八年级数学下册四边形复习周教案
- 格式:doc
- 大小:364.50 KB
- 文档页数:13
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
人教版数学八年级下册第十八章《章末复习(1)——几种特殊四边形的定义、性质与判定》教学设计一. 教材分析人教版数学八年级下册第十八章《章末复习(1)——几种特殊四边形的定义、性质与判定》主要是对几种特殊四边形(矩形、菱形、正方形、梯形)的定义、性质与判定进行复习。
本章内容是学生进一步理解四边形的基础知识,提高解决问题的能力,为后续学习其他几何图形打下基础。
二. 学情分析学生在之前的学习中已经掌握了矩形、菱形、正方形、梯形的定义、性质与判定,但部分学生对于这些特殊四边形的应用仍然存在困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导,提高学生的理解和应用能力。
三. 教学目标1.知识与技能:使学生熟练掌握几种特殊四边形的定义、性质与判定,提高学生解决问题的能力。
2.过程与方法:通过复习,培养学生自主学习、合作学习的能力,提高学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:几种特殊四边形的定义、性质与判定。
2.教学难点:特殊四边形的性质与判定的应用。
五. 教学方法1.采用问题驱动法,引导学生主动思考,提高学生的逻辑思维能力。
2.利用案例分析法,结合生活实际,使学生更好地理解特殊四边形的应用。
3.采用合作学习法,培养学生的团队协作能力,提高学生的沟通能力。
六. 教学准备1.教师准备PPT,内容包括几种特殊四边形的定义、性质与判定,以及相关案例分析。
2.准备相关练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾矩形、菱形、正方形、梯形的定义、性质与判定,激发学生的学习兴趣。
2.呈现(15分钟)教师利用PPT呈现几种特殊四边形的定义、性质与判定,以及相关案例分析。
在这个过程中,教师要注意引导学生思考,提高学生的逻辑思维能力。
3.操练(20分钟)教师布置练习题,让学生独立完成。
人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。
通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。
二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。
但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。
在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。
三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。
2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:平行四边形的性质及其应用。
2.难点:对角线的性质和判定平行四边形的方法。
五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。
六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。
2.课件:平行四边形的性质及其应用。
七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。
2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。
设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。
3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。
学生互相检查,教师巡回指导。
设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。
4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。
设计意图:巩固所学知识,提高学生的判断能力。
辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科老师:授课类型T 平行四边形的概念、性质T 平行四边形的断定C中位线定理授课日期时段教学内容一、同步学问梳理学问点1:平行四边形的定义:两组对边分别平行的四边形是平行四边形.表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD,记作ABCD”,读作“平行四边形ABCD”.留意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.学问点2:平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.邻角互补(3)对角线:平行四边形的对角线相互平分对称性:平行四边形是中心对称图形,两条对角线的交点是对称中心;二、同步题型分析题型1:平行四边形的边、角例1:已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.分析:由平行四边形的对角相等,邻角互补可求得各内角的度数;由平行四边形的对边相等,得AB+BC=23 cm,解方程组即可求出各边的长.解:由平行四边形的对角相等,∠A+∠C=80°,得∠A=∠C=40°又DC∥AB,∠D及∠A为同旁内角互补,∴∠D=180°-∠A=180°-40°=140°.∴∠B=140°.由平行四边形对边相等,得AB=CD,AD=BC.因周长为46 am,因此AB+BC=23 cm,而AB-BC=3 cm,得AB=13 cm,BC=10 cm,∴CD=13 am.AD=10 cm.题后反思:留意充分利用性质解题.例2:如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.分析:本题主要考察平行四边形的性质.要证明AE=CF,可以把两线段分别放在两个三角形里,然后证明两三角形全等.解:AE=CF.理由:在平行四边形ABCD中,∵AB=CD且AB∥CD.∴∠ABE=∠CDF.∵DE=BF,∴ DE+BD=BF+BD,即BE=DF:∴△ABE≌△CDF ∴ AE=CF题后反思:利用平行四边形的性质解题时,一般要用到三角形全等学问,此题还可以证明其他三角形全等来证明两线段相等.题型2:平行四边形的周长例1:如图3,在平行四边形ABCD中,AC、BD相交于点O,作OE⊥BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为( B )图3A. 6B. 12C. 18D. 不确定分析:本题主要考察平行四边形的性质:对角线相互平分。
初中数学四边形复习教案1. 知识与技能目标:使学生掌握四边形的定义和性质,能够识别和判断各种四边形,了解四边形在实际生活中的应用,提高学生的空间想象能力和抽象思维能力。
2. 过程与方法目标:通过观察、操作、猜想、验证等数学活动,培养学生的探究能力和合作能力,使学生在解决实际问题中能够灵活运用四边形的性质。
3. 情感、态度与价值观目标:学生在学习过程中能够积极参与,勇于尝试,体验数学学习的乐趣,增强自信心,培养克服困难的勇气和信心。
二、教学内容1. 四边形的定义和性质2. 四边形的分类和特点3. 四边形在实际生活中的应用三、教学重点与难点1. 教学重点:四边形的定义和性质,四边形的分类和特点。
2. 教学难点:四边形性质的探究和应用。
四、教学过程1. 导入新课通过展示一些生活中的四边形物体,如梯子、窗户、自行车等,引导学生关注四边形,激发学生学习四边形的兴趣。
然后提出问题:“你们知道四边形有哪些性质吗?”从而导入新课。
2. 探究四边形的性质(1)小组合作,观察探究将学生分成若干小组,每组发一些四边形的图片,让学生观察四边形的特点,探讨四边形的性质。
(2)汇报交流各小组汇报探究成果,教师引导学生总结四边形的性质,如对边相等、对角相等、对边平行等。
3. 四边形的分类和特点(1)长方形、正方形、梯形的定义和性质引导学生了解长方形、正方形、梯形是特殊的四边形,掌握它们的定义和性质。
(2)四边形的分类根据四边形的性质,引导学生对四边形进行分类,了解各种四边形的特点。
4. 四边形在实际生活中的应用通过一些实际问题,让学生运用四边形的性质解决问题,提高学生运用数学知识解决实际问题的能力。
5. 总结与反思本节课我们学习了四边形的定义、性质和分类,以及四边形在实际生活中的应用。
请大家回顾一下,我们是如何得出四边形的性质的?这个过程中,我们运用了哪些数学方法?通过这个问题,引导学生总结本节课的学习内容,提高学生的反思能力。
回顾与思考:本章我们主要学习了平行四边形的性质定理、判定定理;探索并证明了三角形的中位线定理,介绍了平行线问距离的概念;通过平行四边形边、角的特殊化,获得了特殊的平行四边形——矩形、菱形和正方形,了解了它们之间的关系;根据它们的特殊性,得到了这些特殊的平行四边形的性质定理和判定定理.在学习这些知识的过程中,我们采用了从一般到特殊的研究方法:利用图形的性质定理与判定定理之间的关系,通过证明性质定理的逆命题,得到了图形的判定定理,这些方法在今后的学习中都是很有用的.请你带着下面的问题,复习一下全章的内容吧。
