∵DE⊥AB∴∠AED=90°∴∠CDE=90°∵∠EDF=60°∴∠CDF=30°∵DF⊥BC∴∠DFC=90°∴∠C=60°∴∠A=60°∴∠ADE=30°∴AD=2DE∵AE=2∴AD=2×2=4(cm);故选A.【点评】此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE,从而设BE=DE=x,即可表示AE,在直角三角形ADE中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x在Rt△ADE中,DE2=AE2+AD2即x2=(10﹣x)2+16.解得:x=5.8.故选C.【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】菱形的性质.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图1中矩形的长为5cm,宽为4cm∵虚线的端点为矩形两邻边中点∴AC=4cm,BD=5cm∴如图(2)所示的小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问题)实质上就是轴对称变换.12.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【考点】KQ:勾股定理;LB:矩形的性质.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P∵四边形ABCD和四边形CEFG都是矩形∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1∴AD∥GF∴∠GFH=∠P AH又∵H是AF的中点∴AH=FH在△APH和△FGH中∵∴△APH≌△FGH(ASA)∴AP=GF=1,GH=PH=PG∴PD=AD﹣AP=1∵CG=2、CD=1∴DG=1则GH=PG=×=故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为3.【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形∴BO=DO=4,AO=CO,S菱形ABCD==24∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7)∴OA=BC=8,OC=AB=7∵D(5,0)∴OD=5∵点P是边AB或边BC上的一点∴当点P在AB边时,OD=DP=5∵AD=3∴P A==4∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形∴AB=BC=1,∠B=90°∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.【考点】正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求过F作FG⊥CD于G在Rt△E′FG中GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形∴AB=AD,∠B=∠D.又∵EB=DF∴△ABE≌△ADF∴AE=AF∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=ADBD=2DO,AB=AD∴AD=2∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形∴BE∥AD,BE=AD∴BE=CD∴四边形BECD是平行四边形.∵BD⊥AC∴∠BDC=90°∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF同理∠DAE=∠FDA∵AD=DA∴△ADE≌△DAF∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD∴∠BAC=∠FCO在△AOE和△COF中∴△AOE≌△COF(AAS)∴OE=OF;(2)解:如图,连接OB∵BE=BF,OE=OF∴BO⊥EF∴在Rt△BEO中,∠BEF+∠ABO=90°由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC∴∠BAC=∠ABO又∵∠BEF=2∠BAC即2∠BAC+∠BAC=90°解得∠BAC=30°∵BC=2∴AC=2BC=4∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°∴F、C、M三点共线∴DE=DM,∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°在△DEF和△DMF中∴△DEF≌△DMF(SAS)∴EF=MF;(2)设EF=MF=x∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x∵EB=AB﹣AE=3﹣1=2在Rt△EBF中,由勾股定理得EB2+BF2=EF2即22+(4﹣x)2=x2解得:x=则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1在△BCE和△DCF中∴△BCE≌△DCF(SAS);(2)证明:如图1∵BE平分∠DBC,OD是正方形ABCD的对角线∴∠EBC=∠DBC=22.5°由(1)知△BCE≌△DCF∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理)∴∠BGF=90°;在△DBG和△FBG中∴△DBG≌△FBG(ASA)∴BD=BF,DG=FG(全等三角形的对应边相等)∵BD==∴BF=∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1①当BH=BP时,则BP=﹣1∵∠PBC=45°设P(x,x)∴2x2=(﹣1)2解得x=1﹣或﹣1+∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1∵∠ABD=45°∴△PBH是等腰直角三角形∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°∴△PBH是等腰直角三角形∴P(,)综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。
北师⼤版九年级数学上册《特殊平⾏四边形》单元测试题及答案北师⼤版九年级数学上册《特殊平⾏四边形》单元检测试卷⼀、单选题(共10题;共30分)1.如图,在菱形ABCD中,对⾓线AC、BD交于点O.若∠ABC=60°,OA=1,则CD的长为()A. 1B. √3C. 2D. 2√32.下列给出的条件中,能识别⼀个四边形是菱形的是()A. 有⼀组对边平⾏且相等,有⼀个⾓是直⾓B. 两组对边分别相等,且有⼀组邻⾓相等C. 有⼀组对边平⾏,另⼀组对边相等,且对⾓线互相垂直D. 有⼀组对边平⾏且相等,且有⼀条对⾓线平分⼀个内⾓3.顺次连结矩形四边的中点所得的四边形是()A. 矩形B. 正⽅形C. 平⾏四边形D. 菱形4.下列说法中,正确的是().A. 相等的⾓⼀定是对顶⾓B. 四个⾓都相等的四边形⼀定是正⽅形C. 平⾏四边形的对⾓线互相平分D. 矩形的对⾓线⼀定垂直5.在菱形ABCD中,对⾓线AC、BD相交于点O,AC=8,BD=6,则菱形ABCD的周长是( )6.如图,在正⽅形ABCD的内部作等边△ADE,则∠AEB度数为()A. 80°B. 75°C. 70°D. 60°7.如图,在菱形ABCD中,对⾓线AC与BD交于点O,OE⊥AB,垂⾜为E,若∠ADC=130°,则∠AOE的⼤⼩为()A. 75°B. 65°C. 55°D. 50°8.如图,矩形ABCD的对⾓线AC=8cm,∠AOD=120°,则AB的长为()A. √3cmB. 2cmC. 2 √3 cmD. 4cm9.在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直⾓三⾓形;②四边形CDFE不可能为正⽅形;③四边形CDFE的⾯积保持不变;④△CDE⾯积的最⼤值为8.其中正确的结论有()个.10.(2017?德州)如图放置的两个正⽅形,⼤正⽅形ABCD边长为a,⼩正⽅形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转⾄△ADN,将△MEF绕;③△ABM≌△NGF;④S四边点F旋转⾄△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣b2a=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()形AMFNA. 