广西河池市高级中学2017-2018学年高一下学期第一次月考数学试卷 Word版含解析
- 格式:doc
- 大小:449.45 KB
- 文档页数:16
2018年广西壮族自治区河池市天峨高级中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.参考答案:B【考点】根据实际问题选择函数类型;函数的图象.【分析】先根据题意,证明△AEH≌△BFE,再求出小正方形的边长,进而可求其面积,进一步可求s关于x的函数图象【解答】解:因为∠AEF=∠AEH+∠FEH=∠BFE+∠B所以∠AEH=∠BFE因为EH=EF,∠A=∠B=90°所以△AEH≌△BFE所以AH=BE 设AE=x,所以AH=BE=1﹣x∴s=EH2=AE2+AH2=x2+(1﹣x)2∴s=2x2﹣2x+1=2[x﹣]2+所以当x=时,即E在AB的中点时,s有最小值图象为开口向上的抛物线,顶点坐标为(,)故选B.2. (5分)已知线段PQ的两个端点的坐标分别为P(﹣1,6)、Q(2,2),若直线mx+y ﹣m=0与线段PQ有交点,则实数m的取值范围是()A. B. (﹣∞,﹣2)∪(2,+∞)C. (﹣∞,﹣2) D.(2,+∞)参考答案:A考点:直线的斜率.专题:直线与圆.分析:根据斜率公式,结合数形结合即可得到结论.解答:直线mx+y﹣m=0等价为y=﹣m(x﹣1)则直线过定点A(1,0),作出对应的图象如图:则由图象可知直线的斜率k=﹣m,满足k≥k AQ或k≤k AP,即﹣m≥或﹣m≤,则m≤﹣2或m≥3,故选:A点评:本题主要考查直线斜率的求解以及斜率公式的应用,利用数形结合是解决本题的关键.3. 函数(x∈R)的值域是A.B.C.D.参考答案:D4. 已知全集U={1,2,3,4,5,6},A={2,4,6},B={1,2,5},则A∩(?U B)等于()A.{2} B.{4,6} C.{2,3,4,6} D.{1,2,4,5,6}参考答案:B【考点】1H:交、并、补集的混合运算.【分析】直接由集合的运算性质得答案.【解答】解:由全集U={1,2,3,4,5,6},A={2,4,6},B={1,2,5},∴?U B={3,4,6}.则A∩(?U B)={2,4,6}∩{3,4,6}={4,6}.故选:B.5. 已知角2α的终边在x轴的上方,那么α是()A.第一象限角B.第一或第二象限角C.第一或第三象限角D.第一或第四象限角参考答案:C[由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n +1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α在第一或第三象限.]6. 已知函数若函数有4个零点,则实数a的取值范围是()A. B. C. D.参考答案:B【分析】令g(x)=0得f(x)=a,再利用函数的图像分析解答得到a的取值范围.【详解】令g(x)=0得f(x)=a,函数f(x)的图像如图所示,当直线y=a在x轴和直线x=1之间时,函数y=f(x)的图像与直线y=a有四个零点,所以0<a<1.故选:B【点睛】本题主要考查函数的图像和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平,属于中档题.7. 函数在区间上是减函数,则实数的取值范围是()A. B. C. D.参考答案:A略8. △ABC中,,,,则最短边的边长等于()A. B. C. D.参考答案:A9. 已知唯一的零点在区间、、内,那么下面命题错误的()A.函数在或内有零点B.函数在内无零点C.函数在内有零点D.函数在内不一定有零点参考答案:C解析:唯一的零点必须在区间,而不在10. 下列点不是函数的图象的一个对称中心的是()A. B.C. D.参考答案:B分析】根据正切函数的图象的对称性,得出结论.【详解】解:对于函数f(x)=tan(2x)的图象,令2x,求得xπ,k∈Z,可得该函数的图象的对称中心为(π,0),k∈Z.结合所给的选项,A、C、D都满足,故选:B.【点睛】本题主要考查正切函数的图象的对称性,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 设偶函数的定义域为,且,当时,的图象如图所示,则不等式的解集是.参考答案:12. 若函数y=x+,x∈(﹣2,+∞),则该函数的最小值为.参考答案:4【考点】基本不等式.【分析】变形利用基本不等式即可得出.【解答】解:∵x∈(﹣2,+∞),∴x+2>0∴y=x+=x+2+﹣2≥2﹣2=6﹣2=4,当且仅当x=1时取等号,故该函数的最小值为4,故答案为:413. 已知函数,若,则=▲ .参考答案:或略14. 设动直线与函数和的图象分别交于、两点,则的最大值为____.参考答案:3略15. 如图,在山脚A测得山顶P的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B,在B处测得山顶P的仰角为75°,则山高h=米.参考答案:150(+)【考点】解三角形的实际应用.【分析】用h表示出BC,AQ,列方程解出h.【解答】解:CQ=200sin15°=50(﹣),AQ==h,BC===(2﹣)h﹣50(3﹣5),∴h﹣(2﹣)h+50(3﹣5)=200cos15°=50(+),解得h=150(+).故答案为:150(+).16.参考答案:略17. 已知函数在[2,4]上是增函数,则实数a的取值范围是________参考答案:略三、解答题:本大题共5小题,共72分。
广西河池市高一下学期第一次月考数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分)设m<0,点M(3m,﹣m)为角α的终边上一点,则的值为()A .B . ﹣2C .D .2. (2分) (2018高一下·平顶山期末) 已知,则()A .B .C .D .3. (2分) (2017高一上·佛山月考) 下面四组函数中,f(x)与g(x)表示同一个函数的是()A . ,B . ,C .D . ,4. (2分)已知sinα=,α为第二象限角,t anα=()A . -B .C . -D .