[高中数学人教A版导学案] 必须3-第二章-2.1.2 系统抽样
- 格式:doc
- 大小:35.50 KB
- 文档页数:2
2.1.2系统抽样1.记住系统抽样的方法和步骤.(重点)2.会用系统抽样从总体中抽取样本.(难点)3.能用系统抽样解决实际问题.(易错易混点)[基础·初探]教材整理1系统抽样的概念阅读教材P58上半部分内容,完成下列问题.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了()A.抽签法B.随机数表法C.系统抽样法D.放回抽样法【解析】此抽样方法将座位分成40组,每组46个个体,会后留下座号为20的相当于第一组抽20号,以后各组抽取20+46n,符合系统抽样特点.【答案】 C教材整理2系统抽样的步骤阅读教材P58下半部分内容,完成下列问题.一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:1.判断(正确的打“√”,错误的打“×”)(1)总体个数较多时可以用系统抽样.()(2)系统抽样的过程中,每个个体被抽到的概率不相等.()用系统抽样从N个个体中抽取一个容量为n的样本,要平均分成n段,()√(2)×(3)×个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14C.2,4,6,8 D.5,8,11,14【解析】将20分成4个组,每组5个号,间隔等距离为5.【答案】 A3.已知标有1~20号的小球20个,按下面方法抽样(按从小号到大号排序):(1)以编号2为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为________;(2)以编号3为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为________.【解析】这20个小球分4组,每组5个,(1)若以2号为起点,则另外三个球的编号依次为7,12,17,这4球编号平均值为2+7+12+174=9.5.(2)若以3号为起点,则另外三个球的编号依次为8,13,18,这4球编号平均值为3+8+13+184=10.5.【答案】(1)9.5(2)10.5(1)某商场欲通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数法C.系统抽样法D.以上都不对(2)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k=________.【精彩点拨】解决此类问题的关键是根据系统抽样的概念及特征,抓住系统抽样适用的条件作出判断.【尝试解答】(1)上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15号,以后各组抽15+50n(n∈N*)号,符合系统抽样的特点.(2)根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k=1 200 30=40.【答案】(1)C(2)40判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体,(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样,(3)最后看是否等距抽样.[再练一题]1.下列抽样问题中最适合用系统抽样法抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况【解析】A.总体容量较小,样本容量也较小,可采用抽签法;B.总体中的个体有明显的层次不适宜用系统抽样法;C.总体容量较大,样本容量也较大,可用系统抽样法;D.若总体容量较大,样本容量较小时可用随机数表法.【答案】 C某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.【精彩点拨】按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【尝试解答】按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是:(1)编号:按现有的号码;(2)确定分段间隔k=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.当总体容量能被样本容量整除时,分段间隔k=Nn;当用系统抽样抽取样本时,通常是将起始数s加上间隔k得到第2个个体编号(s+k),再加k得到第3个个体编号(s+2k),依次进行下去,直到获取整个样本.[再练一题]2.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号同学在样本中,那么样本中还有一个同学的学号是( )A .10B .11C .12D .16【解析】 分段间隔,可推出另一个同学的学号为16,故选D. 【答案】 D[探究共研型]探究1 【提示】 (1)系统抽样适用于总体容量较大,且个体之间无明显差异的情况;(2)剔除多余的个体及第1段抽样用简单随机抽样的方法; (3)系统抽样是等可能抽样,每个个体被抽到的可能性相等. 探究2 怎样判断一种抽样是否为系统抽样?【提示】判断一种抽样是否为系统抽样,关键有两点:(1)是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体被抽到的机会均等;(2)是否能将总体分成几个均衡的部分,在每个部分中是否能进行简单随机抽样.探究3在系统抽样中,N不一定能被n整除,那么系统抽样还公平吗?【提示】在系统抽样中,(1)若N能被n整除,则将比值Nn作为分段间隔k.由于起始编号的抽取采用简单随机抽样的方法,因此每个个体被抽取的可能性是一样的.(2)若N不能被n整除,则用简单随机抽样的方法从总体中剔除几个个体,使得总体中剩余的个体数能被n整除,再确定样本.因此每个个体被抽取的可能性还是一样的.所以,系统抽样是公平的.为了了解参加某种知识竞赛的1003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.【精彩点拨】编号→剔除→再编号→分段→在第一段上抽样→在其他段上抽样→成样【尝试解答】(1)随机地将这1 003个个体编号为1,2,3,…,1 003;(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;(3)将总体按编号顺序均分成50组,每组包括20个个体;(4)在编号为1,2,3,…,20的第一组个体中,利用简单随机抽样抽取一个号码,比如是18;(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.[再练一题]3.从某厂生产的802辆轿车中抽取80辆测试某项性能.请用系统抽样方法进行抽样,并写出抽样过程.第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每个个体;1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.1.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为() A.2B.3C.4D.5【解析】因为1 252=50×25+2,所以应随机剔除2个个体,故选A.【答案】 A2.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为() A.24 B.25C.26 D.28【解析】因为5 008=200×25+8,所以选B.【答案】 B3.