2B. 3C. 4D. 5⼆、填空题(共10题;共30分)11.矩形⼀个⾓的平分线分矩形⼀边为1cm和3cm两部分,则这个矩形的⾯积为________cm2.12.如图,要使平⾏四边形ABCD是矩形,则应添加的条件是________(只填⼀个).13.菱形ABCD的⼀条对⾓线长为6,边AB的长是⽅程的解,则菱形ABCD的周长为________.14.(2017?包头)如图,在矩形ABCD中,点E是CD的中点,点F是BC上⼀点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是________.15.如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有⼀点P,当PA+PB+PC值最⼩时,PB的长为________.16.如图所⽰:点M、G、D在半圆O上,四边形OEDF、HMNO均为矩形,EF=b,NH=c,则b与c之间的⼤⼩关系是b________c(填<、=、>)17.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的⾯积是18,则DP的长是________.18.如图,在ΔABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD 的平⾏线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若AF=8,CF=6,则四边形BDFG的周长为________.19.如图,在边长为4的正⽅形ABCD中,E是AB边上的⼀点,且AE=3,点Q为对⾓线AC上的动点,则△BEQ周长的最⼩值为________.20.在平⾯直⾓坐标系中,正⽅形ABCD的位置如右图所⽰,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正⽅形A1B1C1C;延长C1B1交x轴于点A2,作正⽅形A2B2C2C1,…按这样的规律进⾏下去,第2017个正⽅形的⾯积为________.三、解答题(共9题;共60分)21.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.22.已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.23.如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平⾏四边形,求证:四边形ADCE是矩形.24.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点C作CE//AB,过点B作BE//CD,CE、BE25.如图,在矩形ABCD中,点E在边AD上,EF⊥CE且与AB相交于点F,若DE=2,AD+DC=8,且CE=EF,求AE的长。
第一章《特殊平行四边行》单元检测卷(全卷满分100分时限90分钟)一.选择题(每小题3分,共36分)1.如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有() A.4对B.6对C.8对D.10对2.如图,在□ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AF B.EF⊥AC C.∠B=60°D.AC是∠EAF的平分线3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.54.如图所示,点E是矩形ABCD的边AD延长线上一点,且AD=DE,连接BE交CD于点O,连接AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EODC.△AOD≌△EOD D.△AOD≌△BOC5.如图,在正方形ABCD的外侧作等边△ADE,则∠AEB的度数为()A.10°B.12.5°C.15°D.20°6.已知,如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当∠BED =126°时,∠EDA的度数为()A.54°B.27°C.36°D.18°7.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形8.如图,已知正方形ABCD的对角线长为22,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为() A.8 2 B.4 2 C.8 D.69.如图,矩形ABCD的对角线AC,BD交于点O,∠BAD的平分线AE交BC于点E,连接OE,若∠AOB=60°,则∠BOE的度数是()A.80°B.65°C.45°D.75°10.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1 B.3- 5 C.5+1 D.5-111.如图,在菱形ABCD中,∠A=110°,点E、F分别是AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°12.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=12(BC-AD);⑤四边形EFGH是菱形.其中正确的个数是()A.1 B.2 C.3 D.4二.填空题:(每小题3分,共12分)13.如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC∶BD=1∶2,则AC=____________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则DE的长度是____.15.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF于点G.若∠CEF=70°,则∠GFD′=________°.16.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF等于________°.三、解答题(本大题共7个小题,共52分)17.(6分)如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.(1)判断四边形ACED的形状,并说明理由;(2)若BD=8 cm,求线段BE的长.18.(8分)如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.19.(7分)如图,已知:四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究四边形BECF是什么特殊的四边形并说明理由;(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.20.(8分)如图,正方形ABCD 的边长为4,E ,F 分别为DC ,BC 中点. (1)求证:△ADE ≌△ABF ; (2)求△AEF 的面积.21.(6分)已知:如图,四边形ABCD 的对角线AC ,BD 交于点O ,BE ⊥AC 于E ,DF ⊥AC 于F ,点O 既是AC 的中点,又是EF 的中点. (1)求证:△BOE ≌△DOF ;(2)若OA =12BD ,则四边形ABCD 是什么特殊四边形?说明理由.22.(8分)已知:如图,在□ABCD中,∠BAD的平分线与BC边相交于点E,∠ABC的平分线与AD边相交于点F.(1)求证:四边形ABEF是菱形;(2)若AB=4 cm,∠BAD=120°,求AE,BF的长.23.(9分)如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明现由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一、选择题(共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CCDACDCCDDDC二.填空题:(每小题3分共12分) 三.解答题:17.(1)四边形ACED 是平行四边形。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