二、填空题 (共14题;共14分)5. (1分) (2019高一下·上海月考) 已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为________.6. (1分) (2019高一下·上海月考) 终边在第二象限角平分线上的所有角的集合用弧度制表示为________.7. (1分) (2019高一上·金华期末) 已知角的顶点与原点重合,始边与x轴非负半轴重合,终边过点,则 ________.8. (1分) (2017高一上·红桥期末) 在0°~180°范围内,与﹣950°终边相同的角是________.9. (1分) (2018高一下·西华期末) 已知,则 ________10. (1分)(2016·四川文) sin750°=________.11. (1分)已知,则sin4θ+cos4θ=________.12. (1分) (2018高一下·瓦房店期末) 在锐角三角形中,若,则________.13. (1分)若角α的终边经过点P(1,2),则sin2α的值是________14. (1分) (2018高一上·石家庄月考) 计算的值为________.15. (1分)已知sin(α﹣π)= ,且,则tanα=________.16. (1分)设当x=θ时,函数f(x)=sinx﹣2cos2取得最大值________17. (1分)已知sinα=﹣,且α为第三象限角,那么tanα的值等于________.18. (1分) (2015高一下·忻州期中) 已知sinαcosα= ,π<α<,那么sinα﹣cosα=________三、解答题 (共5题;共40分)19. (15分) (2016高一下·南平期末) 已知向量 =( sinx,﹣1), =(cosx,m),m∈R.(1)若m= ,且∥ ,求的值;(2)已知函数f(x)=2( + )• ﹣2m2﹣1,若函数f(x)在[0, ]上有零点,求m的取值范围.20. (10分) (2019高一上·永嘉月考)(1)若且,求(1);(2)(2)已知 .求(1);(2)21. (5分) (2016高三上·金华期中) 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosB= ,tanC= .(Ⅰ)求tanB和tanA;(Ⅱ)若c=1,求△ABC的面积.22. (5分)解答题(1)已知角α终边经过点P(﹣3,﹣4),求sinα,cosα,tanα的值?(2)已知角α是第二象限角,且,求cosα,tanα的值?23. (5分)已知cosx=﹣,x∈(,π).(1)求sinx的值;(2)求tan(2x+ )的值.参考答案一、单选题 (共4题;共8分)1-1、2-1、3-1、4-1、二、填空题 (共14题;共14分)5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共5题;共40分) 19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、。
2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。
第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的。
1。
已知全集{}1,2,3,4,5,6U =,集合{}2,3,5A =,集合{}1,3,4,6B ,则()UA CB =( )A .{}3B .{}2,5C .{}1,4,6BD .{}2,3,52。
设,A B 为直线y x =与圆221x y +=的两个交点,则AB = ( )A .1B 2C 3D .23。
若函数()y f x =的值班域为1,32⎡⎤⎢⎥⎣⎦,则函数()()()1F x f x f x =+的值域是( )A .1,32⎡⎤⎢⎥⎣⎦B .102,3⎡⎤⎢⎥⎣⎦C .510,23⎡⎤⎢⎥⎣⎦D .52,2⎡⎤⎢⎥⎣⎦4。
已知圆22:40C xy x +-=,l 过点()3,0P 的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D . 以上三个选项均有可能5。
若直线1:10l ax y +-=与()2:3210lx a y +++=平行,则a 的值为()A .1B .3-C .0或12- D .1或3-6。
设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若,ll αβ,则αβB .若,l l αβ⊥⊥,则αβC .,l l αβ⊥则αβD .,lαβα⊥,则l β⊥7。
某学校有体育特长生25人,美术特长生35人,音乐特长生40人,用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为( )A .8,14,18B .9,13,18C .10,14,16D .9,14,178。
从装有3个红球,2个白球的袋中任取3个球,则所取3个球中至少有1个白球的概率是( )A .110B .310C .35D .9109. 已知a 是()122log xf x x =-的零点,若00x a <<,则()0f x 的值满足()A .()00f x = B .()00f x < C .()00f x > D .()0f x 的符号不确定10。
2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。
河池高中2018届高一上学期第一次月考数学试题第Ⅰ卷(共60分)一、选择题选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}{}{}32B 21A 4321,=,,=,,,,=U ,则)(A B C U ⋃等于( ) A .{1,2,3} B .{1,2,4} C .{1} D .{4} 2. 下列函数为偶函数的是( )A. x x f =)(B. 2)(x x f =C. xx f 1)(=D. 12)(2+-=x x x f 3.已知集合22{|21,03},{|log (2)1},A y y x x x B x x ==--<≤=-<则()R A C B ⋂=( )A.(0,2)B.[-2,0]C. [-2,0]∪{2}D.(-1,0]∪{2} 4.函数2()log (12)=-x f x 的定义域为 ( )A .(,1)-∞B .(0,)+∞C .(,0)-∞D .(1,)+∞5.集合{x y =的子集的个数为( )A .4B . 3C . 2D . 1 6.设T 1=()212,T 2=()215,T 3=()112,则下列关系式正确的是 ( ) A .T 1<T 2<T 3 B .T 3<T 1<T 2 C .T 2<T 3<T 1 D .T 2<T 1<T 3 7 已知函数1()1f x x =+,则函数()f f x ⎡⎤⎣⎦的定义域是( )A. {|}x x ≠1B. {|}x x ≠2-C. 1{2|}≠-≠x x x 且-D. 12{|}x x x ≠≠且- 8. 已知函数()22f x x x c =-+,则下列不等式中成立的是( )A.()()()404f f f -<<B. ()()()044f f f <-<C.