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是() A.7 B.5C.4 D.3【解析】由系统抽样知第一组确定的号码是125-15×8=5.【答案】 B4.在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为_________.【解析】因为采用系统抽样的方法从个体数目为2 003的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是1002 003.【答案】100 2 0035.中秋节,相关部门对某食品厂生产的303盒中秋月饼进行质量检验,需要从中抽取10盒,请用系统抽样的方法完成对此样本的抽取.【解】(1)将303盒月饼用随机的方式编号;(2)从总体中用简单随机抽样的方式剔除3盒月饼,将剩下的月饼重新用000~299编号,并等距分成10段;(3)在第一段000,001,002,…,029这三十个编号中用简单随机抽样确定起始号码l;(4)将编号为l,l+30,l+2×30,l+3×30,…,l+9×30的个体抽出,组成样本.学业分层测评(十)系统抽样(建议用时:45分钟)[学业达标]一、选择题1.为了检查某城市汽车尾气排放执行情况,在该城市的主要干道上抽取车牌末尾数字为5的汽车检查,这种抽样方法为()A.抽签法B.随机数表法C.系统抽样法D.其他抽样【解析】根据系统抽样的概念可知,这种抽样方法是系统抽样.【答案】 C2.中央电视台“动画城节目”为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,每段容量为( )A .10B .100C .1 000D .10 000【解析】 将10 000个个体平均分成10段,每段取一个,故每段容量为1 000.【答案】 C3.系统抽样又称为等距抽样,从N 个个体中抽取n 个个体为样本,抽样间距为k =⎣⎢⎡⎦⎥⎤N n (取整数部分),从第一段1,2,…,k 个号码中随机抽取一个号码i 0,则i 0+k ,…,i 0+(n -1)k 号码均被抽取构成样本,所以每个个体被抽取的可能性是( )A .相等的B .不相等的C .与i 0有关D .与编号有关【解析】 系统抽样是公平的,所以每个个体被抽到的可能性都相等,与i 0编号无关,故选A.【答案】 A4.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,32【解析】 据题意从50枚中抽取5枚,故分段间隔k =505=10,故只有B符合条件.【答案】 B5.从2 004名学生中选取50名组成参观团,若采用下面的方法选取:先利用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的机会( )A .不全相等B .均不相等C .都相等D .无法确定【解析】 系统抽样是等可能的,每人入选的机率均为502 004.【答案】 C二、填空题6.下列抽样中不是系统抽样的是________.①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i0(1≤i0≤5),以后选i0+5,i0+10号入选;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③进行某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止;④在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的观众留下来座谈.【解析】选项③不是系统抽样,因事先不知道总体,抽样方法不能保证每个个体等可能入选,其余个间隔都相同,符合系统抽样的特征.【答案】③7.某班有学生人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是________.【解析】由题意,分段间隔应该在第一组,所以第二组为6+12=18.【答案】188.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第1组抽出的号码是11,则第61组抽出的号码为________.【解析】分段间隔是3 000150=20,由于第1组抽出的号码为11,则第61组抽出的号码为11+(61-1)×20=1 211.【答案】 1 211三、解答题9.为了了解某地区今年高一学生期末考试数学成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请写出用系统抽样抽取的过程.【解】(1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分含100个个体.(3)在第一部分,即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个样本容量为150的样本.10.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施.【解】(1)将每个人随机编一个号由0 001至2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机编号0 001至2 000;(4)分段,取间隔k=2 00020=100,将总体平均分为20段,每段含100个学生;(5)从第一段即为0 001号到0 100号中随机抽取一个号l;(6)按编号将l,100+l,200+l,…,1 900+l共20个号码选出,这20个号码所对应的学生组成样本.[能力提升]1.从2 016名学生中选取名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 016人中剔除16人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 016人中,每个人入选的机会()A.都相等,且为502 016B.不全相等C.均不相等D.都相等,且为1 40【解析】因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除16人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为502 016.【答案】 A2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9 D.24,17,9【解析】依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每组有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.从而第Ⅲ营区被抽中的人数是50-42=8.【答案】 B3.采用系统抽样从含有8 000个个体的总体(编号为0 000,0 001,…,7 999)中抽取一个容量为50的样本,则最后一段的编号为________,已知最后一个入样编号是7 894,则开头5个入样编号是________.【解析】因为8 000÷50=160,所以最后一段的编号为编号的最后160个编号.从7 840到7 999共160个编号,从7 840到7 894共55个数,所以从0 000到第55个编号应为0 054,然后逐个加上160,得0 214,0 374,0 534,0 694.【答案】7 840~7 9990 054,0 214,0 374,0 534,0 6944.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.【解】 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10,其他步骤相应改为:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,12号为第二样本户,….(3)确定随机数字用的是简单随机抽样即为取一张人民币,编码的后两位数为02.。