第一章《特别平行四边形》单元测试卷班级: ___________ 姓名: ___________ 得分: ___________一 .选择题:(每题 3 分,共 36 分)1.菱形拥有而矩形不必定拥有的性质是()A .对角线相互垂直B .对角线相等C.对角线相互均分D.对角互补2.矩形拥有而菱形不必定拥有的性质是()A .内角和等于3600B .对角互补C.对边平行且相等D.对角线相互均分3.已知四边形ABCD 是平行四边形,以下结论不正确的选项是()A .当 AC=BD 时,它是菱形B.当 AC⊥ BD 时,它是菱形C.当∠ ABC=90 °时,它是矩形D.当 AB=BC 时,它是菱形4.如下图,四边形ABCD 的对角线相互均分,要使四边形ABCD 成为矩形,需要增添的条件是()A .AB=CDB .AD =BD C. AB= BC D. AC= BD(第 4题)(第 5题)(第 6题)5.如图,矩形ABCD 的对角线AC=8 cm,∠ AOD =120 °,则 AB 的长为()A .cm B. 2cm C. 2cm D. 4cm6.如图,四边形ABCD 是平行四边形,以下说法不正确的选项是()A .当 AC=BD 时,四边形ABCD 是矩形 ;B .当 AB =BC 时,四边形ABCD 是菱形 ;C.当 AC⊥ BD 时,四边形ABCD 是菱形 ;D .当∠ DAB=90 °时,四边形ABCD 是正方形7.正方形拥有而菱形不拥有的性质是()A .对角线均分一组对角B.对角线相等C.对角线相互垂直均分 D .四条边相等N 分别是边AB、 BC 的中点,则PM +PN 的最小值是()A .5B. 10C. 14 D .不确立(第 8题)(第9题)(第10题)9.如下图,在菱形ABCD 中, AC、 BD 订交于点O, E 为 AB 的中点,若OE=4,则菱形ABCD 的周长是()A .8B. 16C.24D.3210.如图, AC、BD 是矩形 ABCD 的对角线,过点 D 作 DE∥ AC,交 BC 的延伸线于E,则图中与△ ABC 全等的三角形共有()A.1 个B.2 个C.3 个D.4 个11.如图,在菱形 ABCD 中,∠ BAD =82 °,AB 的垂直均分线交对角线AC 于点 F,垂足为 E,连结 DF ,则∠ CDF 等于()A.67 °B.57 °C.60 °D.87 °(第 11 题) (第 12 题)12.如图,将 n 个边长都为 1cm 的正方形按如下图摆放,点A1、 A2、、 A n分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为()A .1cm2 B .ncm2 C.n 1cm2 D .(1)n cm2 4 4 4 4二 .填空题:(每题 3 分,共 12 分13.如图,四边形ABCD 中,点 E、F 、G、 H 分别为边AB、 BC、 CD、 DA 的中点,请你(第 13 题)(第 14 题)(第 15 题)14.如图, l∥m,矩形 ABCD 的极点 B 在直线 m 上,则∠α=度.15.如图, E 是边长为 1 的正方形ABCD 对角线 BD 上一点,且BE=BC,P 为 CE 上随意一点, PQ⊥BC 于点 Q, PR⊥ BD 于点 R,则 PQ+PR 的值为。
北师版九上数学第一章特殊平行四边形单元测试卷(难)一、选择题(每小题3分,共30分)1.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形2.如图,点O是矩形ABCD的中心,E是AB上的点,折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()第2题图A.2B.C.D.63.从菱形的钝角顶点向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°4.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cmB.5cm和10cmC.4cm和11cmD.7cm和8cm5.如图,在矩形中,分别为边的中点.若,,则图中阴影部分的面积为()A.3B.4C.6D.86.如图,在菱形中,,∠,则对角线等于()A.20B.15C.10D.57.若正方形的对角线长为2cm,则这个正方形的面积为()A.4B.2C.D.8.矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直9.如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A. B. C. D.第5题图第6题图(1)(2)10.如图是一张矩形纸片,,若将纸片沿折叠,使落在上,点的对应点为点,若,则()A. B. C. D.二、填空题(每小题3分,共24分)11.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是_________.12.如图,在菱形ABCD中,∠B=60°,点E,F分别从点B,D同时以同样的速度沿边BC,DC向点C 运动.给出以下四个结论:①;②∠∠;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述正确结论的序号有.13.如图,四边形ABCD是正方形,延长AB 到点E ,使,则∠BCE 的度数是.14.如图,矩形的两条对角线交于点,过点作的垂线,分别交,于点,,连接,已知△的周长为24cm,则矩形的周长是cm.15.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.CDAB第17题图第15题图第18题图16.已知菱形的周长为,一条对角线长为,则这个菱形的面积为_________.17.如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.第9题图第10题图18.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(共66分)19.(8分)如图,在△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.20.(8分)如图,在□ABCD中,E为BC边上的一点,连接AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.21.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF.(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.第21题图22.(8分)如图,正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45°.将△DAE 绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)如图,在矩形中,相交于点,平分,交于点.若,求∠的度数.24.(8分)如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=,求AB的长.25.(8分)已知:如图,在四边形中,∥,平分∠,,为的中点.试说明:互相垂直平分.26.(10分)如图,在△中,∠,的垂直平分线交于点,交于点,点在上,且.(1)求证:四边形是平行四边形.(2)当∠满足什么条件时,四边形是菱形?并说明理由.第26题图第一章特殊平行四边形--单元检测题1(难)参考答案一、1.B 2.A解析:根据图形折叠的性质可得:∠BCE =∠ACE=21∠ACB ,∠B =∠COE =90°,BC =CO =21AC ,所以∠BAC =30°,所以∠BCE =∠ACE =21∠ACB =30°.因为BC =3,所以CE =23.3.C解析:如图,连接AC .在菱形ABCD 中,AD=DC ,AE ⊥CD ,AF ⊥BC ,因为,所以AE 是CD 的中垂线,所以,所以△ADC 是等边三角形,所以∠60°,从而∠120°.4.B 解析:如图,在矩形ABCD 中,10cm,15cm,是∠的平分线,则∠∠C .由AE ∥BC 得∠∠AEB ,所以∠∠AEB ,即,所以10cm,ED =AD -AE =15-10=5(cm),故选B.5.B解析:因为矩形ABCD 的面积为,所以阴影部分的面积为,故选B.6.D 解析:在菱形中,由∠=,得∠.又∵,∴△是等边三角形,∴.7.B 解析:如图,在正方形中,,则,即,所以,所以正方形的面积为2,故选B.8.C 9.A解析:由题意知AC ⊥BD ,且4,5,所以2114510cm )22S AC BD =⋅=⨯⨯=菱形(.10.A 解析:由折叠知,四边形为正方形,∴.