()()()044f f f <<-D. ()()()404f f f <<- 9.已知函数f (x )=31323-+-ax ax x 的定义域是R ,则实数a 的取值范围是( )A .13a >B .120a -<≤C .120a -<<D .13a ≤10.已知()f x 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p +B .q p 23+C .q p 32+D .23q p +11. 函数22||1y x x =-+ 的单调递减区间是( )A .(1,0)(1,)-⋃+∞B .(1,0)- 和(1,)+∞C .(,1)(0,1)-∞-⋃D .(,1)-∞- 和(0,1)12. 已知222(1),0(),4(3),0x k a x f x a R x x a x ⎧+-≥=∈⎨-+-<⎩,对任意非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,则实数k 的取值范围是( ) A .0k ≤ B.8k ≥ C.08k ≤≤ D.0k ≤或8k ≥第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 计算:()0.7522310.25816--⎛⎫+- ⎪⎝⎭=____________14.已知函数()f x 的定义域为(1,1)-,则函数()()(1)2x g x f f x =+-的定义域为______15.已知()234log 3234,=+xf x 则()()()()82482f f f f ++++的值等于16. ()f x =__________三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本大题满分10分)(1)已知12log (32)3x ->,求实数x 的取值范围;(2)化简23213log 81log 21lg 227⋅--+.18. (本小题满分12分)若a x x f +=+)1(, (1)求函数)(x f 的解析式及定义域;(2)若0)(>x f 对任意的2>x 恒成立,求a 取值范围.19. (本小题满分12分)设集合}52{≤≤-=x x A⑴.设R U =,若}32{>-≤=x x x B 或,求B A ⋂,)(B A C U ⋃ ⑵.若}121{-≤≤+=m x m x B ,且A B A = ,求实数m 的取值范围。
2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每小题5.0分,共60分) 1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2−1x+1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(√x)2x和g (x )=(√x)25.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =1x 2+1;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =1x+1D .y =-(x +1)29.若非空数集A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( ) A . {a |1≤a ≤9} B . {a |6≤a ≤9}C . {a |a ≤9}D . ∅10.若函数f (x )={x 2,x ≥0,x ,x <0,φ(x )={x ,x ≥0,−x 2,x <0,则当x <0时,f (φ(x ))为( )A . -xB . -x 2C .XD .x 211.若函数f (x )={(x −m )2,x ≤0,x +1x +m,x >0的最小值为f (0),则实数m 的取值范围是( ) A . [-1,2] B . [-1,0] C . [1,2] D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A . [160,+∞)B . (-∞,40]C . (-∞,40]∪[160,+∞)D . (-∞,20]∪[80,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分) 13.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则有序实数对(a ,b )的值为________.14.已知函数y =f (x 2-1)的定义域为{x |-2<x <3},则函数y =f (3x -1)的定义域为____________.15.设函数f (x )={x 2+2x +2,x ≤0,−x 2,x >0,若f (f (a ))=2,则a =_________. 16.已知函数y =f (x )的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f [f (x )]=f (x ),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f (x )=2x 2+4x 在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f (x ). (1)已知f (x +1)=2x 2+5x +2; (2)已知f (x +1x)=x 3+1x 3-1;(3)已知af (x )+f (-x )=bx ,其中a ≠±119(12分).已知集合A ={x |2≤x <7},B ={x |3<x <10},C ={x |x <a }.(1)求A ∪B ,(∁R A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t ,价格近似满足f (t )=20-12|t -10|. (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21(12分).已知函数f (x )=(x -a )2-(a 2+1)在区间[0,2]上的最大值为g (a ),最小值为h (a )(a ∈R ). (1)求g (a )和h (a );(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (13)=-1,求满足不等式f (x )-f (x -2)≥2的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M={1,2},所以(∁R M)∩N={-1,0},故正确答案为D.2.