1,你能概述一下研究平行四边形的思路和方法吗?2.平行四边形有哪些性质?如何判定一个四边形是平行四边形?3.矩形、菱形、正方形除了具有平行四边形的性质外,分别还具有哪些性质?如何判定一个四边形是矩形、菱形、正方形?你能总结一下研究这些性质和判定的方法吗?4.本章我们利用平行四边形的性质,得出了三角形的中位线定理,你能仿照这一过程,再得出一些其他几何结论吗?本章学习了哪些特殊的四边形?是按照什么顺序学习这些四边形的?请说说这些四边形之间的关系.各种平行四边形的研究中,它们各自的研究内容、研究步骤、研究方法有什么共同点?能列表说明吗?各种平行四边形的研究中,它们各自的研究内容、研究步骤、研究方法有什么共同点?能列表说明吗?(1)本章研究内容:各种平行四边形的边、角、对角线的特征;(2)研究步骤:下定义→探性质→研判定;(3)研究方法:观察、猜想、证明;建立当前图形(平行四边形)与三角形的联系;从性质定理的逆命题的讨论中研究判定定理;类比、一般到特殊.【课堂探究案】考点讲练考点一 平行四边形的性质与判定例1 如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG.(1)求证:四边形DEGF 是平行四边形;(2)如果点G 是BC 的中点,且BC =12,CD =10,求四边形AGCD 的面积.(1)证明:∵ AG ∥CD ,AD ∥BC∴ 四边形AGCD 是平行四边形∴ AG=CD∵ E 、F 分别为AG 、CD 的中点∴ EG=21AG ,DF=21CD ∴ EG=DF 且EG ∥DF∴ 四边形DEGF 是平行四边形(2)解:∵ 点G 是BC 的中点,BC=12∴ BG=CG=21BC=6 ∵ 四边形AGCD 是平行四边形∴ AG=CD=10在R t △ABG 中,根据勾股定理2222610-=-=BG AG AB =8∴ S 四边形AGCD =6×8=48例2如图,在□ABCD中,点E在边BC上,点F在边DA的延长线上,且AF=CE,EF与AB交于点G.(1)求证:AC∥EF;(2)若点G是AB的中点,BE=6,求边AD的长.(1)证明:∵四边形ABCD是平行四边形∴ AD∥BC∴ AF∥CE又∵ AF=CE∴四边形AFEC是平行四边形∴ AC∥EF(2)解:∵ AD∥BC,∴∠F=∠BEG,∠FAG=∠B∵点G是AB的中点,∴ AG=BG∴△AGF≌△BGE (AAS)∴ AF=BE=6∴ CE=AF=6∴ BC=BE+CE=12∵四边形ABCD是平行四边形∴ AD=BC=12考点二三角形的中位线与R t△斜边上的中线例3如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.证明:(1)∵点D,E,F分别是AB,BC,CA的中点∴ DE、EF都是△ABC的中位线∴ DE∥AC,EF∥AB∴四边形ADEF是平行四边形(2)∵四边形ADEF是平行四边形∴∠DEF=∠BAC∵ D,F分别是AB,CA的中点,AH是边BC上的高∴ DH、FH分别是R t△ABH和R t△ACH斜边上的中线∴ DH=AD,FH=AF∴∠DAH=∠DHA,∠FAH=∠FHA∵∠DAH+∠FAH=∠BAC∠DHA+∠FHA=∠DHF∴∠DHF=∠BAC∴∠DHF=∠DEF考点三特殊平行四边形的性质与判定例4如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作DE∥AC,两线相交于点E.(1)求证:四边形AODE是菱形;(2)连接BE,交AC于点F.若BE⊥DE于点E,求∠AOD的度数.(1)证明:∵ AE ∥BD ,DE ∥AC∴ 四边形AODE 是平行四边形∵ 四边形ABCD 是矩形∴ AC=BD ,OA=21AC ,OD=21BD ∴ OA=OD∴ 四边形AODE 是菱形(2)解:连接OE.由(1)得,四边形AODE 是菱形,∴ AE=AO=BO∵ AE ∥BO ,∴ 四边形AEOB 是平行四边形∵ BE ⊥DE ,DE ∥AC ,∴ BE ⊥AO∴ 四边形AEOB 是菱形∴ AE=AB=BO∴ AB=BO=AO∴ △AOB 是等边三角形∴ ∠AOB=60°∴ ∠AOD=180°-60°=120°例5 如图,已知在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE.(1)试判断四边形BECF 是什么四边形?并说明理由;(2)当∠A 的大小满足什么条件时,四边形BECF 是正方形?请回答并证明你的结论.解:(1)四边形BECF 是菱形.理由如下:∵ EF 垂直平分BC ,∴ BF=CF ,BE=CE∴ ∠3=∠1∵ ∠ACB=90°,∴ ∠3+∠A=90°,∠1+∠2=90°∴ ∠2=∠A ,∴ CE=AE∴ BE=AE∵ CF=AE∴ BE=CE=CF=BF∴ 四边形BECF 是菱形(2)当∠A=45°时,四边形BECF 是正方形.证明:∵ ∠A=45°,∠ACB=90°∴ ∠CBA=45°∵ 四边形BECF 是菱形∴ ∠EBF=2∠CBA=90°∴ 菱形BECF 是正方形【课堂检测案】一、分类讨论思想例6 在一个平行四边形中,若一个角的平分线把一条边分成长是2cm 和3cm 的两条线段,求该平行四边形的周长是多少.解:如图,∵在平行四边形ABCD 中,AB=CD ,AD=BC ,AD ∥BC ,。
《平行四边形》1、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为厘米。
2、顺次连结矩形ABCD各边中点所成的四边形是。
3、若正方形ABCD的对角线长10厘米,那么它的面积是平方厘米。
4、平行四边形、矩形、菱形、正方形中,轴对称图形有:,中心对称图形的有:,既是轴对称图形,又是中心对称图形的是:。