二、11.6解析:较短的对角线将菱形分成两个全等的等边三角形,所以较短对角线的长为6.12.①②③解析:因为四边形ABCD 为菱形,所以ABCD ,∠B =∠D ,BE =DF ,所以△≌△,所以AE AF ,①正确.由CB =CD ,BE=DF ,得CE=CF ,所以∠CEF=∠CFE ,②正确.当E ,F 分别为BC ,CD 的中点时,BE=DF =21BC =21DC .连接AC ,BD ,知△为等边三角形,所以⊥.因为AC ⊥BD ,所以∠ACE =60°,∠CEF =30°,⊥,所以∠AEF =.由①知AE AF ,故△为ABCD第7题答图等边三角形,③正确.设菱形的边长为1,当点E ,F 分别为边BC ,DC 的中点时,的面积为,而当点E ,F 分别与点B ,D 重合时,=,故④错.13.22.5°解析:由四边形是正方形,得∠∠又,所以.5°,所以∠.14.48解析:由矩形可知,又⊥,所以垂直平分,所以.已知△的周长为24cm ,即所以矩形ABCD 的周长为15.解析:如图,作E 关于直线AC 的对称点E ′,则BE =DE ′,连接E ′F ,则E ′F 即为所求,过F 作FG ⊥CD 于G ,在Rt△E ′FG 中,GE ′=CD -DE ′-CG =CD -BE -BF =4-1-2=1,GF =4,所以E ′F ===.16.96解析:因为菱形的周长是40,所以边长是10.如图,,.根据菱形的性质,有⊥,,所以,.所以.17.28解析:由勾股定理,得.又,,所以所以五个小矩形的周长之和为18.22.5解析:由四边形ABCD 是正方形,可知∠BAD =∠D =90°,∠CAD =12∠BAD =45°.由FE ⊥AC ,可知∠AEF =90°.在Rt△ABC 与Rt△ADC 中,AE =AD ,AF =AF ,∴Rt△AEF ≌Rt△ADF (HL),∴∠FAD =∠FAE =12∠CAD =12×45°=22.5°.三、19.证明:(1)∵AB =AC ,∴∠B =∠ACB ,∴∠FAC =∠B +∠ACB =2∠BCA .∵AD 平分∠FAC ,∴∠FAC =2∠CAD ,∴∠CAD =∠ACB .在△ABC 和△CDA 中,∠BAC =∠DCA ,AC =AC ,∠DAC =∠ACB ,∴△ABC ≌△CDA .(2)∵∠FAC =2∠ACB ,∠FAC =2∠DAC ,∴∠DAC =∠ACB ,∴AD ∥BC .∵∠BAC =∠ACD ,∴AB ∥CD ,∴四边形ABCD 是平行四边形.∵∠B =60°,AB =AC ,∴△ABC 是等边三角形,∴AB =BC ,∴平行四边形ABCD 是菱形.20.证明:(1)在□ABCD 中,AD ∥BC ,∴∠AEB =∠EAD .∵AE =AB ,∴∠ABE =∠AEB ,∴∠ABE =∠EAD .(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.21.解:(1)证明:因为DE∥AC,DF∥AB,所以四边形AEDF是平行四边形,所以AE=DF.(2)解:若AD平分∠BAC,则四边形AEDF是菱形,理由如下:因为DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,且∠BAD=∠FDA.又AD平分∠BAC,∴∠BAD=∠DAF,∴∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形. 22.(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F,C,M三点共线,DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.∵∠EDF=45°,∴∠FDM=∠EDF=45°.在△DEF和△DMF中,DE=DM,∠EDF=∠MDF,DF=DF,∴△DEF≌△DMF(SAS),∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM-MF=BM-EF=4-x.∵EB=AB-AE=3-1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=,即EF=.23.解:因为平分,所以.又知,所以因为,所以△为等边三角形,所以因为,所以△为等腰直角三角形,所以.所以,,所以=75°.24.(1)证明:∵四边形ABCD是矩形,∴AB∥CD.∴∠OAE=∠OCF.又∵OA=OC,∠AOE=∠COF,∴△AEO≌△CFO(ASA).∴OE=OF.(2)解:连接BO.∵BE=BF,∴△BEF是等腰三角形.又∵OE=OF,∴BO⊥EF,且∠EBO=∠FBO.∴∠BOF=90°.∵四边形ABCD是矩形,∴∠BCF=90°.又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠EOA,∴∠BAC=∠EOA.∴AE=OE.∵AE=CF,OE=OF,∴OF=CF.又∵BF=BF,∴Rt△BOF≌Rt△BCF(HL).∴∠OBF=∠CBF.∴∠CBF=∠FBO=∠OBE.∵∠ABC=90°,∴∠OBE=30°.∴∠BEO=60°.∴∠BAC=30°.在Rt△BAC中,∵BC AC=2BC=4.AB=25.解:如图,连接∵AB⊥AC,∴∠BAC=90°.因为在Rt△中,是的中点,所以是Rt△的斜边BC 上的中线,所以,所以.因为平分,所以,所以所以∥.又AD ∥BC ,所以四边形是平行四边形.又,所以平行四边形是菱形,所以互相垂直平分.26.(1)证明:由题意知∠∠,∴∥,∴∠∠.∵,∴∠∠AEF =∠EAC =∠ECA .又∵,∴△≌△,∴,∴四边形是平行四边形.(2)解:当∠时,四边形是菱形.理由如下:∵∠,∠,∴AB 21.∵垂直平分,∴.又∵,∴AB 21,∴,∴平行四边形是菱形.。
九年级(上)数学特殊的平行四边形单元测试卷一.选择题(共10小题)1.已知平行四边形的对角线相交于点,补充下列四个条件,能使平行四边形成为菱形的是A.B.C.D.2.下列说法正确的是A.有一组对角是直角的四边形一定是矩形B.对角互补的平行四边形是矩形C.一条对角线被另一条对角线垂直平分的四边形是菱形D.对角线相等的四边形是矩形3.菱形的边长是,一条对角线的长是,则另一条对角线的长为A.B.C.D.4.在长方形中,三点的坐标分别是,,,则点的坐标为A.B.C.D.5.如图,要使平行四边形成为矩形,需要添加的条件是A.B.C.D.6.如图,要使平行四边形变为菱形,需要添加的条件是A.B.C.D.7.如图,在正方形的外侧,作等边,连接,若,则等于A.B.C.D.8.矩形中,对角线、相交于点,,,若,,则四边形的周长为A.20B.40C.D.9.如图,在矩形中,对角线的垂直平分线交于点,交于点,连结、.若,,则的长为A.3B.4C.5D.610.矩形中,,,点、同时分别从点、出发沿、方向以每秒1个单位的速度运动,当四边形为菱形时,两点运动的时间为A.4秒B.5秒C.6秒D.秒二.填空题(共8小题)11.正方形的对角线长为,面积为.12.如图,菱形中,,则.13.如右图,在中,,两条直角边的长分别是6和8,则斜边的中线的长是.14.矩形中,对角线,相交于点,于点,若,则的度数为.15.如图,在边长为1的正方形中,,分别为线段,上的点,且为正三角形,则的长为.16.如图,四边形是矩形,则只须补充条件(用字母表示只添加一个条件)就可以判定四边形是正方形.17.如图,为正方形的两条对角线、的交点.若正方形的边长为,则阴影部分的面积为.18.如图,在菱形中,的垂直平分线交对角线于点,垂足为点,若,则的度数为.三.解答题(共7小题)19.如图,在正方形的外侧,作等边三角形,连接,求的度数.20.如图,四边形是正方形,和都是直角,且点,,三点共线,,求的长.21.如图,在矩形中,对角线与相交于点.过点作的平行线,过点作的平行线,两线相交于点.(1)求证:四边形是菱形;(2)已知,,求四边形的面积.22.如图,四边形、均为正方形,连结.(1)证明:;(2)延长交于,证明:.23.如图,菱形中,对角线,相交于点,,.(1)求证:四边形是矩形;(2)已知,,求四边形的面积.24.如图,在菱形中,对角线与交于点.过点作的平行线,过点作的平行线,两直线相交于点.(1)求证:四边形是矩形;(2)若,菱形的周长是,求菱形的面积.25.如图示,正方形的对角线交于点,点、分别在,的延长线上,且,与交于点,连接,是的中点,连接.(1)求证:(2)若,求的度数;(3)是否存在点是中点,且使(1)的结论成立,若存在,请给予证明;若不存在,请说明理由.参考答案一.选择题(共10小题)1.已知平行四边形的对角线相交于点,补充下列四个条件,能使平行四边形成为菱形的是A.B.C.D.