【答案】B【解析】由所定义的运算可知P⊕Q={1,2,3,4,5},∴P⊕Q的所有真子集的个数为25-1=31.故选B.3.【答案】D【解析】A-B是由所有属于A但不属于B的元素组成,所以A-B={2,6,10}.故选D.4.【答案】D【解析】A中的函数定义域不同;B中y=x0的x不能取0;C中两函数的对应关系不同,故选D.5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴{k2=9,kb+b=8,解得{k=3,b=2或{k=−3,b=−4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|={x−1,x≥1,1−x,x<1在[1,+∞)上为增函数,故选B.9.【答案】B10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤0时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥0.当x>0时,f(x)=x+1x+m≥2√x·1x+m=2+m,当且仅当x=1x,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m 2≤2+m ,所以0≤m ≤2. 12.【答案】C【解析】由于二次函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,因此函数f (x )=4x 2-kx -8在区间(5,20)上是单调函数.二次函数f (x )=4x 2-kx -8图像的对称轴方程为x =k8,因此k8≤5或k8≥20,所以k ≤40或k ≥160. 13.【答案】(0,1)或(14,12)【解析】∵M ={2,a ,b },N ={2a,2,b 2},且M =N , ∴{a =2a,b =b 2或{a =b 2,b =2a, 即{a =0,b =1或{a =0,b =0或{a =14,b =12,当a =0,b =0时,集合M ={2,0,0}不成立, ∴有序实数对(a ,b )的值为(0,1)或(14,12),故答案为(0,1)或(14,12). 14.【答案】{x |0≤x <3}【解析】∵函数y =f (x 2-1)的定义域为{x |-2<x <3},∴-2<x <3.令g (x )=x 2-1,则-1≤g (x )<8,故-1≤3x -1<8,即0≤x <3,∴函数y =f (3x -1)的定义域为{x |0≤x <3}.15.【答案】√2【解析】若a ≤0,则f (a )=a 2+2a +2=(a +1)2+1>0, 所以-(a 2+2a +2)2=2,无解; 若a >0,则f (a )=-a 2<0,所以(-a 2)2+2(-a 2)+2=2,解得a =√2. 故a =√2. 16.【答案】10【解析】∵f [f (x )]=f (x ),∴f (x )=x ,①若f :{1,2,3}→{1,2,3},可以有f (1)=1,f (2)=2,f (3)=3,此时只有1个函数; ②若f :{1,2,3}→{1},此时满足f (1)=1; 同理有f :{1,2,3}→{2};f :{1,2,3}→{3}, 共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f :{1,2,3}→{1,2},此时满足f (1)=1,f (2)=2.则3可以对应1或2,又有2种情况,所以共有3×2=6个函数. 综上所述,一共有1+3+6=10个函数.17.【答案】设x 1,x 2是区间[-1,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(2x 12+4x 1)-(2x 22+4x 2)=2(x 12-x 22)+4(x 1-x 2)=2(x 1-x 2)(x 1+x 2+2).∵-1≤x 1<x 2,∴x 1-x 2<0,x 1+x 2+2>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在[-1,+∞)上是增函数.18.【答案】(1)方法一 (换元法)设x +1=t ,则x =t -1,∴f (t )=2(t -1)2+5(t -1)+2=2t 2+t -1,∴f (x )=2x 2+x -1.方法二 (整体代入法)∵f (x +1)=2x 2+5x +2 =2(x +1)2+(x +1)-1, ∴f (x )=2x 2+x -1.(2)(整体代入法)∵f (x +1x )=x 3+1x 3-1=(x +1x )3-3x 2·1x -3x ·1x 2-1 =(x +1x )3-3(x +1x )-1,∴f (x )=x 3-3x -1(x ≥2或x ≤-2).(3)在原式中以-x 替换x ,得af (-x )+f (x )=-bx ,于是得{af (x )+f (-x )=bx ,af (-x )+f (x )=-bx.消去f (-x ),得f (x )=bxa−1.故f (x )的解析式为f (x )=ba−1x (a ≠±1).19.【答案】(1)因为A ={x |2≤x <7},B ={x |3<x <10},所以A ∪B ={x |2≤x <10}. 因为A ={x |2≤x <7},所以∁R A ={x |x <2或x ≥7}, 则(∁R A )∩B ={x |7≤x <10}.(2)因为A ={x |2≤x <7},C ={x |x <a },且A ∩C ≠∅,所以a >2. 20.【答案】(1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|) =(40-t )(40-|t -10|)={(30+t )(40−t ),0≤t <10,(40−t )(50−t ),10≤t ≤20.(2)当0≤t <10时,y 的取值范围是[1 200,1 225],在t =5时,y 取得最大值1 225;当10≤t ≤20时,y 的取值范围是[600,1 200], 在t =20时,y 取得最小值600.综上,第5天,日销售额y 取得最大值1 225元;第20天,日销售额y 取得最小值600元. 21.【答案】(1)∵f (x )=(x -a )2-(a 2+1),又x ∈[0,2], ∴当a ≤0时,g (a )=f (2)=3-4a ,h (a )=f (0)=-1; 当0<a ≤1时,g (a )=f (2)=3-4a ,h (a )=f (a )=-(a 2+1); 当1<a <2时,g (a )=f (0)=-1,h (a )=f (a )=-(a 2+1);当a ≥2时,g (a )=f (0)=-1,h (a )=f (2)=3-4a .