初中数学九年级《频率分布直方图》
- 格式:ppt
- 大小:737.50 KB
- 文档页数:46
教学过程一、复习预习Ⅰ.提出问题,创设情境收集数据、整理数据、描述数据是统计的一般过程。
我们学习了条形图、折线图、扇形图等描述数据的方法,今天我们学习另一种描述数据的统计图——直方图。
Ⅱ.导入新课频数分布直方图问题:为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛。
为此收集到这63名同学的身高(单位:㎝)如下:15 81581616815915915115815916 815815415815416915815815815 91671715316161591591614 916316316217216115315616216 216315716216216115715716415 515616516615615416616416515 6157153165159157155164156选择身高在哪个范围的学生参加呢?为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多。
为此我们把这些数据适当分组来进行整理。
1、计算最大值与最小值的差(极差)最小值是149,最大值是172,它们的差是23。
说明身高的变化范围是23㎝.2、决定组距与组数把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组)。
232733最大值-最小值==组距将数据分成8组:149≤x <152,152≤x <155,…,170≤x <173.注意:①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多。
3、频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。
用表格整理可得频数分布表:频数分布表身高分组 划记 频数 149≤x <152 2 152≤x <155 正一 6 155≤x <158 正正 12 158≤x <161 正正正 19 161≤x <164 正正 10164≤x <167正8167≤x <1704 170≤x <1732从表格中你能看出应从哪个范围内选队员吗?可以看出,身高在155≤x <158,158≤x <161,161≤x <164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155~164㎝(不含164㎝)的学生中选队员。
众数、平均数、中位数与频率分布直方图的关系
众数、平均数、中位数与频率分布直方图的关系,这一块知识点都不难,就是我们在平时的学习过程中不重视或者说不注意所以会导致有时候没有思路,不知道怎么操作,今天给大家详细介绍一下这种关系。
1、众数
众数在样本数据的频率分布直方图中就是最高矩形中点的横坐标大家通过上述图中,应该很明显,众数就是最高矩形中点的位置即为2.25
2、中位数
在样本中,有50%的个体小于或者等于中位数,同时也有50%的个体大于或者等于中位数,所以,在频率分布直方图中,在中位数的左边和右边直方图的面积是相等的。
从而我们可以根据这个来估算出中位数的大小值。
从上数频律分布直方图中,我们可以计算出来,大致的位置。
3、平均数
平均数是频率分布直方图的重心,他等于频率分布直方图中每个小矩形的面积(即落在改组中的频率)乘以小矩形底边中点的横坐标(组中值)之和。
今天比较忙,就先介绍到这里。
7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.(3)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.四、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成组.【答案】10最大值-最小值组距【解析】解:极差为1435093-=, 93109.3∴÷=,∴可以分成10组,故答案为:10.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组. 【答案】8 【解析】因为一组数据的最大值与最小值的差为2.8 cm,组距为0.4 cm,2.8÷0.4=7,所以应将该数据分为8组.五、频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【答案】见解析【解析】解:(1)总人数48%50÷=人, 5040%20a ∴=⨯=,16100%32%50b =⨯=, 故答案为20,32%.(2)频数分布直方图,如图所示.(3)20162 120091250++⨯=,答:估计该校有912名学生平均每天的课外阅读时间不少于50min.【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()B.①②③B.①②④C.①③④D.②③④【答案】【解析】由直方图可得,样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少,故①正确;样本中每天微信阅读不足20分钟的人数大约占:(48)(4814201612)100%16%+÷+++++⨯≈,故②正确;选取样本的样本容量是:481420161274+++++=,故③错误;(101612)740.51++÷≈,即所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右,故④正确:故选:B.【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②【答案】C【解析】解:①根据频数分布直方图,可得众数为6080-元范围,故每人乘坐地铁的月均花费最集中的区域在6080-元范围内,故①错误;②每人乘坐地铁的月均花费的平均数8760087.61000==元,故每人乘坐地铁的月均花费不在40~60元范围内,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C.六、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【答案】(1)150 (2) 30 45 (3)108【解析】解:(1)3926%150÷=(人),答:此次调查中一共调查了150人;(2)所调查的群众中,喜爱“戏曲”的人数为15020%30⨯=(人),喜爱“语言”的人数为150(363039)45-++=(人),补全图形如下:(3)该地区喜爱“语言类”约有45360108150⨯=(万人).【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.【答案】(1)抽样调查 (2)50 (3)135【解析】解:(1)在这次调查活动中,采取的调查方式是抽样调查, 故答案为:抽样调查; (2)1020%50n =÷=;(3)样本中每天学习时长在“3≤t <4”范围的学生人数为50(510164)15-+++=(人),∴1545013550⨯=(人), ∴该校九年级休息日时每天学习时长在“3≤t <4”范围的学生人数约为135人.