解:、,不能判定平行四边形是菱形,故选项不符合题意;、,则平行四边形是矩形,不一定是菱形,故选项不符合题意;、,则平行四边形是矩形,不一定是菱形,故选项不符合题意;、,则,平行四边形是菱形,故选项符合题意;故选:.2.下列说法正确的是A.有一组对角是直角的四边形一定是矩形B.对角互补的平行四边形是矩形C.一条对角线被另一条对角线垂直平分的四边形是菱形D.对角线相等的四边形是矩形解:、有一组对角是直角的平行四边形一定是矩形,故错误,不符合题意;、对角互补的平行四边形是矩形,故正确,符合题意;、一条对角线被另一条对角线垂直平分的四边形不一定是菱形,故错误,不符合题意;、对角线相等的四边形是矩形,故错误,不符合题意,故选:.3.菱形的边长是,一条对角线的长是,则另一条对角线的长为A.B.C.D.解:如图所示:四边形是菱形,,,,,由勾股定理得:,,故选:.4.在长方形中,三点的坐标分别是,,,则点的坐标为A.B.C.D.解:如图,根据图形易知点的坐标是.故选:.5.如图,要使平行四边形成为矩形,需要添加的条件是A.B.C.D.解:、当时,不可判断平行四边形成为矩形;、当时,不可判断平行四边形成为矩形;、当时,,可判定平行四边形是矩形;、当时,不可判断平行四边形是矩形;故选:.6.如图,要使平行四边形变为菱形,需要添加的条件是A.B.C.D.解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:.故选:.7.如图,在正方形的外侧,作等边,连接,若,则等于A.B.C.D.解:过作于点,如图所示:则,是等边三角形,四边形是正方形,,,,,,,,,,,故选:.8.矩形中,对角线、相交于点,,,若,,则四边形的周长为A.20B.40C.D.解:四边形为矩形,,,且,,四边形为平行四边形,,四边形为菱形,,,由勾股定理得到,,则四边形的周长为,故选:.9.如图,在矩形中,对角线的垂直平分线交于点,交于点,连结、.若,,则的长为A.3B.4C.5D.6解:对角线的垂直平分线交于点,交于点,,设长为,则,在中,即,解得:,长为5.故选:.10.矩形中,,,点、同时分别从点、出发沿、方向以每秒1个单位的速度运动,当四边形为菱形时,两点运动的时间为A.4秒B.5秒C.6秒D.秒解:设秒时四边形为菱形,此时,则,,根据勾股定理得:,解得:,故选:.二.填空题(共8小题)11.正方形的对角线长为,面积为1.解:四边形为正方形,,,正方形的面积,故答案为:1.12.如图,菱形中,,则100.解:四边形是菱形,,,,;故答案为:100.13.如右图,在中,,两条直角边的长分别是6和8,则斜边的中线的长是5.解:由勾股定理得,,为斜边的中线,.故答案为:5.14.矩形中,对角线,相交于点,于点,若,则的度数为或.解:矩形,,于点,,,是等腰三角形,,是等边三角形,,,故答案为:或.15.如图,在边长为1的正方形中,,分别为线段,上的点,且为正三角形,则的长为.解:四边形是正方形,,,是等边三角形,,在和中,,,设,那么,,在中,,在中,,,,,,而,,即的长为,故答案为:.16.如图,四边形是矩形,则只须补充条件(用字母表示只添加一个条件)就可以判定四边形是正方形.解:因为有一组邻边相等的矩形是正方形,故答案为:(答案不唯一).17.如图,为正方形的两条对角线、的交点.若正方形的边长为,则阴影部分的面积为.解:由题意可知,,,,,的面积等于的面积,阴影部分的面积等于的面积,又正方形的边长为,正方形的面积等于,的面积等于,阴影部分的面积等于,故答案为:.18.如图,在菱形中,的垂直平分线交对角线于点,垂足为点,若,则的度数为.解:连接,,四边形是菱形,,.垂直平分,垂直平分,,,,,,即,,,则,.故答案为:.三.解答题(共7小题)19.如图,在正方形的外侧,作等边三角形,连接,求的度数.解:四边形是正方形,,,是等边三角形,,,,,,.20.如图,四边形是正方形,和都是直角,且点,,三点共线,,求的长.解:四边形是正方形,,,点,,三点共线,,又,,,,.21.如图,在矩形中,对角线与相交于点.过点作的平行线,过点作的平行线,两线相交于点.(1)求证:四边形是菱形;(2)已知,,求四边形的面积.解:(1),,四边形是平行四边形,四边形是矩形,,,,,平行四边形是菱形.(2),,,矩形中,对角线与相交于点,,四边形是菱形,,.22.如图,四边形、均为正方形,连结.(1)证明:;(2)延长交于,证明:.【解答】(1)证明:四边形、均为正方形,,,,在和中,,,;(2)由(1)得,,,,,,.23.如图,菱形中,对角线,相交于点,,.(1)求证:四边形是矩形;(2)已知,,求四边形的面积.【解答】(1)证明:,,四边形是平行四边形,在菱形中,,,四边形是矩形;(2)解:四边形是矩形,,四边形是菱形,,,,,四边形的面积.24.如图,在菱形中,对角线与交于点.过点作的平行线,过点作的平行线,两直线相交于点.(1)求证:四边形是矩形;(2)若,菱形的周长是,求菱形的面积.【解答】(1)证明:四边形是菱形,,.,,四边形是平行四边形,又,平行四边形是矩形;(2)由(1)知,平行四边形是矩形,四边形是菱形,,菱形的周长是,,,,,菱形的面积为:.25.如图示,正方形的对角线交于点,点、分别在,的延长线上,且,与交于点,连接,是的中点,连接.(1)求证:(2)若,求的度数;(3)是否存在点是中点,且使(1)的结论成立,若存在,请给予证明;若不存在,请说明理由.解:(1)四边形是正方形,,,,,,,四边形是正方形,,,,,;(2)由(1),为等腰直角三角形,又为中点,,又,;(3)不存在.若为的中点,则,又,,这与与交于点不相符,故不存在点是中点.。
九年级数学上册第一章特殊平行四边形单元测试卷(北师版2024年秋)一、选择题(每题3分,共30分)1.下列图形中不是轴对称图形的是()A.平行四边形B.矩形C.菱形D.圆2.在Rt△ABC中,∠C=90°,AC=6,BC=8,则斜边上的中线长() A.3B.4C.5D.83.如图,在菱形ABCD中,对角线AC=8,BD=10,则△AOD的面积为() A.9B.10C.11D.12(第3题)(第4题)4.(教材P26复习题T6变式)如图,延长正方形ABCD的边BA至点E,使AE=BD,则∠E为()A.22.5°B.25°C.30°D.45°5.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形6.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为()(第6题)A.3B.4C.5D.67.(2023青岛)如图,在正方形ABCD中,点E,F分别是AB,CD的中点,AF,DE相交于点M,G为BC上一点,N为EG的中点.若BG=3,CG=1,则线段MN的长度为()A.5B.172C.2 D.132(第7题)(第8题)8.(2023呼伦贝尔)如图,在菱形ABCD中,AB=4,∠A=120°,顺次连接菱形ABCD各边中点E,F,G,H,则四边形EFGH的周长为()A.4+23B.6+23C.4+43D.6+43 9.如图,将图①中的菱形纸片沿对角线剪成4个直角三角形,拼成如图②的四边形ABCD(相邻纸片之间不重叠,无缝隙).若四边形ABCD的面积为13,中间空白处的四边形EFGH的面积为1,直角三角形的两条直角边分别为a,b,则(a+b)2=()A.25B.24C.13D.12(第9题)(第10题) 10.(教材P28复习题T15变式)如图,把矩形OABC放入平面直角坐标系中,点B的坐标为(10,8),点D是OC上一点,将△BCD沿BD折叠,点C恰好落在OA上的点E处,则点D的坐标是()A.(0,4)B.(0,5)C.(0,3)D.(0,2)二、填空题(每题3分,共24分)11.【新视角条件开放题】如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=E C.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是____________(写出一个即可).(第11题)(第12题)(第13题) 12.如图,在△ABC中,∠A=32°,分别以点A,C为圆心,大于1AC长为半径2画弧,两弧分别相交于点M,N,直线MN与AC相交于点E,过点C作CD ⊥AB,垂足为点D,CD与BE相交于点F,若BD=CE,则∠BFC的度数为________.13.(2024达州期末)如图,菱形ABCD的边长为26,对角线AC的长为48,延长AB至E,BF平分∠CBE,点G是BF上任意一点,则△ACG的面积为________.14.