综上可知g (a )={3−4a,a ≤1,−1,a >1, h (a )={−1,a ≤0,−(a 2+1),0<a <2,3−4a,a ≥2.(2)g (a )和h (a )的图像分别为:由图像可知,函数y =g (a )的最小值为-1, 函数y =h (a )的最大值为-1. 【解析】22.【答案】(1)解 令x =y =1,得f (1)=2f (1),故f (1)=0. (2)证明 令y =1x ,得f (1)=f (x )+f (1x )=0, 故f (1x )=-f (x ).任取x 1,x 2∈(0,+∞),且x 1<x 2, 则f (x 2)-f (x 1)=f (x 2)+f (1x 1)=f (x 2x 1).由于x 2x 1>1,故f (x 2x 1)>0,从而f (x 2)>f (x 1).∴f (x )在(0,+∞)上是增函数.(3)解 由于f (13)=-1,而f (13)=-f (3),故f (3)=1. 在f (x ·y )=f (x )+f (y )中,令x =y =3,得 f (9)=f (3)+f (3)=2.故所给不等式可化为f (x )-f (x -2)≥f (9), ∴f (x )≥f [9(x -2)],∴x ≤94.又{x >0,x −2>0, ∴2<x ≤94,∴x 的取值范围是(2,94].【解析】。
一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集{}1,2,3,4,5,6U =,集合{}2,3,5A =,集合{}1,3,4,6B ,则()U A C B =( )A .{}3B .{}2,5C .{}1,4,6D .{}2,3,5【答案】B【解析】试题分析:由题意得,{}2,5U C B =,所以()U AC B ={}2,5,故选B 。
考点:集合的运算。
2.设,A B 为直线y x =与圆221x y +=的两个交点,则AB =( )A .1B .2C .3D .2【答案】D 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系、圆的性质以及圆的标准方程等知识的应用,当直线与圆相交时,通常根据垂径定理,由垂直得中点,进而再由圆的弦长一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题,着重考查了学生的数形结合思想和推理与运算能力,属于基础题.3.若函数()y f x =的值域为1,32⎡⎤⎢⎥⎣⎦,则函数()()()1F x f x f x =+的值域是( ) A .1,32⎡⎤⎢⎥⎣⎦ B .102,3⎡⎤⎢⎥⎣⎦ C .510,23⎡⎤⎢⎥⎣⎦D .52,2⎡⎤⎢⎥⎣⎦【答案】B【解析】 考点:函数的性质;基本不等式。
4。
已知圆22:40C x y x +-=,l 过点()3,0P 的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能【答案】A【解析】试题分析:由题意得,点()3,0P 在圆圆22:40C x y x +-=的内部,所以直线l 与C 相交,故选A.考点:点与圆的位置关系;直线与圆的位置关系.5.若直线1:10l ax y +-=与()2:3210l x a y +++=平行,则a 的值为( )A .1B .3-C .0或12-D .1或3-【答案】A【解析】试题分析:由题意得,直线1:10l ax y +-=与()2:3210l x a y +++=平行,所以11321a a -=≠+,解得1a =,故选A 。
绝密★启用前河池高级中学2020 届高一年级下学期第一次月考试题语文本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷 1 至 4 页,第Ⅱ卷第 4 页。
考试结束后,将答题卡交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径 0.5 毫米黑色签字笔将自己的姓名、准考证号填写清楚 ,并帖好条形码。
请认真核准条形码的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
.........3.本试卷共 16 小题,共 70 分。
一、现代文阅读( 35 分)(一)论述类文本阅读(本题共 3 小题, 9 分)阅读下面的文字,完成1~3 题。
①孝文化是中国传统文化的重要组成部分。
在中国传统宗法社会和家国一体的社会制度下,孝文化由家庭伦理、家族伦理扩大到社会伦理和国家伦理乃至整个文化精神体系和文化实践体系,成为人们非自觉的文化认同和社会集体心理意识。
②在中国古代,“ 家” 是传统社会的基本单位,孝文化最早是作为家庭伦理规范而存在的,主要调节的是亲子关系,具有归亲、继亲、养亲、敬亲、顺亲、诛亲、侍亲、葬亲、祭亲等丰富内涵。
“孝”不仅维护了家庭关系中长幼、尊卑秩序,而且成为传统社会中最重要的家庭伦理观念,即传统家庭孝道。
③传统家庭孝道是一个内容极其繁芜的庞杂体系,从历史视角来看,孝文化在家庭道德与行为规范方面既发挥了积极的作用,又产生了许多消极的影响。
例如,传统孝道认为,身体发肤,受之父母,毁伤者不孝;不孝有三,无后为大。
这些思想在传统社会被演化为片面保全身体和一味追求传宗接代的硬性要求,甚至形成了男尊女卑的文化陋习。
④正因如此, 20 世纪以来传统孝文化被视为封建糟粕,受到严厉批判,甚至彻底否定。
据此,一些学者反对将孝文化判定为优秀传统文化内容,认为它有太多的糟粕,是封建社会的旧道德和旧传统,违情悖理,愚弄百姓。
的确,孝文化在漫长的封建社会受到了较为严重的扭曲和异化,但是,撇开封建泡沫,肃清消极影响,传统孝文化仍不失为中华文化的瑰宝。
2017-2018学年广西河池市高级中学高一(下)第一次月考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}2.设A,B为直线y=x与圆x2+y2=1的两个交点,则|AB|=()A.1 B.C.D.23.若函数y=f(x)的值域是,则函数的值域是()A. B.C.D.4.已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能5.若直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则a的值为()A.﹣3 B.1 C.0或﹣D.1或﹣36.设l为直线,α,β是两个不同的平面,下列中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β7.某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为()A.8,14,18 B.9,13,18 C.10,14,16 D.9,14,178.