(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是( )A .对角线相等 (距、正) B. 对角线平分一组对角 (菱、正) C .对角线互相平分 D. 对角线互相垂直 (菱、正)(2)、正方形具有,矩形也具有的性质是( )A .对角线相等且互相平分 B. 对角线相等且互相垂直 C. 对角线互相垂直且互相平分 D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定( ) A .正方形 B .菱形 C .矩形 D .平行四边形 都是中心对称图形,A 、B 、C 都是平行四边形(4)、矩形具有,而菱形不一定具有的性质是( ) A. 对角线互相平分 B. 对角线相等 C. 对边平行且相等 D. 内角和为3600(5)、正方形具有而矩形不具有的特征是( ) A. 内角为3600 B. 四个角都是直角 C. 两组对边分别相等 D. 对角线平分对角二、查漏补缺 例题1已知:如图1,□ABCD 的对角线AC 、BD 交于点O , EF 过点O 与AB 、CD 分别交于点E 、F . 求证:OE=OF .BC例题2已知:如图,在正方形ABCD ,E 是BC 边上一点,F 是CD 的中点,且AE = DC + CE .求证:AF 平分∠DAE .巩固练习一、选择题1.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( ) A .7 B .9 C .10 D .112.已知□ABCD 的周长为32,AB=4,则BC=( ). A.4 B.12 C.24 D.283.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF =( ) A .1:2 B .1:3 C .2:3 D .2:54.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有A .1组B .2组C .3组D .4组A DE例25.如图(二)所示,ABCD Y 中,对角线AC ,BD 相交于点O ,且AB ≠AD ,则下列式子不正确的是( ) A.AC ⊥BD B.AB =CD C. BO=OD D.∠BAD=∠BCD6.如图,在平行四边形 ABCD 中(AB≠BC ),直线EF 经过其对角线的交点O ,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO=BO ;②OE=OF ; ③△EAM ∽△EBN ;④△EAO ≌△CNO ,其中正确的是( ) A. ①② B. ②③ C. ②④ D.③④二、填空题1.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .2.如图,D ,E ,F 分别为△ABC 三边的中点,则图中平行四边形的个数为________.9题图ABCEM N OH F ECBAABCDEF3. 如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC 、BD 相交于点O.若AC=6,则线段AO 的长度等于___________.4. 如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点,OE =3cm ,则AD 的长是__________cm .5.如图,□ ABCD 中,E 是BA 延长线上一点,AB =AE ,连结CE 交AD 于点F ,若CF 平分∠BCD ,AB =3,则BC的长为 .三、解答题1.如图,已知E 、F 是□ABCD 对角线AC 上的两点,且BE ⊥AC ,DF ⊥AC .(1)求证:△ABE ≌△CDF ;(2)请写出图中除△ABE ≌△CDF 外其余两对全等三角形(不再添加辅助线).F E A B CD2. 如图,E F 、是平行四边形ABCD 的对角线AC 上的点,CE AF ,请你猜想:线段BE 与线段DF 有怎样的关系?并对你的猜想加以证明。
平行四边形全章知识点复习学习目标1.利用基本图形结构使本章内容系统化.2.对比掌握各种特殊四边形的概念,性质和判定方法.3.运用知识解决简单数学问题。
一、导入与自主预习1、(在箭头上填上合适的数字序号)(1)两组对边分别平行(2)有一个角为直角(3)一组对边平行三、知识探究与合作学习五、当堂演练2、选择题例2. ①如图,矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作 DP ∥OC ,且 DP=OC ,连结CP ,试说明:四边形CODP 是的形状。
A B D C O P 1、判断题: 1)两条对角线相等且互相垂直的四边形是矩形. ( ) 2)两条对角线互相垂直平分的四边形是菱形. ( ) 3)两条对角线互相垂直的矩形是正方形. ( ) 4)两条对角线相等的菱形是正方形. ( ) 5)两条对角线垂直且相等的平行四边形是正方形.( ) 6)两条对角线垂直且相等的四边形是正方形. ( )②正方形具有而矩形不一定具有的特征是 ( ) A.对角线互相平分 B.对角线相等C.四个角都相等D.对角线互相垂直①下列图形中既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.平行四边形C.菱形D.等腰梯形 O D CB A3、填空题(1)如图,矩形ABCD 沿AE 折叠,使D 点落在 BC 边上的F 点处,如果∠BAF=60°,则∠DAE= 。
