油气井杆管柱力学.共22页文档
- 格式:ppt
- 大小:3.08 MB
- 文档页数:22
・石油工程・油气井杆管柱的稳定性与纵横弯曲李子丰(大庆石油学院 安达 151400)摘 要 从压杆稳定与纵横弯曲的概念出发,分析了油气井杆管柱的受力和约束状态,分别讨论了杆管柱纵横弯曲的力学模型和稳定性的力学模型。
关键词 钻杆 套管 油管 稳定性 纵横弯曲 力学分析 石油工程的钻柱、套管柱、油管柱和抽油杆柱在井筒中工作时在某些井段经常处于压扭状态,对它们的受力和变形状态进行较精确的分析有助于进行优化设计。
油气井杆管柱的稳定性和纵横弯曲力学分析是油气井杆管柱力学的两大主要方面。
1 压杆稳定与纵横弯曲的概念1.1 压杆稳定的概念受压力构件能保持始终不变的平衡状态,称为稳定平衡状态;如构件因受压突然失去其原有的平衡状态,则原有的平衡状态为不稳定的平衡状态。
结构或构件失去其原有的平衡状态的现象在力学中称为丧失稳定。
从稳定到不稳定,一定具有一个临界状态,与临界状态相对应的轴向压力称为临界压力1。
压杆的临界状态为出现两种可能的平衡状态,即直线状态和无限接近于直线的弯曲状态2。
1.2 纵横弯曲的概念当细长杆不仅在不等于零的横向载荷作用下发生弯曲,而且还受到轴向压力作用时,处于纵横弯曲状态3。
1.3 压杆稳定与纵横弯曲的区别(1)在压杆稳定中杆所在任意横截面的合外力为零,而在纵弯曲中横截面的全外力不为零。
(2)在压杆稳定中,当轴向压力小于某一临界值时,压杆一直保持原有状态,它的形状不随轴向压力而变化:当压力达到该临界值时,在外界干扰下将失去原有的状态而屈曲。
而在纵横弯曲中,无论轴向力多大,都有横向位移,压杆的形状一直随轴向压力而变化。
2 油气井杆管柱及其在井下的受力状态2.1 油气井杆管柱的结构油气井杆管柱主要包括钻柱、套管柱、油管柱、抽油杆和连续挠性管。
其中除连续挠性管是内外径均匀一致的无接头的细长管外,其余四种都是由长约10m、通过接头连接的杆或管组成,其常用结构尺寸示例列于表1中。
表1 常用油气井杆管柱的结构尺寸及应用条件示例杆管柱类型外径d0(m)内径d i(m)单根长度(l)(m)壁厚∆(m)名义重量q(N m)接头或稳定器直径D(m)井径D w(m)钻杆柱0.1270.10869~120.09192900.15240.216下部钻具0.1770.071443~180.0527815200.2160.216套管柱0.17780.157190.010364320.187710.216油管0.08890.077990.00549114.70.1080.1571连续油管0.05080.0453∞0.0027829.5无0.15712.2 油气井杆管柱的受力状态不同类型的油气井杆管柱因其工作条件不同,所受的载荷不同,综合来说有:(1)自重;(2)液体的压力或浮力;(3)轴向拉力或压力;(4)扭矩;(5)弯矩;(6)与井壁的正压力;(7)与井壁的摩擦力;(8)热应力;(9)振动载荷等。
单级抽油杆柱轴向力的组成当游梁机工作时,任意井深处抽油杆柱的轴向力均由以下几项组成: 1)抽油杆柱自重,作用方向垂直向下;2)油井液体对抽油杆柱的液体浮力,作用方向垂直于抽油杆柱轴线向上; 3)油管内液柱在抽油泵柱塞有效面积(即柱塞截面积减去抽油杆截面积)上所产生的液体力,即油柱重,其方向垂直于柱塞表面向下;4)油管外液柱对柱塞下表面的浮力,其大小取决于泵的沉没度,方向垂直于柱塞表面向上;5)抽油杆柱于液柱运动所产生的惯性力。
惯性力正比于悬点运动的加速度,方向与加速度方向相反;6)抽油杆柱与液柱运动产生的振动力,其大小和方向都是变化的;7)各运动副之间的摩擦力,包括:泵筒与柱塞之间、抽油杆柱与油管之间的半干摩擦力、抽油杆柱与油柱之间、油柱与油管之间以及液体流过抽油泵游动阀时的液体摩擦力,它们均与抽油杆的运动方向相反。