(教材P9习题T3变式)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为________.(第14题)15.如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.(第15题)(第16题) 16.(2023陕西)如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M,N分别是边AB,BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC的长为________.17.如图,以Rt△ABC的斜边AB为一边,在AB的右侧作正方形ABDE,正方形的对角线交于点O,连接CO,如果AC=4,BC=8,那么CO=________.(第17题)(第18题)18.(2023西工大附中模拟)如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G.给出下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF =2S△ABE.其中正确结论的序号为__________.三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.(教材P9习题T1变式)如图,在菱形ABCD中,点M,N分别在AB,CB上,且∠ADM=∠CDN.求证:BM=BN.20.【新考法逆向思维法】如图,CE,CF分别是△ABC的内外角平分线,过点A作CE,CF的垂线,垂足分别为E,F.(1)求证:四边形AECF是矩形;(2)当△ABC满足什么条件时,四边形AECF是正方形,请说明理由.21.如图,在四边形ABCD中,AD∥BC,E是BC的中点,CA平分∠BCD,且AC ⊥AB ,连接DE ,交AC 于F .(1)求证:AD =E C.(2)若∠B =60°,试确定四边形ABED是什么特殊四边形?请说明理由.22.如图,在Rt △ABC 中,∠C =90°,延长CB 至D ,使得BD=CB ,过点A ,D 分别作AE ∥BD ,DE ∥BA ,AE 与DE 相交于点E .下面是两位同学的对话:小星:由题目的已知条件,若连接BE ,则可证明BE ⊥C D.小红:由题目的已知条件,若连接CE ,则可证明CE =DE .(1)请你选择一位同学的说法,并进行证明;(2)连接AD ,若AD =52,CB AC =23,求AC 的长.23.如图,四边形ABCD 是平行四边形,连接AC ,BD 交于点O ,DE 平分∠ADB交AC 于点E ,BF 平分∠CBD 交AC 于点F ,连接BE ,DF .(1)求证:∠1=∠2;(2)若四边形ABCD 是菱形且AB =2,∠ABC =120°,求四边形BEDF 的面积.24.如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC 到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)判断OG与BF有什么关系,证明你的结论;(3)若DF2=8-42,求正方形ABCD的面积.答案一、1.A 2.C 3.B 4.A 5.C 6.A7.B8.C9.A10.C点思路:先根据勾股定理求出AE的长,进而可得出OE的长,在Rt△DOE 中,由DE=CD及勾股定理可求得OD的长,进而得出D点坐标.二、11.AE=AF(答案不唯一)12.106°13.24014.1201315.2516.2217.62点拨:过点O作OM⊥AC,交CA的延长线于点M,作ON⊥BC于点N,则∠OMC=∠ONC=90°.又∵∠ACB=90°,∴四边形MCNO是矩形,∴∠MON=90°.∵正方形ABDE的对角线交于点O,∴OA=OB,∠AOB=90°,∴∠MON-∠AON=∠AOB-∠AON,即∠AOM=∠NOB.在△AOM和△BON AOM=∠BON,OMA=∠ONB=90°,=OB,∴△AOM≌△BON(AAS),∴OM=ON,AM=BN,∴矩形MCNO是正方形,∴CM=CN=ON.∵AC=4,BC=8,∴CM+CN=AC+AM+BC-BN=AC+BC=12,∴CM=CN=ON=6.∴OC=CN2+ON2=62+62=6 2.18.①②③⑤三、19.证明:∵四边形ABCD为菱形,∴AD=CD=AB=BC,∠A=∠C.又∵∠ADM=∠CDN,∴△AMD≌△CND(ASA).∴AM=CN.∴AB-AM=BC-CN,即BM=BN.20.(1)证明:∵CE,CF分别是△ABC的内外角平分线,∴易得∠ACE+∠ACF=12×180°=90°,即∠ECF=90°.∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形.(2)解:当△ABC满足∠ACB=90°时,四边形AECF是正方形.理由:∵CE是∠ACB的平分线,∠ACB=90°,∴∠ACE=12∠ACB=45°.又∵∠AEC=90°,∴∠EAC=45°=∠ACE,∴AE=CE.又∵四边形AECF是矩形,∴四边形AECF是正方形.21.(1)证明:连接AE.∵CA平分∠BCD,∴∠ACE=∠ACD.∵E为Rt△ABC斜边BC的中点,∴AE=12BC=BE=EC,∴∠CAE=∠ACE,∴∠CAE=∠ACD,∴AE∥CD.又∵AD∥BC,∴四边形AECD为平行四边形,∴AD=EC.(2)解:四边形ABED为菱形.理由如下:∵BE=EC,EC=AD,∴BE=AD.又∵AD∥BC,∴四边形ABED为平行四边形.∵BE=AE,∠B=60°,∴△ABE为等边三角形,∴AB=BE,∴四边形ABED为菱形.22.(1)证明:①选择小星的说法.证明如下:连接BE.∵AE∥BD,DE∥BA,∴四边形AEDB是平行四边形.∴AE=BD.又∵BD=CB,∴AE=CB.又∵AE∥BD,点D在CB的延长线上,∴AE∥CB.∴四边形AEBC是平行四边形.又∵∠C=90°,∴四边形AEBC是矩形.∴BE⊥CD.②选择小红的说法.证明如下:连接CE,BE.同①可证四边形AEBC是矩形,四边形AEDB是平行四边形,∴CE=AB,DE=AB,∴CE=DE.(2)解:∵BD=CB,CBAC=2 3,∴CDAC=2CBAC=43,∴CD=43AC.在Rt△ACD中,∵AD2=CD2+AC2,AD=52,∴(52)2+AC2,解得AC=3 2. 23.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,OD=OB,∴∠ADO=∠CBO.∵DE平分∠ADB,BF平分∠CBD,∴∠ODE=12∠ADO,∠OBF=12∠CBO,∴∠ODE=∠OBF,∴DE∥BF.∵∠ODE=∠OBF,OD=OB,∠DOE=∠BOF,∴△ODE≌△OBF(ASA),∴DE=BF,∴四边形DEBF是平行四边形,∴BE ∥DF ,∴∠1=∠2.(2)解:由(1)知△ODE ≌△OBF ,∴OE =OF .∵四边形ABCD 是菱形,∴BD ⊥EF ,OD =OB ,AD ∥BC ,AD =AB ,∴四边形DEBF 是菱形.∵AD ∥BC ,∴∠BAD +∠ABC =180°.又∵∠ABC =120°,∴∠BAD =60°.又∵AD =AB ,∴△ABD 是等边三角形.∴BD =AB =2,∠ADO =60°,∴OD =12BD =1.∵∠ODE =12∠ADO ,∴∠ODE =30°,∴DE =2OE .在Rt △DOE 中,∵DE 2=OE 2+OD 2,∴4OE 2=OE 2+12,解得OE =33,∴EF =2OE =233,∴四边形BEDF 的面积=12BD ·EF =12×2×233=233.24.(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =∠DCF =90°.又∵CE =CF ,∴△BCE ≌△DCF (SAS ).(2)解:OG ∥BF 且OG =12BF .证明:∵BD 是正方形ABCD 的对角线,∴∠CDB =∠CBD =45°.∵BE 平分∠DBC ,∴∠DBE =∠CBE =12∠CBD =22.5°.由(1)知△BCE ≌△DCF ,∴∠CDF =∠CBE =22.5°.∴∠BDF =∠CDB +∠CDF =67.5°.∴∠F =180°-∠CBD -∠BDF =67.5°=∠BDF .∴BD =BF .又∵BE是∠CBD的平分线,∴DG=GF.∵四边形ABCD为正方形,∴DO=OB.∴OG是△DBF的中位线.∴OG∥BF且OG=12 BF.(3)解:设BC=x,则DC=x,BD=2x.由(2)知BF=BD,∴CF=BF-BC=BD-BC=(2-1)x.∵DF2=DC2+CF2,∴x2+[(2-1)x]2=8-42,解得x2=2,∴正方形ABCD的面积是2.11。