从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.B.C.D.9.已知a是函数f(x)=2x﹣x的零点,若0<x0<a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)的符号不确定10.运行如图所示的流程图,如果输入b=2,经过四次循环后输出的a=9,则输入正数a的值可能为()A.1 B.2 C.3 D.411.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B. C. D.12.设函数f(x)=,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是()A.(﹣1,1)B.(1,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数f(x)=a x﹣1+4(a>0,且a≠1)的图象过一个定点,则这个定点坐标是.14.若以连续掷两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5上的概率为.15.已知f(x)=ax+b﹣1,若a,b都是从区间[0,2]任取的一个数,则f(1)<0成立的概率为.16.记实数x1,x2,…,x n中的最大数为max{x1,x2,…,x n},最小数为min{x1,x2,…,x n},则max{min{x+1,x2﹣x+1,﹣x+6}}=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(2)若第6名产品推销员的工作年限为11年,试估计他的年推销金额.参考公式:.18.为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们5组,如下表所示:(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.19.在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E 为PD的中点,PA=2AB=2.(1)求四棱锥P﹣ABCD的体积V;(2)若F为PC的中点,求证PC⊥平面AEF.20.已知圆C:x2+y2=4.(1)求过定点M(4,0)的圆的切线方程;(2)直线l过点P(1,2),且与圆C交于A,B两点,若,求直线l的方程.21.已知函数f(x)=lg[(m2﹣3m+2)x2+2(m﹣1)x+5],如果函数f(x)的值域为R,求实数m的取值范围.22.设函数g(x)=3x,h(x)=9x.(1)解方程:h(x)﹣8g(x)﹣h(1)=0;(2)令p(x)=,求证:p()+p()+…+p()=;(3)若f(x)=是实数集R上的奇函数,且f(h(x)﹣1)+f(2﹣k•g(x))>0对任意实数x恒成立,求实数k的取值范围.2015-2016学年广西河池市高级中学高一(下)第一次月考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}【考点】交、并、补集的混合运算.【分析】求出集合B的补集,然后求解交集即可.【解答】解:全集U={1,2,3,4,5,6},集合B={1,3,4,6},∁U B={2,5},又集合A={2,3,5},则集合A∩∁U B={2,5}.故选:B.2.设A,B为直线y=x与圆x2+y2=1的两个交点,则|AB|=()A.1 B.C.D.2【考点】直线与圆相交的性质.【分析】由圆的方程找出圆心坐标和半径r,根据圆心在直线y=x上,得到AB为圆的直径,根据直径等于半径的2倍,可得出|AB|的长.【解答】解:由圆x2+y2=1,得到圆心坐标为(0,0),半径r=1,∵圆心(0,0)在直线y=x上,∴弦AB为圆O的直径,则|AB|=2r=2.故选D3.若函数y=f(x)的值域是,则函数的值域是()A. B.C.D.【考点】基本不等式在最值问题中的应用.【分析】先换元,转化成积定和的值域,利用基本不等式.【解答】解:令t=f(x),则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B4.已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能【考点】直线与圆的位置关系.【分析】将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C内,再由直线l过P点,可得出直线l与圆C相交.【解答】解:将圆的方程化为标准方程得:(x﹣2)2+y2=4,∴圆心C(2,0),半径r=2,又P(3,0)与圆心的距离d==1<2=r,∴点P在圆C内,又直线l过P点,则直线l与圆C相交.故选A.5.若直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则a的值为()A.﹣3 B.1 C.0或﹣D.1或﹣3【考点】直线的一般式方程与直线的平行关系.【分析】利用两直线平行时,一次项系数之比相等,但不等于常数项之比,求出a的值.【解答】解:∵a=﹣2时,l1不平行l2,∴l1∥l2⇔解得:a=1故选:B.6.设l为直线,α,β是两个不同的平面,下列中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行的几何特征及面面平行的判定方法,可判断A;根据面面平行的判定方法及线面垂直的几何特征,可判断B;根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;根据面面垂直及线面平行的几何特征,可判断D.【解答】解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;若l⊥α,l∥β,则存在直线m⊂β,使l∥m,则m⊥α,故此时α⊥β,故C错误;若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;故选B7.某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为()A.8,14,18 B.9,13,18 C.10,14,16 D.9,14,17【考点】分层抽样方法.【分析】根据所给的三种人数得到总体的人数,因为要抽40个人,得到每个个体被抽到的概率,用体育特长生,美术特长生,音乐特长生的人数乘以每个个体被抽到的概率.得到结果.