§2.1.2 系统抽样一、教材分析教材通过探究“学生对教师教学的意见”过程,介绍了一种最简单的系统抽样——等距抽样,并给出实施等距抽样的步骤.值得注意的是在教学过程中,适当介绍当nN 不是整数时,应如何实施系统抽样. 二、教学目标1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
三、重点难点教学重点:实施系统抽样的步骤.教学难点:当nN 不是整数,如何实施系统抽样. 四、课时安排1课时五、教学设计(一)导入新课思路1上一节我们学习了简单随机抽样,那么简单随机抽样的特点是什么?简单随机抽样是最简单和最基本的抽样方法,当总体中的个体较少时,常采用简单随机抽样.但是如果总体中的个体较多时,怎样抽取样本呢?教师点出课题:系统抽样.思路2某中学有5 000名学生,打算抽取200名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数法,实施过程很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们学习的内容:系统抽样.(二)推进新课、新知探究、提出问题(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(2)请归纳系统抽样的定义和步骤.(3)系统抽样有什么特点?讨论结果:(1)可以将这500名学生随机编号1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.其步骤是:1°采用随机抽样的方法将总体中的N 个个体编号;2°将整体按编号进行分段,确定分段间隔k(k ∈N ,l≤k);3°在第1段用简单随机抽样确定起始个体的编号l (l ∈N ,l≤k );4°按照一定的规则抽取样本.通常是将起始编号l 加上间隔k 得到第2个个体编号(l+k),再加上k 得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样;2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. 3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.(三)应用示例例1 为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2 ,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.点评:系统抽样与简单随机抽样一样,每个个体被抽到的概率都相等,从而说明系统抽样是等概率抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,当将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.变式训练1.下列抽样不是系统抽样的是( )A.从标有1—15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈分析:C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样.答案:C2.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号. 解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1—5的5名学生,第2组是编号为6—10的5名学生,依次下去,59组是编号为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(l≤5);(3)按照一定的规则抽取样本.抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.例2 为了了解参加某种知识竞赛的1 003名学生的成绩,请用系统抽样抽取一个容量为50的样本.分析:由于501003不是整数,所以先从总体中随机剔除3个个体. 步骤:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数 1 000能被样本容量50整除,然后再重新编号为1,2,3, (1000)(3)确定分段间隔.501000=20,则将这1 000名学生分成50组,每组20人,第1组是1,2,3,...,20;第2组是21,22,23,...,40;依次下去,第50组是981,982, (1000)(4)在第1组用简单随机抽样确定第一个个体编号l(l≤20).(5)按照一定的规则抽取样本.抽取的学生编号为l+20k (k=0,1,2,...,19),得到50个个体作为样本,如当k=2时的样本编号为2,22,42, (982)点评:如果遇到nN 不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练1.某校高中三年级有1 242名学生,为了了解他们的身体状况,准备按1∶40的比例抽取一个样本,那么( )A.剔除指定的4名学生B.剔除指定的2名学生C.随机剔除4名学生D.随机剔除2名学生分析:为了保证每名学生被抽到的可能性相等,必须是随机剔除学生,由于401242的余数是2,所以要剔除2名学生.答案:D2.从2 005个编号中抽取20个号码,采用系统抽样的方法,则抽样的分段间隔为( )A.99B.99.5C.100D.100.5答案:C例3 从已编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32分析:用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k 是1到10中用简单随机抽样方法得到的数,因此只有选项B 满足要求.答案:B点评:利用系统抽样抽取的样本的个体编号按从小到大的顺序排起来,从第2个号码开始,每一个号码与前一个号码的差都等于同一个常数,这个常数就是分段间隔.变式训练某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是_________抽样方法.答案:系统(四)知能训练1.从学号为0—50的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学号不可能是( )A.1,2,3,4,5B.5,15,25,35,45C.2, 12, 22, 32, 42D.9,19,29,39,49答案:A2.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体入样的可能性为( ) A.831 B.801 C.101 D.不相等 答案:A3.某单位的在岗工人为624人,为了调查工作上班时从家到单位的路上平均所用的时间,决定抽取10%的工人调查这一情况,如何采用系统抽样的方法完成这一抽样?答案:先随机剔除4人,再按系统抽样抽取样本.4.某学校有学生3 000人,现在要抽取100人组成夏令营,怎样抽取样本?分析:由于总体人数较多,且无差异,所以按系统抽样的步骤来进行抽样.