九年级数学上册《第一章 特殊平行四边形》单元测试卷带答案(北师大版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.对角线互相垂直平分的四边形是( )A .菱形、正方形B .矩形、菱形C .矩形、正方形D .平行四边形、菱形2.在ABC 中,点D 是边AC 的中点,连结BD 并延长到E ,使DE DB =,连结AE ,CE .则下列说法不正确的是( )A .四边形ABCE 是平行四边形B .当90ABC ∠=︒时,四边形ABCE 是矩形C .当AB BC =时,四边形ABCE 是菱形D .当AB BC CA ==时,四边形ABCE 是正方形3.如图,在矩形ABCD 中(AD >AB ),点E 是BC 上一点,且DE=DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF=12AD C .AB=AF D .BE=AD ﹣DF 4.如图,在菱形ABCD 中,点E 是AB 的中点,点F 是AC 的中点,连接EF ,如果4EF =,那么菱形ABCD 的周长为( )A .4B .8C .16D .325.如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是( )A .1B .1.5C .2D .2.56.如图,在菱形ABCD 中,对角线AC ,BD 分别为16和12,DE AB ⊥于点E ,则DE =( )A .485B .965C .10D .87.如图,在正方形ABCD 中,AB=4,E ,F 分别为边AB BC ,的中点,连接AF DE ,,点G ,H 分别为DE AF ,的中点,连接GH ,则GH 的长为( )A .2B .1CD .28.如图,在矩形ABCD 中,在CD 上取点E ,连接AE ,在AE ,AB 上分别取点F ,G ,连接DF ,GF ,AG GF =将ADF 沿FD 翻折,点A 落在BC 边的A '处,若//GF A D ',且3AB =,AD=5,AF 的长是( )A B C .52 D 二、填空题:(本题共5小题,每小题3分,共15分.)9.菱形的边长为5,一条对角线长为8,则此菱形的面积是 .10.如图,在ABCD 中,对角线AC BD 、相交于点O ,在不添加任何辅助线的情况下,请你加一个条件 ,使ABCD 是菱形.11.如图,点M 是正方形ABCD 内位于对角线BD 上方的一点2MAD ∠=∠,则AMD ∠的度数为 .12.如图,矩形ABCD 中,AB =4,AD =3,点E 是边BC 的中点,连接AE ,把△ABE 沿AE 对折得到△AFE ,延长AF 与CD 交于点G ,则DG 的长为 .13.如图,正方形ABCD 的边长为2,将正方形ABCD 绕点A 逆时针旋转角()α0α180︒<<︒得到正方形A B C D '''',连接D C ',当点B '恰好落在线段D C '上时,线段D C '的长度是 .(结果保留根号)三、解答题:(本题共5题,共45分)14.如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,点E 为垂足,连接DF ,求∠CDF 的度数.15.如图,矩形ABCD 中,AB=4,BC=10,E 在AD 上,连接BE ,CE ,过点A 作AG ∥CE ,分别交BC ,BE 于点G ,F ,连接DG 交CE 于点H .若AE=2,求证:四边形EFGH 是矩形.16.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F 两点均在BD 上),折痕分别为BH 、DG .(1)求证:△BHE ≌△DGF ;(2)若AB=6cm ,BC=8cm ,求线段FG 的长.17.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求BG的长.18.如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由参考答案:1.A 2.D 3.B 4.D 5.C 6.A 7.C 8.A9.2410.AB BC =(答案不唯一)11.135°12.5516136214.解答:解:如图,连接BF ,在△BCF 和△DCF 中,∵CD =CB ,∠DCF =∠BCF ,CF =CF ,∴△BCF ≌△DCF ,∴∠CBF =∠CDF ,∵FE 垂直平分AB ,∠BAF = ×80°=40°∴∠ABF =∠BAF =40°,∵∠ABC =180°-80°=100°,∠CBF =100°-40°=60°,∴∠CDF =60°.15.解:∵四边形ABCD 是矩形∴∠BAD=∠ADC=90°∵AB=4,AE=2∴22AE AB +5,22DE CD +221024-+()5∴BE 2+CE 2=BC 2∴∠BEC=90°∵AG ∥CE ,AE ∥CG∴四边形AECG 是平行四边形∴CG=AE=2,5同理∠AGD=90°∵AG ∥CE∴∠EFG=∠FEH=90°∴四边形EFGH 是矩形.16.(1)证明:∵四边形ABCD 是矩形∴AB=CD ,∠A=∠C=90°,∠ABD=∠BDC∵△BEH 是△BAH 翻折而成∴∠ABH=∠EBH ,∠A=∠HEB=90°,AB=BE∵△DGF 是△DGC 翻折而成∴∠FDG=∠CDG ,∠C=∠DFG=90°,CD=DF∴∠DBH=12∠ABD ,∠BDG=12∠BDC ∴∠DBH=∠BDG∴△BEH 与△DFG 中∠HEB=∠DFG ,BE=DF ,∠DBH=∠BDG∴△BEH ≌△DFG(2)解:∵四边形ABCD 是矩形,AB=6cm ,BC=8cm∴AB=CD=6cm ,AD=BC=8cm∴22BC CD +2286+∵由(1)知,FD=CD ,CG=FG∴BF=10-6=4cm设FG=x ,则BG=8-x在Rt △BGF 中BG 2=BF 2+FG 2,即(8-x )2=42+x 2解得x=3,即FG=3cm .17.(1)解:四边形ABCD 是菱形OB OD ∴= E 是AD 的中点OE ∴是ΔABD 的中位线//OE FG ∴//OG EF∴四边形OEFG 是平行四边形EF AB ⊥90EFG ∴∠=︒∴平行四边形OEFG 是矩形;(2)解:四边形ABCD 是菱形BD AC ∴⊥ 10AB AD ==90AOD ∴∠=︒ E 是AD 的中点152OE AE AD ∴===;由(1)知,四边形OEFG 是矩形5FG OE ∴==5AE = 4EF =223AF AE EF ∴=-=10352BG AB AF FG ∴=--=--=.18.(1)证明:在正方形ABCD 中,AB=BC∠ABP=∠CBP=45°在△ABP 和△CBP 中AB BCABP CBP PB PB=⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△CBP (SAS )∴PA=PC∵PA=PE∴PC=PE ;(2)解:由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∵PA=PE ,∴∠PAE=∠PEA∴∠CPB=∠AEP∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°∴∠ABC+∠EPC=180°∵∠ABC=90°,∴∠EPC=90°(3)∠ABC+∠EPC=180°,理由:解:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP=60°,在△ABP 和△CBP 中,AB BC ABP CBPPB PB =⎧⎪∠=∠⎨⎪=⎩ ,∴△ABP ≌△CBP (SAS ),∴∠BAP=∠BCP ,∵PA=PE∴∠DAP=∠DCP∴∠PAE=∠PEA ,∴∠CPB=∠AEP ,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°。