(2)矩形的面积为12cm 2,一条边长为3cm ,则对角线长为 。
4、(选做)以△ABC 的边AB 、AC 为边的等边三角形ABD 和等边三角形ACE ,四边形ADFE 是平行四边形。
(1)当∠BAC 满足 时,四边形ADFE 是矩形; (2)当∠BAC 满足 时,平行四边形ADFE 不存在(3)当△ABC 分别满足什么条件时,平行四边形是菱形、正方形。
③下列条件中,能判定四边形ABCD 是平行四边形的是( ) A.AB ∥CD ,AB=BC B.AB=CD ,AD=BC C.∠A=∠B , ∠C=∠D D.AB=AD ,CB=CD ④梯形ABCD 中,ADBC ,对角线AC 与BD 交于O ,则其中面积相等的三角形有 ( ) A.1对 B.2对 C.3对 D.4对B CAEF D第二、三课时 平行四边形的性质与判定复习练习一、平行四边形定义及其性质:1、两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等。
定义的几何语言表述 ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形 。
∵四边形ABCD 是平行四边形(或在 ABCD 中) ∴ AB=CD ,AD=BC 。
例题1、如图5,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE2对角也相等。
∵四边形ABCD 是平行四边形(或在 ABCD 中) ∴ ∠A=∠C ,∠B=∠D 。
例题2、在平行四边形ABCD 中,若∠A :∠B=2:3,求∠C 、∠D 的度数。
3、平行四边形的对角线互相平分。
例题3.已知O 是平行四边形ABCD 的对角线的交点,AC=24cm ,BD=38 cm ,AD= 28cm ,求三角形OBC 的周长。
5.如图,平行四边形ABCD 中,AC 交BD 于O ,AE ⊥BD 于E ,∠EAD=60°,AE=2cm,AC+BD=14cm,求三角形BOC 的周长。
例题4:已知平行四边形ABCD ,AB=8cm ,BC=10cm,∠B=30°, 求平行四边形平行四边形ABCD 的面积。
对边分别平行 边 对边分别相等 对角线互相平分 平行四边形角 对角相等 邻角互补图(5)DCBAA B C D二、平行四边形的判定方法一(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形方法二:两组对边分别相等的四边形是平行四边形。
∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形 方法三:对角线互相平分的四边形是平行四边形。
∵OA=OC , OB= OD ∴四边形ABCD 方法四:有一组对边平行且相等的四边形是平行四边形 ∵AB=CD ,AB ∥CD ,∴四边形ABCD 是平行四边形方法五:两组对角分别相等的四边形是平行四边形∵ ∠A =∠C ,∠B=∠D ,∴四边形ABCD 例1:已知:E 、F 分别为平行四边形ABCD 两边AD 、BC 的中点,连结BE 、DF 求证:2∠1∠=三、三角形中位线:三角形两边的中点连线线段(即中位线)与三角形的第三边平行,并且等于第三边的一半。
(记为:三角形中位线平行且等于第三边的一半) ∵AD=CD AE=BE∴BC DE 21=,DE ∥BC【课前练习】1.如图在平行四边形ABCD 中,DB =DC ,∠A =65°,CE ⊥BD 于E ,则∠BCE = .2.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,已知AE =4,AF =6,□ABCD 的周长为40,试求□ABCD 的面积。
ABCDEFEDCBA3.如图在□ABCD 中,EF ∥AD ,MN ∥AB ,EF 、MN 相交于点P ,图中共有 个平行四边形。
4.如果平行四边形的两条对角线长分别为8和12,那么它的边长不能取( )A . 10 B . 8 C . 7 D . 65.如图,在□ABCD 中,AC 、BD 交于点O ,EF 过点O 分别交AB 、CD 于E 、F ,AO 、CO 的中点分别为G 、H ,求证:四边形GEHF 是平行四边形。