解:按系统抽样抽取样本,其步骤是:①将3 000名学生随机编号1,2, (3000)②确定分段间隔k =1003000=30,将整体按编号进行分100组,第1组1—30,第2组31—60,依次分下去,第100组2971—3000;③在第1段用简单随机抽样确定起始个体的编号l (l ∈N ,0≤l≤30);④按照一定的规则抽取样本,通常是将起始编号l 加上间隔30得到第2个个体编号l+30,再加上30,得到第3个个体编号l+60,这样继续下去,直到获取整个样本.比如l =15,则抽取的编号为:15,45,75, (2985)这些号码对应的学生组成样本.(五)拓展提升将参加数学竞赛的1 000名学生编号如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一组编号为000,002,…,019,如果在第一组随机抽取的一个号码为015,则抽取的第40个号码为_____________.分析:利用系统抽样抽取样本,在第一组抽取号码为l =015,分段间隔为k =501000=20,则在第i 组中抽取的号码为015+20(i -1).则抽取的第40个号码为015+(40-1)×20=795.答案:795(六)课堂小结通过本节的学习,应明确什么是系统抽样,系统抽样的适用范围,如何用系统抽样获取样本.(七)作业习题2.1A 组3.。
一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
编号:SX2-011第1页 第2页装订线批阅记录装订线评价预设/反思纠错评价预设/反思纠错 2.1.2系统抽样姓名 班级 组别 使用时间【学习目标】1.理解什么是系统抽样。
2. 会用系统抽样从总体中抽取样。
学习重点:系统抽样的概念及如何用系统抽样获取样本。
学习难点:与简单随机抽样一样,系统抽样也属于等可能抽样。
【知识链接】1简单随机抽样的实施方法:⑴抽签法:抽签法就是把总体中的N 个个体______,把号码写在号签上,将号签放在一个容器中,_________后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本。
⑵随机数表法:1.制定随机数表;2.给 中各个个体编号;3.按照一定的规则确定所要抽取的样本的号码 (查随机数表的起始点任选,方向可以向上、向下、向左、向右。
)2.简单随机抽样的特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是______的。
(2)简单随机样本数n__________样本总体的个数N 。
(3)简单随机样本是从总体中______抽取的。
(4)简单随机抽样是一种_______的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N 。
【自主学习】1.系统抽样:当总体中的个体数较多时,可将总体分成 几个部分,然后按预先定出的规则,从每一部分抽取一个 ,得到需要的样本,这种抽样叫做系统抽样.2.系统抽样的步骤:①采用随机的方式将总体中的个体 为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等②将整个的编号 (即分成几个部分),要确定分段的间隔k 当Nn(N 为总体中的个体的个数,n 为样本容量)是整数时,k=N n;当Nn不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N '能被n 整除,这时k=N n'.③在第一段用简单随机抽样确定起始的 编号l④按照事先确定的规则 (通常是将l 加上间隔k ,得到第2个编号l +k,第3个编号l +2k ,这样继续下去,直到获取整个样本)【探究提升】1.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为多少?2.为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程.3.从N=103的总体中采用系统抽样的方法抽取一个容量n=10的样本,写出抽样过程。
高中数学第二章统计2.1.2 系统抽样学案新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章统计2.1.2 系统抽样学案新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章统计2.1.2 系统抽样学案新人教A版必修3的全部内容。
2.1。
2系统抽样【学习目标】1.理解系统抽样的定义、适用条件及其步骤.2.会利用系统抽样抽取样本.【学习重点】系统抽样的原理与步骤【基础知识】系统抽样(1)定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成____的若干部分,然后按照预先制定的____,从每一部分抽取____个体,得到所需要的样本,这种抽样的方法叫做系统抽样.(2)步骤:系统抽样的特征:(1)当总体中个体无差异且个体数目较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,间隔一般为k=错误!错误!。
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.(4)在每段上仅抽一个个体,所分的组数(即段数)等于样本容量.(5)第一步编号中,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等,不再重新编号.【做一做1-1】中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样法抽取,其组容量为( )A.10 B.100 C.1 000 D.10 000【做一做1-2】为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()A.40 B.30 C.20 D.12重难点突破:1.系统抽样与简单随机抽样的区别剖析:(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本.(2)抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈现一定的周期性,则可能会使抽样的代表性差些.(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上对产品质量的检验,由于不知道产品的数量,因此不能用简单随机抽样.2.系统抽样与简单随机抽样的联系剖析:(1)对总体均分后的每一部分进行抽样时,采用的是简单随机抽样.(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.(3)与简单随机抽样一样是不放回抽样.(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除后再进行系统抽样.3.系统抽样中的合理分段问题剖析:系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取1个个体,从而得到所需的样本.由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理(即等距)分段.(1)若从容量为N的总体中抽取容量为n的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k,以便对总体进行分段.(2)当错误!是整数时,取k=错误!作为分段间隔即可,如N=100,n=20,则分段间隔k=错误!=5.也就是将100个个体按平均每5个为1段(组)进行分段(组);(3)当错误!