上述(1)、(2)、(3)、(4)四项与抽油杆柱的运动无关,称为静载荷;(5)、(6)、(7)三项力与抽油杆柱的运动有关,称为动载荷。
1.单级抽油杆柱轴向力的计算方法下面将列出上述各力的计算公式,其公式中的各符号意义参考见本章后面的说明。
1)半干摩擦力14094.0-=δpM D P (2-1)2)液体通过泵阀时的水力阻力对柱塞底部所形成的向上的推力 先计算液体的雷诺数cp l e u d D s n .R 06352⨯⨯⨯=ρ (2-2)流量系数28.0=u (当4103⨯≤e R 时)n s d D u d u p l c ⨯⨯⨯⨯⨯=2020191ρ(当4103⨯>e R 时)下冲程液体通过游动阀时的水力阻力产生的向上推力L pp kld )n s (A)A A (A u n .P ρ⋅⋅⋅+⋅=2232172951 (2-3)上冲程液体通过游动阀时的水力阻力产生的向上推力L p lu v A A u P ρ⋅⋅⋅=220221 (2-4)3)作用于抽油杆柱底部液体向上的浮力gH A P L r f ⋅⋅⋅=ρ (2-5)4)液柱与抽油杆柱之间的摩擦力抽油杆柱与液柱之间的摩擦力主要与杆柱的运行速度以及油液本身的物性有关,其最大值可由下面的近似公式来确定:max p c lr v )m (m ln )m (m L u P ⋅--+-⋅⋅=1112222π (2-6)上述lr P 的计算中并未考虑抽油杆接箍的附加阻力,通常采用实验资料确定附加阻力。
学科前沿油气井杆管柱力学结课报告学院:车辆与能源学院专业:石油与天然气工程学生姓名:李欣学号:S130********指导教师:李子丰教授研究油气井内的杆管柱力学问题。
首先由美国 A Lubinski 于1951年开始研究,李子丰于1996年出版《油气井杆管柱力学》(石油工业出版社),2008年趋于完善《油气井杆管柱力学及应用》(石油工业出版社)。
主要内容为:油气井杆管柱及其在井下的运动状态、油气井杆管柱的载荷和失效方式,油气井杆管柱动力学基本方程及其在分析油气井杆管柱的稳定性、杆管柱的稳态拉力和扭矩、钻柱振动、下部钻具三维力学分析与井眼轨道预测、有杆泵抽油系统参数诊断与预测、热采井管柱力学分析和固井等方面的应用。
真理是世界上最珍贵的信仰,为了这一信仰,科研道路上涌现出了一批批坚定不移的科学家,他们用自己的执著和智慧为世人点亮了一盏盏明灯。
燕山大学的李子丰教授就这样一位执著追求、甘于奉献的学者。
自从事石油事业以来,李子丰教授十年如一日地辛勤工作,把自己的青春和热血都奉献给了祖国的石油事业,同时也对哲学和物理学领域的基本难题进行了深入不懈的研究。
如果说,科学研究是发现真理的舞台,那么,李子丰教授就是这舞台闪烁的明星,他身上体现出的一种为真理而献身的执著精神和勇敢正直的人格,不愧为我们当代年轻人学习的楷模。
结合石油工程科学和技术发展的需要,李子丰创立了有特色的油气井杆管柱力学理论体系。
该理论体系主要包括:油气井杆管柱动力学基本方程;斜直井段杆管柱稳定性力学分析的数学模型;油气井杆管柱的稳态拉力——扭矩模型;试油管柱力学分析的数学模型;压裂管柱力学分析的数学模型;定向井有杆泵抽油系统动态参数诊断与仿真的数学模型;钻柱纵向振动、扭转振动、纵向与扭转耦合振动的数学模型;下部钻具三维力学分析的数学模型;热采井套管柱力学分析的数学模型及预膨胀固井技术;割缝筛管力学分析的数学模型。
如今,依据这些理论模型所编写的软件,已经广泛地应用于我国石油钻采作业中。
第五章抽油杆柱力学分析及应用在采油工程中,人工举升设备可分为有杆抽油设备和无杆抽油设备。
有杆抽油设备主要由地面驱动设备(如抽油机)、抽油杆、抽油泵组成,这是应用最早、使用范围最广的一种举升设备,如油田上常见的游梁式抽油机等;无杆抽油设备的动力装置(如电机)主要位于井下、一般由电机、电泵组成,如潜油电泵采油设备等。