【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm): 161 165 164 166 160 158 163 162 168 159 147 170 167 151 164 159 152 159 149 172 162 157 162 169 156 164 163 157 163 165 173 159 157 169 165 154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多? 【答案】见解析【解析】(1)计算最大值与最小值的差:在样本数据中,最大值是173cm,最小值是147 cm,它们的差是173-147=26(cm).(2)决定组距与组数:设组距为4 cm,则最大值-最小值组距=264=6.5,所以应分7组.(3)确定分点:把起点数147减去0.5,即147-0.5=146.5.这样依次分为:146.5-150.5,150.5-154.5,…,166.5-170.5,170.5-174.5. (4)列频数分布表:分组 频数 146.5-150.5 2 150.5-154.54154.5-158.5 5158.5-162.5 9162.5-166.5 11166.5-170.5 7170.5-174.5 2(5)画频数分布直方图,如图.从图中可以看出这种零件的尺寸在162.5-166.5 cm范围内的最多.1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】①参加本次竞赛的学生共有8÷(1-4%-12%-40%-28%)=50(人),此项错误;②第五组的百分比为1-4%-12%-40%-28%=16%,此项正确;③成绩在70-80分的人数最多,此项正确;④80分以上的学生有50×(28%+16%)=22(人),此项错误.故选B2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.【答案】160【解析】由题意可得,这次评比中共征集到的小作文有72÷920=160(篇)3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图. 老师评委评分统计表:(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x . 【答案】见解析【解析】解:(1)依题意共有20个数据,自左向右第四组的频数为2034625----=⋯⋯(2分) (2)设x 表示有效成绩平均分,则1(9595949596979593)958x =+++++++=,0.6950.494.4x ⨯+⨯=教师,∴94x =教师,又共10位老师评委,去掉一个最高分、一个最低分后只有8位评委评分有效∴老师评委的有效总分为948752⨯=,在x ,91,98三个数中留下的数为752(94969391929693)97-++++++=, 97x ∴=.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数【答案】(1) 120 0.1 (2)见解析(3)600【解析】解:(1)a=36÷0.3=120,b=12÷120=0.1.故答案为120,0.1.(2)1<t≤1.5的人数为120×0.4=48.补全图形如下:(3)估计该校学生每天课外阅读时间超过1 h的人数为1200×(0.4+0.1)=600(人)5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 b F107.5-1206图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= . (2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为 人,72分及以上为及格,预计及格的人数约为 人. 【答案】(1) 8、10、10、25 (2)见解析 (3)1200 6800 【解析】12.解:(1)因为被调查的总人数为2÷5%=40(人),所以a=40×20%=8,b=40-(2+4+8+10+6)=10,m%=440×100%=10%,n%=1040×100%=25%,即m=10,n=25.故答案为8,10,10,25. (2)补全频数分布直方图如下:(3)预计优秀的人数约为200×40×15%=1200(人),预计及格的人数约为200×40×(1-5%-10%)=6800(人).故答案为1200,6800.。
《9.2.1 总体取值规律的估计》教学设计第1课时频率分布直方图【教材分析】本节是主要介绍表示样本分布的方法,包括频率分布表、频率分布直方图、条形图、扇形图、折线图等.由于作统计图、表的操作性很强,所以教学中要使学生在明确图、表含义的前提下,让学生自己动手作图.同时让学生理解:对于一个总体的分布,我们往往从总体抽取一个样本,用样本的频率分布估计总体分布. 学生在初中已经学过把样本数据表示成频数分布表和频数分布图的形式,能从图表上直观的看出数据的分布情况,为学习本节内容在基础知识上有了铺垫。
【教学目标与核心素养】课程目标1.结合实例,能用样本估计总体的取值规律.2.会列频率分布表,画频率分布直方图.3.能根据频率分布表和频率分布直方图观测数据的分布规律.数学学科素养1.直观想象:频率分布直方图的绘制与应用;2.数学运算:频率分布直方图中的相关计算问题.【教学重点】:①列频率分布表,画频率分布直方图;②根据频率分布表和频率分布直方图观测数据的分布规律.【教学难点】:①列频率分布表,画频率分布直方图;②根据频率分布表和频率分布直方图观测数据的分布规律.【教学过程】一、情景导入我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为为了较为合理地确定出这个标准需要做哪些工作?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本192-197页,思考并完成以下问题 1、画频率分布直方图的步骤有哪些?2、频率分布直方图的纵轴表示什么?各矩形面积之和等于什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.频率分布直方图绘制步骤①求极差,即一组数据中的最大值与最小值的差.②决定组距与组数.组距与组数的确定没有固定的标准,一般数据的个数越多,所分组数越多.当样本容量不超过100时,常分成5~12组.为方便起见,一般取等长组距,并且组距应力求“取整”.③将数据分组.④列频率分布表.计算各小组的频率,第i 组的频率是第i 组频数样本容量.⑤画频率分布直方图.其中横轴表示分组,纵轴表示频率组距.频率组距实际上就是频率分布直方图中各小长方形的高度,它反映了各组样本观测数据的疏密程度.2. 频率分布直方图意义:各个小长方形的面积表示相应各组的频率,频率分布直方图以面积的形式反映数据落在各个小组的频率的大小,各小长方形的面积的总和等于1.3.