不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N′能被n整除,这时分段间隔k=错误!,如N=101,n=20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k=错误!=5,也就是说,只需将100个个体平均分为20段(组).(4)一般地,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数.【例题讲解】【例题1】下列问题中,最适合用系统抽样抽取样本的是( )A.从10名学生中,随机抽取2名学生参加义务劳动B.从全校3 000名学生中,随机抽取100名学生参加义务劳动C.从某市30 000名学生中,其中小学生有14 000人,初中生有10 000人,高中生有6 000人,抽取300名学生以了解该市学生的近视情况D.从某班周二值日小组6人中,随机抽取1人擦黑板【例题2】某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本.请用系统抽样的方法进行抽取,并写出过程.【例题3】现从全班63人中,用系统抽样方法任选10人进行高中生体重与身高的关系的调查.应如何实施?【达标检测】1.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本.那么总体中应随机剔除的个体数目是()A.2 B.4 C.5 D.62.某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是( )A.6,16,26,36,46,56 B.3,10,17,24,31,38C.4,11,18,25,32,39 D.5,14,23,32,41,503.下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中抽取50个入样C.从某厂生产的10个电子元件中抽取2个入样D.从某厂生产的20个电子元件中抽取5个入样4.将参加数学竞赛的1 000名学生编号如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一段编号为000,002,…,019,如果在第一段随机抽取的一个号码为015,则抽取的第40个号码为__________.5.某单位的在岗职工为620人,为了调查上班时,从家到单位的路上平均所用的时间,决定抽取10%的职工调查这一情况,如何采用系统抽样抽取样本?【问题与收获】基础知识答案:(1)均衡规则一个(2)编号分段间隔简单随机抽样间隔k l+k l+2k【做一做1-1】 C 依题意,要抽十名幸运小观众,所以要分成十个组,每个组容量为10 000÷10=1 000,即分段间隔.【做一做1-2】 A ∵N=1 200,n=30,∴k=Nn=错误!=40.例题答案:【例题1】 B A项中总体个体无差异,但个数较少,适合用简单随机抽样;同样D项中也适合用简单随机抽样;C项中总体中个体有差异不适合用系统抽样;B项中,总体中有3 000个个体,个数较多且无差异,适合用系统抽样.【例题2】解:按照1∶5的比例抽取样本,则样本容量为错误!×295=59.抽样步骤是:(1)编号:按现有的号码.(2)确定分段间隔k=5,把295名同学分成59组,每组5人;第1段是编号为1~5的5名学生,第2段是编号为6~10的5名学生,依次下去,第59段是编号为291~295的5名学生.(3)采用简单随机抽样的方法,从第一段5名学生中抽出一名学生,不妨设编号为l(1≤l≤5).(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.【例题3】第一步,先对63人随机编号01,02, (63)第二步,用抽签法从63人中随机剔除3人;第三步,余下60人重新编号为01,02,03,…,60,并分成10段,每段6人;第四步,从第一段6人中用抽签法抽出1个号,如02;第五步,将号码为02,08,14,20,26,32,38,44,50,56的学生作为样本.达标检测答案:1.A 因为1 252=50×25+2,所以应随机剔除2个个体.2. A 选取的号码间隔一样的系统抽样方法,需把总体分为6段,即1~10,11~20,21~30,31~40,41~50,51~60,既符合间隔为10又符合每一段取一号的只有A项.3.B A项中总体中个体间有差异,不适用系统抽样;C项和D项中总体中个体无差异,但个体数目不多,不适用系统抽样;B项中总体中个体间无差异,且个体数目较多,适宜用系统抽样.4.795 利用系统抽样抽取样本,在第1段抽取号码为015,分段间隔为100050=20,则在第i段中抽取号码为015+20(i-1).则抽取的第40个号码为015+(40-1)×20=795.5.解:用系统抽样抽取样本,样本容量是620×10%=62。
数学备课大师 目录式免费主题备课平台!2.1.2 系统抽样尤溪一中 姜志茂设计理念:立足“以人为本,以学生发展为本”的基本理念,努力解决好以下三个问题:⑴依据课程目标,结合教材内容和学生实际,确定教学目标。
⑵依据建构主义理论,学习不是被动接受而是主动建构的过程,强调学习的情境性、个体性、生成性,选择教学方法,实现教学目标。
⑶以教师为主导,学生为主体,探究为主线,通过主动、探究、合作为主要特征的学习方式,强调“活动”的内化,让学生体验“学数学、用数学”的意识和能力。
教学内容:《普通高中课程标准实验教科书——数学③》(人教版)第二章第一课第二节2.1.2 系统抽样教学目标:1. 知识与技能:(1)通过案例及练习,使学生理解和掌握系统抽样的概念方法与步骤;(2)会用系统抽样法从总体中抽取个体,能根据总体的特征选择适当的抽样方法;(3)正确理解系统抽样与简单随机抽样的关系。
2. 过程与方法:通过对实际问题的探究,让学生体验从总体中抽取样本的全过程,归纳应用系统抽样来解决实际问题的具体方法步骤,体验“学数学、用数学”的意识和能力3. 情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
学情与教材分析:学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,可以创设一个恰当的问题情境,让学生类比简单随机抽样的方法步骤,尝试解决抽取样本的过程,并围绕代表性与公平性两原则,分析比较从而达到对新知识新方法的学习与掌握。
教学重点:正确理解系统抽样的概念方法步骤,能够灵活应用系统抽样的方法解决统计问题。
教学难点:当nN 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。
教学准备:制作相关ppt 幻灯片,如复习提问的问题与答案,系统抽样的方法步骤,例题及解答等教学过程:一、新课引入[教学内容]1、复习提问:(1)什么是简单随机抽样?有哪两种方法?(2)抽签法与随机数表法的一般步骤是什么?(3)简单随机抽样应注意哪两个原则?(4)什么样的总体适合简单随机抽样?为什么?[设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础[教学内容]2、实例探究当总体数量较多时,应当如何抽取?结合课本课本P60探究问题,设计你的抽取样本的方法。