北师大版九年级数学上册第一章特殊的平行四边形单元测试题一、选择题(每小题3分,共30分)1.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC2.将一张矩形纸片对折,如图所示,然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形( )A.三角形 B.不规则的四边形 C.菱形 D.一般平行四边形3.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为( )A.3∶2 B.2∶1 C.1.5∶1 D.1∶14.如图,矩形的两条对角线的一个夹角为60°,两条对角线的长度的和为20 cm,则这个矩形的一条较短边的长度为( )A.10 cm B.8 cm C.6 cm D.5 cm5.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.14 B.15 C.16 D.176.正方形面积为36,则对角线的长为( )A.6 B.6 2 C.9 D.9 27.如图,在菱形ABCD中,AC=6,BD=8,则菱形的边长为( )A.5 B.10 C.6 D.88.如图,在Rt△ABC中,∠ACB=90°,D、E为AB、AC的中点.则下列结论中错误的是( ) A.CD=AD B.∠B=∠BCD C.∠AED=90° D.AC=2DE9.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE10.如图所示,在▱ABCD中,AC⊥BD,E为AB中点,若OE=3,则▱ABCD的周长是________.A.24 B.25 C.26 D.27二、填空题(每小题3分,共18分)11.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=________. 12.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于________.13.矩形的一条对角线长10 cm,且两条对角线的一个夹角为60°,则矩形的宽为________cm.14.如图,延长正方形ABCD的边BC至E,使CE=AC,连接AE交CD于F,则∠AFC=________°.15.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是________cm2.16.如图,将一张矩形纸片ABCD折叠,使AB落在AD边上,然后打开,折痕为AE,顶点B 的落点为F.则四边形ABEF是________形.三、解答题(共72分)17.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE =DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.18.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:(1)△ADE≌△CBF;(2)四边形BFDE为矩形.19.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.20.如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF 之间有怎样的关系?请说明理由.21.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.22.如图,在△ABC中,AB=AC,AD为∠BAC的平分线,AN为△ABC外角∠CAM的平分线,CE ⊥AN,垂足为E.求证:四边形ADCE是矩形.23.如图所示,点E,F,G,H分别是CD,BC,AB,DA的中点,求证:四边形EFGH是平行四边形.24.如图,正方形ABCD的对角线AC、BD交于点O,∠OCF=∠OBE.求证:OE=OF.25.如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.1、最困难的事就是认识自己。
新北师大版九年级数学上册《特殊的平行四边形》
单元课堂测试题练习卷
班级:______________ 姓名:________________ 座位号:________ 家长签名:
一.选择题(每小题3分,共30分)
1. 菱形具有而一般平行四边形不具有的性质是()
A. 对边相等
B. 对角相等
C. 对角线互相平分
D. 对角线互相垂直
2. 矩形具有而菱形不具有的性质是()
A. 两组对边分别平行
B. 对角线相等
C. 对角线互相平分
D. 两组对角分别相等
3. 正方形具有而菱形不具有的性质是()
A. 对角线平分一组对角
B. 对角线相等
C. 对角线互相垂直平分
D. 四条边相等
4. 将一张长方形纸片如图所示折叠后,再展开,
如果∠1=56°,那么∠2等于( )
A. 56°
B. 62°
C. 66°
D. 68°
5. 如图,菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,
菱形ABCD的周长为28,则OE的长等于( )
A. 3.5
B. 4
C. 7
D. 14
6. 如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()
B. 2cm
C.
D. 4cm
7. 如图,在菱形ABCD中,对角线AC长为3cm,∠ABC=60°,
则菱形ABCD的周长为()
A. B. C. 12cm D. 24cm
8. 如图,下列条件之一能使平行四边形ABCD是菱形的为()
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD
A. ①③
B. ②③
C. ③④
D. ①②③
9. 如图,四边形ABCD是平行四边形,下列说法不正确的是()
A. 当AC=BD时,四边形ABCD是矩形
B. 当AB=BC时,四边形ABCD是菱形
C. 当AC⊥BD时,四边形ABCD是菱形
D. 当∠DAB=90°时,四边形ABCD是正方形
*10. 如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的
面积是13,小正方形的面积是1,直角三角形的短直角边为a,
较长的直角边为b,那么2
的值为()
a b
()
A.13 B.19 C.25 D.169
二.填空题(每小题4分,共24分)
11. 菱形的两条对角线分别为3cm和4cm,则菱形的面积为cm
12. 如图,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,CD=6cm,
则AB的长为cm
13. 如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,
则菱形ABCD的周长是
14. 如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,
若∠1=25°,则∠2=
15. 如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,
使得该菱形为正方形.
*16. 如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠EAF=60°,且DE=1,则边BC的长为
三.解答题(共26分)
17. (8分)如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,
.
连结CE、DF. 求证:CE DF
18. (8分)如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,
∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.
*19. (10分)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;
求证:DF=DC.
九年级数学《特殊的平行四边形》第九周周末练习题
一.选择题(每小题3分,共30分)
二.填空题(每小题4分,共24分)
11. 6 12. 12 13. 20
14. 115° 15. AC=BD (或AB ⊥BC ) 16. 3
三.解答题(共26分)
17.证明: 四边形ABCD 是正方形, ∴ AB=BC , 90=∠=∠FCD EBC .
又 E 、F 分别是AB 、BC 的中点, ∴ BE=CF,
∴ DFC CEB ∆≅∆(SAS ),
∴ CE DF =(全等三角形的对应边相等).
18. 解:四边形AECF 是平行四边形. 证明:∵矩形ABCD 中,AB ∥DC ,
∴∠DCE=∠CEB , ∵∠DCE=∠BAF , ∴∠CEB=∠BAF , ∴FA ∥CE ,
又∵矩形ABCD 中,FC ∥AE , ∴四边形AECF 是平行四边形.
19.
证明:连接DE .
∵AD=AE ,∴∠AED=∠ADE .
∵有矩形ABCD,∴AD∥BC,∠C=90°.∴∠ADE=∠DEC,∴∠DEC=∠AED.
又∵DF⊥AE,∴∠DFE=∠C=90°.
∵DE=DE,∴△DFE≌△DCE.
∴DF=DC.。