抽油杆是有杆抽油设备的重要部件[1],抽油杆柱是由数十根或数百根抽油杆通过接箍连接而成,它将抽油机的动力传递给井下抽油泵。
按照抽油杆的运动状态和匹配的抽油泵,可划分为往复泵抽油杆柱和螺杆泵抽油杆柱,其中往复泵抽油杆柱只做轴向运动、以传递轴向力为主,而螺杆泵抽油杆柱只做旋转运动、以传递扭矩为主。
位于井下数千米长的抽油杆柱工作状态较为复杂,能否在满足采油工艺条件下安全可靠的长期工作一直是备受关注的技术问题。
因此,国内外学者和技术人员为了提高抽油杆工作的可靠性和使用寿命,适应不同油气井的举升需要,主要从抽油杆制造和举升井应用两个方面开展研究,取得了大量研究成果。
在抽油杆的材料、结构和制造方面,随着国内外新材料的发明和应用,抽油杆型号和品种有了很大变化。
在原有的Cc级、D级、K级和H级钢制抽油杆基础上,又出现了玻璃钢抽油杆、不锈钢抽油杆、铝合金抽油杆、石墨带抽油杆、非金属带状连续抽油杆、椭圆形截面连续抽油杆、钢丝绳抽油杆等。
从结构上看出现了空心抽油杆,从功能上看出现了抗扭抽油杆。
这些新型抽油杆的出现,极大地满足了不同油气井举升的需要,也为抽油杆柱的力学分析和工程应用带来了新课题。
在抽油杆举升井应用方面,主要是基于抽油杆柱的力学分析结果,结合人工举升工艺和杆柱失效等情况,开展了以下三个方面的研究和应用:(1)抽油杆柱力学分析与设计口[2-5],确保井下抽油杆柱能够安全可靠的长期工作,避免杆柱和连接螺纹发生断裂失效事故。
(2)扶正器安放位置计算与杆管防偏磨技术[6-9],合理的扶正器设计可以使杆管偏磨、摩擦阻力达到最佳平衡点(若扶正器太多必然引起摩阻力增大、采油耗能增加,若扶正器太少又起不到防偏磨效果)。
油气井杆管柱是石油钻采作业的脊梁和中枢神经。
油气井杆管柱力学主要研究钻柱力学、井眼轨道控制、套管设计、有杆泵抽油系统等内容。
对油气井杆管柱进行系统全面、准确的力学分析, 可以实现快速、准确、经济地控制油气井的井眼轨道;准确地校核各种杆管柱的强度, 优化杆管柱设计;优化油气井井眼轨道;及时、准确地诊断、发现和正确处理各类井下问题;优选钻采设备和工作参数。
燕山大学石油工程研究所教授、博士生导师李子丰等在国家“八五”重点科技攻关项目“石油水平井钻井成套技术”、国家“九五”重点科技攻关项目“侧钻水平井钻井采油配套技术”、“863”计划项目“旋转导向钻井系统整体方案设计及关键技术研究”和“海底大位移井钻井技术”、国家自然科学基金项目“防止热采井套管热破坏的固井新技术”等支持下,在建立油气井杆管柱力学理论体系研究方面取得多项重要创新性科学发现。
一、提出了油气井杆管柱动力学基本方程, 该方程统一了原有的油气井杆管柱力学分析领域的各种微分方程, 为油气井杆管柱的各种动静态力学分析奠定了基本理论基础应油气田开发的迫切需要, 科学界自20世纪50年代以来针对油气井杆管柱的某些特殊问题已进行了较广泛、较深入的研究, 发表了数以百计的学术论文。
特别是“七五”和“八五”期间国家组织的对定向丛式井和水平井的科技攻关, 使我国的油气井杆管柱力学研究水平大大提高。
但所有的研究工作都是基于某项特殊需要而进行的。
对某些问题,如动力问题和几何非线性问题研究较少。
为此,需要对杆管柱动力学问题进行系统的研究, 建立统一的理论。
李子丰教授通过对油气井杆管柱进行力学和运动分析,推导了用于对油气井杆管柱进行各种力学分析的几何方程、运动平衡方程和本构方程。
由于油气井杆管柱动力学基本方程统一了现有一切油气井杆管柱力学分析的微分方程,现有的油气井杆管柱力学分析的微分方程都可由该动力学基本方程通过适当简化而得到,所以,该基本方程在石油钻采工程界具有广泛的应用。
论克拉玛依油田科学使用管柱力学摘要:然而作业管柱在井下的受力情况十分复杂,影响因素多,工作条件恶劣,因此,为保证井下作业施工的安全顺利进行,对井下作业管柱的受力变形分析和强度评定显得十分重要,它为管柱设计和安全施工提供可靠的理论依据。