河北省邯郸市馆陶县第一中学高中数学《2.1.2 系统抽样》导学案新人教A版必修3【学法指导】一、预习目标预习系统抽样的概念,初步了解系统抽样的一般步骤.预习内容一般地,要从容量为N的总体中抽取容量为n的样本,可将总体,然后按照,从每一部分抽取,得到所需要的样本,这种抽样的方法叫做 .提出疑惑1、当总体有什么特征时适合用系统抽样?2、系统抽样的一般步骤是什么?【学习过程】(一)合作探究探究一:系统抽样的定义:练一练:下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的1调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈探究二:系统抽样的特点:(1)当时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k= .(3)预先制定的规则指的是:在第1段内采用确定一个,在此编号基础上加上分段间隔的整倍数即为抽样编号.探究三:系统抽样的一般步骤:1.2.3.4. 思考:如果遇到不是整数的情况时怎么办?变式训练1、为了了解某大学一年级新生英语学习的情况,拟从503名大学生中2抽取50名作为样本,请用系统抽样地方法进行抽取,并写出过程。
【学习反思】【基础达标】(1)设某校共有118名教师,为了支援西部的教育事业,现要从中随机的抽出16名教师组成暑期西部讲师团,请用系统抽样法选出讲师团成员。
3(2)有人说,我们可以借用居民身份证号码(18位)来进行中央电视台春节联欢晚会的收视率调查;在1~999中抽取一个随机数,比如这个数是632,那么身份证后三位是632的观众就是我要调查的对象。
2.1.2 系统抽样教学目标:1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
4、重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
教学设想:【创设情境】:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?【探究新知】一、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系N].统抽样又称等距抽样,这时间隔一般为k=[n(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
思考?(1)你能举几个系统抽样的例子吗?(2)下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈点拨:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。
2.1.2 系统抽样整体设计教学分析教材通过探究“学生对教师教学的意见”过程,介绍了一种最简单的系统抽样——等距抽样,并给出实施等距抽样的步骤.值得注意的是在教学过程中,适当介绍当nN 不是整数时,应如何实施系统抽样. 三维目标1.理解系统抽样,会用系统抽样从总体中抽取样本,了解系统抽样在实际生活中的应用,提高学生学习数学的兴趣.2.通过自学课后“阅读与思考”,让学生进一步了解虚假广告是淡化总体和抽样方法、强化统计结果来夸大产品的有效性,以提高学生理论联系实际的能力.重点难点教学重点:实施系统抽样的步骤. 教学难点:当nN 不是整数,如何实施系统抽样. 课时安排1课时教学过程导入新课思路1上一节我们学习了简单随机抽样,那么简单随机抽样的特点是什么?简单随机抽样是最简单和最基本的抽样方法,当总体中的个体较少时,常采用简单随机抽样.但是如果总体中的个体较多时,怎样抽取样本呢?教师点出课题:系统抽样.思路2某中学有5 000名学生,打算抽取200名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数法,实施过程很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们学习的内容:系统抽样. 推进新课新知探究提出问题(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(2)请归纳系统抽样的定义和步骤.(3)系统抽样有什么特点?讨论结果:(1)可以将这500名学生随机编1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如码是2,然后每隔10个抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.其步骤是:1°采用随机抽样的方法将总体中的N 个个体编;2°将整体按编进行分段,确定分段间隔k(k∈N ,l≤k);3°在第1段用简单随机抽样确定起始个体的编l (l∈N ,l≤k);4°按照一定的规则抽取样本.通常是将起始编l 加上间隔k 得到第2个个体编(l+k),再加上k 得到第3个个体编(l+2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样;2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. 3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编,在此编的基础上加上分段间隔的整倍数即为抽样编.应用示例例1 为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编为1,2 ,3, (1000)(2)将总体按编顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编1,2,3,…,20中,利用简单随机抽样抽取一个码,比如18.(4)以18为起始码,每间隔20抽取一个码,这样得到一个容量为50的样本:18,38,58,…,978,998.点评:系统抽样与简单随机抽样一样,每个个体被抽到的概率都相等,从而说明系统抽样是等概率抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,当将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.变式训练1.下列抽样不是系统抽样的是( )A.从标有1—15的15个小球中任选3个作为样本,按从小到大排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位为14的观众留下来座谈 分析:C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样.答案:C2.某校高中三年级的295名学生已经编为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编. 解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编为1—5的5名学生,第2组是编为6—10的5名学生,依次下去,59组是编为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编为l(l≤5);(3)按照一定的规则抽取样本.抽取的学生编为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编为3,8,13,…,288,293.例2 为了了解参加某种知识竞赛的1 003名学生的成绩,请用系统抽样抽取一个容量为50的样本.分析:由于501003不是整数,所以先从总体中随机剔除3个个体. 步骤:(1)随机地将这1003个个体编为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数能被样本容量50整除,然后再重新编为1,2,3, (1000)(3)确定分段间隔.501000=20,则将这1 000名学生分成50组,每组20人,第1组是1,2,3,...,20;第2组是21,22,23,...,40;依次下去,第50组是981,982, (1000)(4)在第1组用简单随机抽样确定第一个个体编l(l≤20).