E D C AABC D EF OH G【例题选讲】例1.如图,ABCD 为平行四边形,E 、F 分别为AB 、CD 的中点,①求证:AECF 也是平行四边形;②连接BD ,分别交CE 、AF 于G 、H ,求证:BG =DH ;③连接CH 、AG ,则AGCH 也是平行四边形吗?AB CDEFGH例2. 如图,已知在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60 o ,CE =3cm ,FC =1cm ,求AB 、BC 的长及ABCD 面积.60oABCDEF类型四、与三角形中位线定理相关的问题例7. 如图,BD =AC ,M 、N 分别为AD 、BC 的中点,AC 、BD 交于E ,MN 与BD 、AC 分别交于点F 、G ,求证:EF =EG .NM G F E DC BA如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60°,CF =2cm ,CE =3cm ,求□ABCD 的周长和面积.FEDCBA第四课时 矩形复习复习目标:1、 归纳总结矩形的性质及判定条件2、 合理的利用矩形的性质及判定条件进行解题3、 加强数学题证明题的书写过程 一、基础检测1.矩形的对边 是 ,对角线 且 ,四个角都是 。
2.矩形是面积的60,一边长为5,则它的一条对角线长等于 。
3、如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。
4.平行四边形没有而矩形具有的性质是( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角相等 5、下列叙述错误的是( )A.平行四边形的对角线互相平分。
B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角时90º的平行四边形是矩形 6若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .7.矩形ABCD 的对角线相交于点O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则AD 的长是( ) A 、5cmB 、7.5cmC 、10cmD 、12.5cm8、下列图形中既是轴对称图形,又是中心对称图形的是( )A 、平行四边形B 、等边三角形C 、矩形D 、直角三角形 二:典例分析例1.如图,已知矩形ABCD 的两条对角线相交于O ,︒=∠120AOD ,AB=4cm ,求此矩形的面积。
2、矩形ABCD 中,M 是BC 的中点,MA ⊥MD ,若矩形的周长为48cm,则矩形的面积是多少?例3.如图,□ABCD 中,AE 、BF 、CG 、DH 分别是各内角的平分线,E 、F 、G 、H 为它们的交点,求证:四边形EFGH 的矩形。
4. 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点, 求证:四边形EFGH 是矩形.D B CMHGOFEDCBA5.如图,矩形ABCD 中,ABCD EB EF EB EF ,,=⊥周长为22cm ,CE=3cm ,求:DE 的长。
6. 如图,矩形ABCD中,DE=AB ,DE CF ⊥,求证:EF=EB 。
三:能力提高1、 矩形ABCD中,M 是BC 的中点,MA ⊥MD ,若矩形的周长为48cm,则矩形的面积是多少?2.如图,矩形ABCD 中,点E 、F 分别在AB、CD 上,BF//DE ,若AD=12cm ,AB=7cm ,且AE:EB=5:2,求阴影部分。
3.如图,矩形ABCD 中,ABCD EB EF EB EF ,,=⊥周长为22cm ,CE=3cm ,求:DE 的长。
4.如图,矩形ABCD 中,对角线AC 、BD 相交于O ,BD AE ⊥,垂足为E ,已知AB=3,AD=4,求AEO ∆的面积。
例5.矩形ABCD 中,E 是CD 上一点,且AE=CE ,F 是AC 上一点AE FH ⊥于H ,CD FG ⊥于G ,求证:AD FG FH =+DA BCM6、如图,过矩形ABCD的对角线BD上一点R分别作矩形两边的平行线MN与PQ,那么图中矩形AMRP的面积S1,与矩形QCNR的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定7.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为。
第五课时菱形的复习教案学习目标1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想一、复习预习1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.二、知识讲解yxPDCBAO考点一菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.考点二菱形定义:有一组邻边相等的平行四边形叫做菱形.1.菱形具有平行四边形的一切性质;2.菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;3.菱形的四条边都相等;4.菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);5.在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的√3倍。