关键词:管柱受力直梁材料钻井一、管柱受力基本情况介绍管柱受力在以往的设计井下作业管柱时,仅仅是凭借实践经验和主观判断,因而缺少科学的理论计算依据。
实际的井眼轴线并不是理想的直线,而是一条任意率的空问螺旋线,特别是在定向井和水平井中尤为突出,致使管柱和井壁产生接触。
因管柱外表面和井壁(套管内壁)之间有一定的初始间隙,因此井下管柱和井壁的接触问题是一种随机接触的非线性力学问题,其计算方法具有一定难度和复杂性,用一般的材料力学和结构力学力法是不能解决这类问题的,因此开展了试油测试射孔管柱受力及强度分析研究。
二、管柱受力分析的理论1.理论模型的建立1.1模型的建立根据井眼轴线形态和管柱组合结构,先用一般有限元法把管柱沿轴线离散为若干个空间直梁单元,然后在管柱的每个直梁单元的节点处设置一个间隙元。
总体坐标系是固定在井口上的笛卡尔坐标系,在管柱力学分析时,选取整体管柱串作为研究对象。
管柱串的外载荷也比较复杂,除管柱自重外,还有管柱内外表面分布的液体压力。
管柱外压力不仅引起管柱环向压缩变形,而且引起管柱的轴向伸长变形。
管柱内压力不仅引起管柱环向鼓胀变形,而目引起管柱轴向缩短变形。
另外,射孔弹的爆炸压力施加的外压力都比较大,将使管柱产生较大的轴向内力和变形。
1.2边界条件管柱下两端和圆形井壁,对管柱构成一定的约束作用。
这种约束作用可以用边界条件来描述:井壁作为管柱变形的自由移动边界部分,将由空问静力多向接触摩擦间隙元转化为接触摩擦边界条件,接触摩擦状态将由整个管柱的受力变形和平衡状态来确定,接触点处仃接触反力和摩擦力作用。
管柱下端简化成自由端,液体压力在管柱下端将产:生活塞力作用。
井下管柱力学分析及优化设计一、本文概述随着石油工业的发展,井下管柱作为石油开采过程中的关键组成部分,其力学性能及优化设计日益受到业界的广泛关注。
本文旨在全面探讨井下管柱的力学特性,以及针对其在实际工作环境中的受力情况进行详细分析,从而提出有效的优化设计策略。
通过对井下管柱的力学分析,可以深入理解其在石油开采过程中的行为规律,预测潜在的安全风险,并为提高管柱的承载能力和延长使用寿命提供理论支持。
优化设计的提出将有助于降低开采成本,提高石油开采效率,为石油工业的可持续发展做出贡献。
本文的研究不仅具有重要的理论价值,而且具有广泛的应用前景。
二、井下管柱力学基础在石油、天然气等地下资源开采过程中,井下管柱作为重要的设备之一,其力学特性对于确保开采过程的安全和效率具有决定性的影响。
因此,深入理解和掌握井下管柱的力学基础,是优化设计井下管柱结构、提高开采效果的前提。
井下管柱的力学行为主要受到轴向力、弯曲力、剪切力以及压力等多种力的影响。
这些力主要来源于地层应力、流体压力、温度变化、管柱自身的重量以及操作过程中的外力。
其中,轴向力主要由管柱自身的重量和地层应力引起,弯曲力则是由地层弯曲和管柱自身的挠曲造成,剪切力则可能由流体流动、温度变化等因素产生。
在力学分析中,我们通常采用弹性力学、塑性力学以及断裂力学等理论工具,对井下管柱在各种力作用下的行为进行深入的研究。
例如,通过弹性力学,我们可以分析管柱在弹性范围内的应力、应变分布,以及管柱的变形情况;而塑性力学则可以帮助我们理解管柱在塑性变形阶段的力学行为,以及管柱的承载能力;断裂力学则可以揭示管柱在断裂过程中的力学规律,为预防管柱断裂提供理论依据。
井下管柱的力学行为还受到流体压力的影响。
在开采过程中,地层流体(如石油、天然气、水等)的压力会对管柱产生压力作用,从而影响管柱的力学行为。
因此,在力学分析中,我们还需要考虑流体压力对管柱的影响,以及管柱与流体的相互作用。