(5)按照一定的规则抽取样本.抽取的学生编为l+20k (k=0,1,2,...,19),得到50个个体作为样本,如当k=2时的样本编为2,22,42, (982)点评:如果遇到nN 不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练1.某校高中三年级有1 242名学生,为了了解他们的身体状况,准备按1∶40的比例抽取一个样本,那么( )A.剔除指定的4名学生B.剔除指定的2名学生C.随机剔除4名学生D.随机剔除2名学生分析:为了保证每名学生被抽到的可能性相等,必须是随机剔除学生,由于401242的余数是2,所以要剔除2名学生.答案:D2.从2 005个编中抽取20个码,采用系统抽样的方法,则抽样的分段间隔为( )A.99B.99.5C.100D.100.5答案:C例3 从已编为1—50的50枚最新研制的某种型的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的码间隔一样的系统抽样方法,则所选取5枚导弹的编可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32分析:用系统抽样的方法抽取到的导弹编应该为k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k 是1到10中用简单随机抽样方法得到的数,因此只有选项B 满足要求.答案:B点评:利用系统抽样抽取的样本的个体编按从小到大的顺序排起来,从第2个码开始,每一个码与前一个码的差都等于同一个常数,这个常数就是分段间隔.变式训练某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位是15的所有25名学生进行测试,这里运用的是_________抽样方法.答案:系统知能训练1.从学为0—50的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学不可能是( )A.1,2,3,4,5B.5,15,25,35,45C.2, 12, 22, 32, 42D.9,19,29,39,49答案:A2.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体入样的可能性为( ) A.831 B.801 C.101 D.不相等 答案:A3.某单位的在岗工人为624人,为了调查工作上班时从家到单位的路上平均所用的时间,决定抽取10%的工人调查这一情况,如何采用系统抽样的方法完成这一抽样?答案:先随机剔除4人,再按系统抽样抽取样本.4.某学校有学生3 000人,现在要抽取100人组成夏令营,怎样抽取样本?分析:由于总体人数较多,且无差异,所以按系统抽样的步骤来进行抽样.解:按系统抽样抽取样本,其步骤是:①将3 000名学生随机编1,2, (3000)②确定分段间隔k =1003000=30,将整体按编进行分100组,第1组1—30,第2组31—60,依次分下去,第100组2971—3000;③在第1段用简单随机抽样确定起始个体的编l (l∈N ,0≤l≤30);④按照一定的规则抽取样本,通常是将起始编l 加上间隔30得到第2个个体编l+30,再加上30,得到第3个个体编l+60,这样继续下去,直到获取整个样本.比如l =15,则抽取的编为:15,45,75, (2985)这些码对应的学生组成样本.拓展提升将参加数学竞赛的1 000名学生编如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一组编为000,002,…,019,如果在第一组随机抽取的一个码为015,则抽取的第40个码为_____________.分析:利用系统抽样抽取样本,在第一组抽取码为l =015,分段间隔为k =501000=20,则在第i 组中抽取的码为015+20(i -1).则抽取的第40个码为015+(40-1)×20=795. 答案:795课堂小结通过本节的学习,应明确什么是系统抽样,系统抽样的适用范围,如何用系统抽样获取样本.作业习题2.1A 组3.。
2.1.2系统抽样【学习目标】1.理解系统抽样的定义、适用条件及其步骤.2.会利用系统抽样抽取样本.【学习重点】系统抽样的原理与步骤课前预习案【知识链接】1.某中学从5 000名学生中选出50人参加2013年10月1日的庆国庆文娱活动,若用抽签法可行吗?2.能否设计一个合理的抽样方法完成此样本的抽取?【知识梳理】系统抽样(1)定义:一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成____的若干部分,然后按照预先制定的____,从每一部分抽取____个体,得到所需要的样本,这种抽样的方法叫做系统抽样.(2)步骤:小结:系统抽样的特征:(1)当总体中个体无差异且个体数目较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,间隔一般为k =⎣⎡⎦⎤N n ⎝⎛⎭⎫⎣⎡⎦⎤N n 表示不超过N n 的最大整数. (3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.(4)在每段上仅抽一个个体,所分的组数(即段数)等于样本容量.(5)第一步编号中,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等,不再重新编号.2.系统抽样中的合理分段问题说明:系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取1个个体,从而得到所需的样本.由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理(即等距)分段.(1)若从容量为N 的总体中抽取容量为n 的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分(2)当Nn是整数时,取k=Nn作为分段间隔即可,如N=100,n=20,则分段间隔k=10020=5.也就是将100个个体按平均每5个为1段(组)进行分段(组);(3)当Nn不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N′能被n整除,这时分段间隔k=N′n,如N=101,n=20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k=10020=5,也就是说,只需将100个个体平均分为20段(组).(4)一般地,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数.自主小测:1、中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样法抽取,其组容量为()A.10 B.100 C.1 000 D.10 0002、为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()A.40 B.30 C.20 D.123.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本.那么总体中应随机剔除的个体数目是()A.2 B.4 C.5 D.6课上导学案教师点拨:1.系统抽样与简单随机抽样的区别(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本.(2)抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈现一定的周期性,则可能会使抽样的代表性差些.