总体取值规律的估计:我们可以用样本观测数据的频率分布估计总体的取值规律.4.频率分布直方图的特征:当频率分布直方图的组数少、组距大时,容易从中看出数据整体的分布特点,但由于无法看出每组内的数据分布情况,损失了较多的原式数据信息;当频率分布直方图的组数多、组距小时,保留了较多的原始数据信息,但由于小长方形较多,有时图形会变得非常不规则 ,不容易从中看出总体数据的分布特点.四、典例分析、举一反三题型一 频率分布直方图的绘制与应用例1 一个农技站为了考察某种麦穗长的分布情况,在一块试验地里抽取了100个麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6 5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8 6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.4 6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4 6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.8 5.3 7.0 6.0 6.0 5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表、绘出频率分布直方图,并用自己的语言描述一下这批麦穗长的情况.【答案】见解析 【解析】步骤是:(1)计算极差,7.4-4.0=3.4(cm). (2)决定组距与组数. 若取组距为0.3 cm,由于3.40.3=1113,需分成12组,组数合适.于是取定组距为0.3 cm,组数为12.(3)将数据分组.使分点比数据多一位小数,并且把第1小组的起点稍微减小一点.则所分的12个小组可以是[3.95,4.25),[4.25,4.55),[4.55,4.85),…,[7.25,7.55].(4)列频率分布表.对各个小组作频数累计,然后数频数,算频率,列频率分布表,如下表所示: 1 1 2 1128 13 112 1 (5)画频率分布直方图,如图.从表中看到,从频率分布表中可以看出,绝大部分麦穗长集中在5.15-5.95,并且5.75-6.05占比最大.解题技巧(绘制频率分布直方图的注意事项)1.在列频率分布表时,极差、组距、组数有如下关系: (1)若极差组距为整数,则极差组距=组数;(2)若极差组距不为整数,则极差组距的整数部分+1=组数.2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本容量越大,所分组数越多.跟踪训练一1. 某制造商3月份生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下表:补充完成频率分布表(结果保留两位小数),并在下图中画出频率分布直方图.【答案】见解析.【解析】频率分布表如下:频率分布直方图如下:题型二频率分布直方图中的相关计算问题例2 在某次数学测验后,将参加考试的500名学生的数学成绩制成频率分布直方图(如图),则在该次测验中成绩不低于100分的学生人数是()A.210B.205C.200D.195【答案】C【解析】由频率分布直方图,得在该次测验中成绩不低于100分的学生的频率为1-(0.012+0.018+0.030)×10=0.4,∴在该次测验中成绩不低于100分的学生人数为500×0.4=200.故选C. 解题技巧 (计算规律) 1.因为小长方形的面积=组距×频率组距=频率,所以各小长方形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.2.在频率分布直方图中,各小长方形的面积之和等于1.3.频数相应的频率=样本量.4.在频率分布直方图中,各长方形的面积之比等于频率之比,各长方形的高度之比也等于频率之比.跟踪训练二1.如图所示是由总体的一个样本绘制的频率分布直方图,且在[15,18)内频数为8.(1)求样本在[15,18)内的频率; (2)求样本量;(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数. 【答案】(1) 425. (2) 50. (3) 39.【解析】 由样本频率分布直方图可知组距为3.(1)由样本频率分布直方图得样本在[15,18)内的频率等于475×3=425. (2)样本在[15,18)内的频数为8,由(1)可知,样本量为8425=8×254=50.(3)在[12,15)内的小矩形面积为0.06,故样本在[12,15)内的频率为0.06,故样本在[15,33)内的频数为50×(1-0.06)=47.又因为在[15,18)内的频数为8,故在[18,33)内的频数为47-8=39.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本197页练习.【教学反思】本节课之前学生已有一定的统计学基础知识及分析问题和解决问题的能力,对常见的数学思想已有初步的认识和应用。
频率分布直方图1.通过实例体会分布的意义和作用。
2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
4.通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
5.通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
【教学重点】会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
【教学难点】能通过样本的频率分布估计总体的分布。
(一)知识回顾(二)新课导入【探究】同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图的形状也会不同。
不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断。
分别以1和0.1为组距重新作图,然后谈谈你对图的印象。
(三)新课讲授连接频率直方图中各小长方形上端中点的折线,叫频率分布折线图。
画一组数据的频率分布直方图,可以按以下的步骤进行:第一步:求极差,即数据中最大值与最小值的差;第二步:决定组距与组数:组距=极差/组数;第三步:分组,通常对组内数值所在区间,取左闭右开区间 , 最后一组取闭区间;第四步:登记频数,计算频率,列出频率分布表;第五步:画出频率分布直方图(纵轴表示频率/组距)。
当样本容量无限增大,分组的组距无限缩小,那么频率分布折线图就会无限接近一条光滑曲线。
总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,精确地反映了总体的分布规律。
是研究总体分布的工具。
用样本分布直方图去估计相应的总体分布时,一般样本容量越大,频率分布直方图就会无限接近总体密度曲线,就越精确地反映了总体的分布规律,即越精确地反映了总体在各个范围内取值百分比。
1、茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。