【解答】解:∵25+35+40=100,用分层抽样的方法从中抽取40人,∴每个个体被抽到的概率是P===0.4,∴体育特长生25人应抽25×0.4=10,美术特长生35人应抽35×0.4=14,音乐特长生40人应抽40×0.4=16,故选C.8.从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】用间接法,首先分析从5个球中任取3个球的情况数目,再求出所取的3个球中没有白球即全部红球的情况数目,计算可得没有白球的概率,而“没有白球”与“3个球中至少有1个白球”为对立事件,由对立事件的概率公式,计算可得答案.【解答】解:根据题意,首先分析从5个球中任取3个球,共C53=10种取法,所取的3个球中没有白球即全部红球的情况有C33=1种,则没有白球的概率为;则所取的3个球中至少有1个白球的概率是.故选D.9.已知a是函数f(x)=2x﹣x的零点,若0<x0<a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)的符号不确定【考点】函数的零点;函数的零点与方程根的关系.【分析】a是函数的零点,函数是增函数,本题根据函数的单调性和零点的性质进行求解.【解答】解:∵在(0,+∞)上是增函数,a是函数的零点,即f(a)=0,∴当0<x0<a时,f(x0)<0,故选C.10.运行如图所示的流程图,如果输入b=2,经过四次循环后输出的a=9,则输入正数a的值可能为()A.1 B.2 C.3 D.4【考点】程序框图.【分析】依题意,模拟执行程序框图,依次写出每次循环得到的a的值,当a=a+8应该满足条件a≥8,退出循环,输出a=a+8的值为9,从而解得a=1.【解答】解:依题意,模拟执行程序框图,可得b=2,不满足条件a≥8,第1次执行循环,a=a+2不满足条件a≥8,第2次执行循环,a=a+4不满足条件a≥8,第3次执行循环,a=a+6不满足条件a≥8,第4次执行循环,a=a+8由题意,此时应该满足条件a≥8,退出循环,输出a=a+8的值为9,故解得a=1,故选:A.11.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B. C. D.【考点】由三视图求面积、体积.【分析】由已知中几何体的三视图中,正视图是一个正三角形,侧视图和俯视图均为三角形,我们得出这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,得到球的半径,代入球的表面积公式,即可得到答案.【解答】解:由已知中知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体是有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,这个几何体的外接球的半径R=PD=.则这个几何体的外接球的表面积为S=4πR2=4π×()2=故选:A.12.设函数f(x)=,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是()A.(﹣1,1)B.(1,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣1)∪(1,+∞)【考点】函数恒成立问题.【分析】显然m≠0,分当m>0与当m<0两种情况进行讨论,并进行变量分离即可得出答案.【解答】解:∵f(x)=,∴函数的定义域为{x|x≠0},∵任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,∴m≠0且mx﹣+mx﹣<0,即2mx<(m+),∴2mx2<m+恒成立,①当m>0时,不等式等价为,∵y=2x2在x∈[1,+∞)上无最大值,因此此时不合题意;②当m<0时,不等式等价为,此时函数y=2x2在x∈[1,+∞)上的最小值为2,∴要使不等式恒成立,则,即m2>1,解得m<﹣1或m>1(舍去).综合可得:m<﹣1.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数f(x)=a x﹣1+4(a>0,且a≠1)的图象过一个定点,则这个定点坐标是(1,5).【考点】指数函数的单调性与特殊点.【分析】函数恒过定点即与a无关,由题意令x﹣1=0,解得x=1,再代入函数解析式求出f(x)的值,从而可求出定点坐标.【解答】解:令x﹣1=0,解得x=1,则x=1时,函数f(1)=a0+4=5,即函数图象恒过一个定点(1,5).故答案为:(1,5).14.若以连续掷两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5上的概率为.【考点】等可能事件的概率.【分析】由题意知本题是一个古典概型,试验发生包含的事件数是6×6,满足条件的事件是点P在直线x+y=5上,即两个数字之和是5,可以列举出(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到概率.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是6×6,满足条件的事件是点P在直线x+y=5上,即两个数字之和是5,可以列举出(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到P==故答案为:15.已知f(x)=ax+b﹣1,若a,b都是从区间[0,2]任取的一个数,则f(1)<0成立的概率为.【考点】几何概型.【分析】本题利用几何概型求解即可.在a﹣o﹣b坐标系中,画出f(1)<0对应的区域,和a、b都是在区间[0,2]内表示的区域,计算它们的比值即得.【解答】解:f(1)=a+b﹣1<0,即a+b<1,如图,A(1,0),B(0,1),=,S△ABO∴P==.故答案为:.16.记实数x1,x2,…,x n中的最大数为max{x1,x2,…,x n},最小数为min{x1,x2,…,x n},则max{min{x+1,x2﹣x+1,﹣x+6}}=.【考点】函数的最值及其几何意义.【分析】在同一坐标系中作出三个函数y=x+1,y=x2﹣x+1与y=﹣x+6的图象,依题意,即可求得max{min{x+1,x2﹣x+1,﹣x+6}}.【解答】解:在同一坐标系中作出三个函数y=x+1,y=x2﹣x+1与y=﹣x+6的图象如图:由图可知,min{x+1,x2﹣x+1,﹣x+6}为射线AM,抛物线ANB,线段BC,与射线CT的组合体,显然,在C点时,y=min{x+1,x2﹣x+1,﹣x+6}取得最大值.解方程组得,C(,),∴max{min{x+1,x2﹣x+1,﹣x+6}}=.故答案为:三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(2)若第6名产品推销员的工作年限为11年,试估计他的年推销金额.