(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上对产品质量的检验,由于不知道产品的数量,因此不能用简单随机抽样.2.系统抽样与简单随机抽样的联系(1)对总体均分后的每一部分进行抽样时,采用的是简单随机抽样.(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.(3)与简单随机抽样一样是不放回抽样.(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除后再进行系统抽样.【例题讲解】【例题1】下列问题中,最适合用系统抽样抽取样本的是()A.从10名学生中,随机抽取2名学生参加义务劳动B.从全校3 000名学生中,随机抽取100名学生参加义务劳动C.从某市30 000名学生中,其中小学生有14 000人,初中生有10 000人,高中生有6 000人,抽取300名学生以了解该市学生的近视情况D.从某班周二值日小组6人中,随机抽取1人擦黑板【例题2】某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本.请用系统抽样的方法进行抽取,并写出过程.【例题3】现从全班63人中,用系统抽样方法任选10人进行高中生体重与身高的关系的调查.应如何实施?【当堂检测】1.某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是()A.6,16,26,36,46,56 B.3,10,17,24,31,38C.4,11,18,25,32,39 D.5,14,23,32,41,502.下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中抽取50个入样C.从某厂生产的10个电子元件中抽取2个入样D.从某厂生产的20个电子元件中抽取5个入样3.将参加数学竞赛的1 000名学生编号如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一段编号为000,002,…,019,如果在第一段随机抽取的一个号码为015,则抽取的第40个号码为__________.4.某单位的在岗职工为620人,为了调查上班时,从家到单位的路上平均所用的时间,决定抽取10%的职工调查这一情况,如何采用系统抽样抽取样本?【问题与收获】【知识链接】1、【提示】 可行,但费时费力、操作不变.2、【提示】 能.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后逐个抽取的号码依次增加间隔数即得到所求样本.知识梳理答案:(1)均衡 规则 一个 (2)编号 分段间隔 简单随机抽样 间隔k l +k l +2k自主小测答案1、 C 依题意,要抽十名幸运小观众,所以要分成十个组,每个组容量为10 000÷10=1 000,即分段间隔.2、A ∵N =1 200,n =30,∴k =N n =1 20030=40. 3.A 因为1 252=50×25+2,所以应随机剔除2个个体.例题答案:【例题1】 B A 项中总体个体无差异,但个数较少,适合用简单随机抽样;同样D 项中也适合用简单随机抽样;C 项中总体中个体有差异不适合用系统抽样;B 项中,总体中有3 000个个体,个数较多且无差异,适合用系统抽样.【例题2】 解:按照1∶5的比例抽取样本,则样本容量为15×295=59. 抽样步骤是:(1)编号:按现有的号码.(2)确定分段间隔k =5,把295名同学分成59组,每组5人;第1段是编号为1~5的5名学生,第2段是编号为6~10的5名学生,依次下去,第59段是编号为291~295的5名学生.(3)采用简单随机抽样的方法,从第一段5名学生中抽出一名学生,不妨设编号为l(1≤l≤5).(4)那么抽取的学生编号为l +5k(k =0,1,2,…,58),得到59个个体作为样本,如当l =3时的样本编号为3,8,13,…,288,293.【例题3】 第一步,先对63人随机编号01,02, (63)第二步,用抽签法从63人中随机剔除3人;第三步,余下60人重新编号为01,02,03,…,60,并分成10段,每段6人;第四步,从第一段6人中用抽签法抽出1个号,如02;第五步,将号码为02,08,14,20,26,32,38,44,50,56的学生作为样本.。
第12课时系统抽样
【课标要求】
1.理解系统抽样的概念;2.掌握系统抽样的一般步骤,会用系统抽样从总体中抽取样本;3.理解系统抽样与简单随机抽样的关系;4.了解系统抽样在实际生活中的应用,提高学生学习数学的兴趣.
〒课前自主学习〒
一、自学教材P58—P59
二、基础过关
1.系统抽样的概念:先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中_______地抽取一个号码,然后按此间隔依次抽取即得到所求样本.
2.系统抽样的步骤:要从容量为N的总体中抽取容量为n的样本,步骤为:
(1)采用随机抽样的方法将总体中的N个个体。
(2)将整体按编号进行,确定,k=.
(3)在第一段用抽样确定起始个体的编号L(L∈N,L≤k)。
(4)按一定的规则抽取样本,通常是将起始编号L 得到第2个个体编号L+k,
再得到第3个个体编号L+2k,这样继续下去,直到获取整个样本。
三、自主探究
问题1如果用系统抽样从505件产品中抽取50件进行质量检查,由于505件产品不能均衡分成50部分,对此应如何处理?
问题2系统抽样适用于哪种情况下?与简单随机抽样比较,哪种抽样方法更使样本具有代表性?
〒课内讲练互动〒
例1下列抽样中不是系统抽样的是()
A.从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5,i+10(超过15则从1再数起)号入样
B.工厂生产的产品,将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.某一市场调查,在商场新门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
训练1系统抽样适用的总体应()
A.容量较小B.容量较大C.个体数较多但不均衡D.任何总体
例2某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.
训练2从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()
A.5,10,15,20,25 B.3,13,23,33,43
C.1,2,3,4,5 D.2,4,6,16,32
◄当堂检测►
1.下列抽样问题中最适合用系统抽样法抽样的是()
A.从全班48名学生中随机抽取8人参加一项活动
B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本
C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况
D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况
2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50 的样本,那么总体中应随机剔除的个体数目是()
A.2 B.3 C.4 D.5
3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()
A.5,10,15,20 B.2,6,10,14
C.2,4,6,8 D.5,8,11,14。