文章编号:025322697(1999)0320087290油气井杆管柱动力学基本方程及应用Ο李子丰Ξ李敬元 马兴瑞 黄文虎(中国地质大学) (中国空间技术研究院) (哈尔滨工业大学)摘要:随着油气田开发的需要,自本世纪50年代以来,针对油气井杆管柱力学的某些特殊问题已进行了较广泛、较深入的研究,但所有的研究工作都是基于某项特殊需要而进行的,未形成统一的理论。
文中通过对油气井杆管柱进行力学和运动分析,建立了用于对油气井杆管柱进行各种力学分析的几何方程、运动平衡方程和本构方程,介绍了在油气井杆管柱的拉力和扭矩计算、下部钻具力学分析、油气井杆管柱的稳定性、有杆泵抽油系统井下工况诊断与预测、钻柱振动和热采井管柱力学分析中的应用。
主题词:钻柱;套管;油管;抽油杆;钻具;受力分析;偏微分方程1 前 言杆管柱是油气钻采工程中最重要的下井工具。
油气井杆管柱在充满流体的狭长井筒内工作,在各种力的作用下,处于十分复杂的受力、变形和运动状态。
对油气井杆管柱进行系统全面、准确的力学分析,可以达到如下目的:(1)快速、准确、经济地控制油气井的井眼轨道;(2)准确地校核各种杆管柱的强度,优化杆管柱设计;(3)优化油气井井身结构;(4)及时、准确地诊断、发现和正确处理各类井下问题;(5)优选钻采设备和工作参数。
自本世纪50年代以来,针对油气井杆管柱的某些特殊问题已进行了较广泛、较深入的研究,发表了数以百计的学术论文。
特别是“七五”和“八五”期间国家组织的对定向丛式井和水平井的科技攻关,使我国的油气井杆管柱力学研究水平大大提高。
但所有的研究工作都是基于某项特殊需要而进行的,未形成统一的理论,对某些问题如动力问题和几何非线性问题研究较少,为此需要对杆管柱动力学问题进行系统的研究,建立统一的理论。
本文通过对油气井杆管柱进行力学和运动分析,建立了用于对油气井杆管柱进行各种力学分析的几何方程、运动平衡方程和本构方程。
最后,简要介绍了这些基本方程在石油钻采工程中的应用。
第一章管柱结构及力学分析1.1水平井修井管柱结构1.1.1修井作业的常见类型修井作业的类型很多,包括井筒清理类的、打捞落物类的、套管修补类的。
1)井筒清理类(1)冲砂作业。
(2)酸化解堵作业。
(3)刮削套管作业。
2)打捞类(1)简单打捞作业。
(2)解卡打捞作业。
(3)倒扣打捞作业。
(4)磨铣打捞作业。
(5)切割打捞作业。
3)套管修补类(1)套管补接。
(2)套管补贴。
(3)套管整形。
(4)套管侧钻。
在各种修井作业中,打捞作业约占2/3以上。
井下落物种类繁多、形态各异,归纳起来主要有管类落物、杆类落物、绳类落物、井下仪器工具类落物和小零部件类落物。
1.1.2修井作业的管柱结构1)冲砂:前端接扶正器和冲砂喷头。
图1 冲砂管柱结构2)打捞:直接打捞,下常规打捞工具。
图2 打捞管柱结构3)解卡:水平段需下增力器和锚定器。
图3 解卡管柱结构4)倒扣:水平段需下螺杆钻具和锚定器。
图4 倒扣管柱结构5)磨铣:水平段需下螺杆钻具、锚定器和铣锥。
图5 磨铣管柱结构6)酸化:分段酸化需下封隔器。
图6 分段酸化管柱结构1.1.3刚性工具入井的几何条件在水平井打捞施工中,经常使用到大直径、长度较大的工具,工具能否顺利通过造斜率较大的井段是关系到施工的成败关键,对刚性工具,如果工具过长或工具支径过大,工具通过最大曲率处将发生干涉。
对于简单的圆柱形工具,从图7可以得出工具通过最大曲率井段的极限几何关系为:22)d 2/D R (2)/D (R 2L +--+=式中:L —工具长度;R —曲率半径;D —套管直径;d —工具直径。
图7 简单工具入井极限几何关系 图8 刚性工具串入井极限几何关系对于复杂外形的工具或刚性工具串,从图8可以得出工具通过最大曲率井段的极限几何关系为:222212)2d 2d 2D R ()2D R ()2d 2d 2D R ()2D (R L ++--++++--+= 式中:L —工具长度;R —曲率半径;D —套管直径;d —工具中部直径;d 1—工具上端直径;d 2—工具下端直径。