参考公式:.【考点】线性回归方程.【分析】(1)首先求出x,y的平均数,利用最小二乘法做出b的值,再利用样本中心点满足线性回归方程和前面做出的横标和纵标的平均值,求出a的值,写出线性回归方程.(2)第6名推销员的工作年限为11年,即当x=11时,把自变量的值代入线性回归方程,得到y的预报值,即估计出第6名推销员的年推销金额为5.9万元.【解答】解:(1)设所求的线性回归方程为,…则,.…所以年推销金额y关于工作年限x的线性回归归方程为.…(2)当x=11时,y=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销金额为5.9万元.18.为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们5组,如下表所示:(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.【考点】古典概型及其概率计算公式;频率分布表.【分析】(Ⅰ)用每一段的中间值乘以每一段的频率然后作和即得15名乘客的平均候车时间;(Ⅱ)查出15名乘客中候车时间少于10分钟的人数,得到15名乘客中候车时间少于10分钟的频率,用频率乘以60即可得到答案;(Ⅲ)用列举法写出从第三组和第四组中随机各抽取1人的所有事件总数,查出两人恰好来自不同组的事件个数,则两人恰好来自不同组的概率可求.【解答】解:(Ⅰ)由图表得:,所以这15名乘客的平均候车时间为10.5分钟.(Ⅱ)由图表得:这15名乘客中候车时间少于10分钟的人数为8,所以,这60名乘客中候车时间少于10分钟的人数大约等于.(Ⅲ)设第三组的乘客为a,b,c,d,第四组的乘客为e,f,“抽到的两个人恰好来自不同的组”为事件A.所得基本事件共有15种,即(ac),(ab),(ad),(ae),(af),(bc),(bd),(be),(bf),(cd),(ce),(cf),(de),(df),(ef),抽到的两人恰好来自不同组的事件共8种,分别是(ae),(af),(be),(bf),(ce),(cf),(df),(df).其中事件A包含基本事件8种,由古典概型可得,即所求概率等于.19.在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E 为PD的中点,PA=2AB=2.(1)求四棱锥P﹣ABCD的体积V;(2)若F为PC的中点,求证PC⊥平面AEF.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(1)利用直角三角形的边角关系可得BC,CD.S ABCD=,利用V=S×PA,即可得出.四边形ABCD(2)在Rt△ABC,∠BAC=60°,可得AC=2AB,PA=CA,又F为PC的中点,可得AF⊥PC.利用线面垂直的判定与性质定理可得:CD⊥PC.利用三角形的中位线定理可得:EF∥CD.于是EF⊥PC.即可证明PC⊥平面AEF.【解答】(本题满分12分)解:(1)∵在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4.∴S ABCD==.则V=.….(2)∵PA=CA,F为PC的中点,∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.∵E为PD中点,F为PC中点,∴EF∥CD.则EF⊥PC.∵AF∩EF=F,∴PC⊥平面AEF.…20.已知圆C:x2+y2=4.(1)求过定点M(4,0)的圆的切线方程;(2)直线l过点P(1,2),且与圆C交于A,B两点,若,求直线l的方程.【考点】直线与圆的位置关系.【分析】(1)设切线方程在为y=k(x﹣4),利用圆心到直线的距离等于半径,求出k,即可求解切线方程.(2)当直线l垂直于x轴时,直线方程为x=1,判断是否满足题意;当直线l不垂直于x轴,设其直线方程为y﹣2=k(x﹣1),设圆心到此直线距离为d,求出d=1,利用圆心到直线的距离求出k,即可求出直线方程.【解答】解:(1)设切线方程在为y=k(x﹣4),即kx﹣y﹣4k=0.…由题意可得,…∴切线方程为.…(2)当直线l垂直于x轴时,直线方程为x=1,l与圆的两个交点坐标为和,其距离为,满足题意.…..当直线l不垂直于x轴,设其直线方程为y﹣2=k(x﹣1),即kx﹣y﹣k+2=0,设圆心到此直线距离为d,则,得d=1,又.…∴解得,所求直线方程为3x﹣4y+5=0.…综上所述,所求所求直线方程为3x﹣4y+5=0或x=1.…21.已知函数f(x)=lg[(m2﹣3m+2)x2+2(m﹣1)x+5],如果函数f(x)的值域为R,求实数m的取值范围.【考点】对数函数的图象与性质.【分析】根据对数函数的图象及性质即可求解.【解答】解:令g(x)=(m2﹣3m+2)x2+2(m﹣1)x+5,如果函数f(x)的值域为R,则x去任何值都要g(x)能取到任意的正数.即g(x)>0.当m2﹣3m+2=0时,即m=1或2.经验证当m=1时,g(x)=5>0恒成立,故m=1.当m2﹣3m+2≠0时,根据二次函数性质,要使的函数值取得所有正在值,只需,解得:.综上可得:满足题意的实数m的取值范围为:m=1或.22.设函数g(x)=3x,h(x)=9x.(1)解方程:h(x)﹣8g(x)﹣h(1)=0;(2)令p(x)=,求证:p()+p()+…+p()=;(3)若f(x)=是实数集R上的奇函数,且f(h(x)﹣1)+f(2﹣k•g(x))>0对任意实数x恒成立,求实数k的取值范围.【考点】函数奇偶性的性质.【分析】(1)由已知条件推导出9x﹣8•3x﹣9=0,由此能求出原方程的解.(2)由已知条件推导出ρ()=,ρ(x)+ρ(1﹣x)=1,由此能证明ρ()+ρ()+…+ρ()=.(3)由已知条件推导出a=﹣3,b=1.由此利用已知条件能求出实数k的取值范围.【解答】(1)解:∵g(x)=3x,h(x)=9x.h(x)﹣8g(x)﹣h(1)=0,∴9x﹣8•3x﹣9=0,解得3x=9,x=2.(2)证明:ρ()=ρ()==.∵ρ(x)+ρ(1﹣x)==+=1,∴ρ()+ρ()+…+ρ()=1006+=.(3)解:∵f(x)=是实数集上的奇函数,∴a=﹣3,b=1.f(x)=3(1﹣),f(x)在实数集上单调递增.由f(h(x)﹣1)+f(2﹣k•g(x))>0,得f(h(x)﹣1)>﹣f(2﹣k•g(x)),又∵f(x)是实数集上的奇函数,∴f(h(x)﹣1)>f(k•g(x)﹣2),又∵f(x)在实数集上单调递增,∴h(x)﹣1>k•g(x)﹣2,即32x﹣1>k•3x﹣2对任意的x∈R都成立,即k<3x+对任意的x∈R都成立,k<2.2016年11月2日。