深井试油管柱力学分析及其应用
- 格式:pdf
- 大小:303.85 KB
- 文档页数:4
深井生产作业管柱力学研究毕业论文目录第一章前言 (1)1.1研究目的及意义 (1)1.2管柱力学研究历程 (2)1.3深井管柱力学研究理论与方法 (9)1.3.1基本理论 (9)1.3.2求解方法 (10)1.4研究容及技术路线 (12)1.4.1本文的主要研究容: (12)1.4.2技术路线 (13)第二章深井油井管柱力学分析 (14)2.1井筒温度、压力预测模型 (14)2.1.1井筒温度场计算模型 (14)2.1.2井筒压力场计算模型 (15)2.1.3温度、压力预测模型程序编制(附录A) (18)2.2带封隔器油井管柱基本效应 (19)2.2.1活塞效应 (22)2.2.2螺旋弯曲效应 (23)2.2.3鼓胀效应 (27)2.2.4温度效应 (29)2.3深井油井管柱载荷计算 (31)2.4深井油井管柱变形计算 (35)第三章深井油井管柱安全校核 (41)3.1油井光管柱应力校核 (41)3.1.1油管安全系数确定 (41)3.1.2抗外挤应力校核 (42)3.1.3抗压应力校核 (44)3.1.4 丝扣连接屈服强度校核 (44)3.2带封隔器油管柱安全校核 (45)3.3第四强度理论校核 (46)第四章实例计算 (50)4.1 常用油管技术参数 (50)4.2实例计算 (54)4.2.1井筒压力、温度分布(500m为一段) (54)4.2.2该油管柱轴向变形计算 (56)4.2.3该油管柱载荷计算 (60)4.2.4单向应力校核 (61)4.2.5第四强度理论校核 (62)第五章结论 (65)参考文献 (66)致谢 (68)附录 (69)第一章前言1.1研究目的及意义随着石油勘探开发技术的不断进步,钻井深度越来越深,环境也越来越恶劣。
目前许多井的垂直深度都超过了4500米,属于深井[1]。
深井具有高温高压高产以及施工条复杂的特点。
具体如下[2]:(1)高温高压,井底温度普遍超过130℃,压力超过70Mpa。
分析油田采油管柱技术的应用近年来,随着石油工业的发展,对于油田采油管柱技术的需求也在不断增加。
随着石油资源的日益枯竭,传统的采油方法已经无法满足日益增长的需求,因此油田采油管柱技术的应用变得尤为重要。
本文将对油田采油管柱技术的应用进行分析,并探讨其在油田开发中的重要性。
一、油田采油管柱技术的概念油田采油管柱技术是通过管柱设备进行石油油井的生产过程,是制定钻井方案、完成油气井的调查评价和开发程度、进行油井维护、故障诊断、评价油气藏储层特性等一系列工作的一个重要手段。
通过有效合理的油田采油管柱技术应用,可以提高油井生产效率,降低工作成本,延长油井寿命,提高油气藏的有效开采程度,有效保障油气井的安全生产。
1. 提高采油效率油田采油管柱技术可以通过不同类型管柱的使用,优化井筒结构,提高注采效率。
通过合理设计的钻井方案,可以减少钻井过程中的阻力,提高动态地层控制效果,提高油井生产速度。
油田采油管柱技术还可以通过改善油井完井和改造工作,提高油井的产能和采收率。
2. 降低作业成本油田采油管柱技术的应用可以降低作业成本,提高资金利用效率。
通过精确的油气井地层分析,可以避免打井和修井的次数,减少井下作业的时间和成本,大幅降低复杂油气井的作业风险。
通过优化井筒结构,可以降低油井产能和注采效率所需的功率,降低电力成本。
3. 延长油井寿命油田采油管柱技术的应用可以有效延长油井的寿命。
通过合理的井下作业和井眼完整度评价,可以避免井底温泉和油层差化现象,降低油井堵塞和结垢风险,延长油井的寿命。
通过有效管柱的冲洗和润滑,还可以降低管柱和井下设备的磨损,延长其使用寿命。
油田采油管柱技术的应用可以提高油气藏的有效开采程度。
通过精确的油气藏储层特性评价和地层分析,可以避免破坏油层结构和区分不同产层,提高采收率。
通过合理的井下作业和油田维护,还可以避免油气井的效率低落和生产终止,提高油气井的有效开采程度。
油田采油管柱技术的应用对于保障油气井的安全生产,提高油井的生产效率和产能,降低作业成本和电力成本,延长油井的寿命,提高油气藏的有效开采程度,具有非常重要的作用。
《水平井杆管柱力学的有限元分析及应用》篇一摘要:随着油田开发的深入,水平井技术日益受到重视。
本文通过对水平井杆管柱力学进行有限元分析,深入探讨其在实际应用中的关键作用和优势。
首先介绍了有限元法的基本原理及在杆管柱力学分析中的应用;然后详细阐述了水平井杆管柱的力学模型和有限元模型的建立过程;接着通过实例分析,展示了有限元分析在水平井杆管柱设计、优化及安全评估中的应用;最后总结了该方法的优点及未来研究方向。
一、引言随着石油资源的不断开发,水平井技术因其能够提高采收率、降低开发成本等优势,在油田开发中得到了广泛应用。
水平井杆管柱作为油气开采的关键设备,其力学性能的优劣直接关系到油田开发的效率和安全。
因此,对水平井杆管柱进行力学分析具有重要意义。
有限元法作为一种有效的数值分析方法,在杆管柱力学分析中得到了广泛应用。
本文将通过对水平井杆管柱力学的有限元分析,探讨其在实际应用中的价值和效果。
二、有限元法的基本原理及应用有限元法是一种通过离散化处理连续体问题的数值分析方法。
它通过将连续体划分为有限个单元,对每个单元进行近似求解,从而得到整个连续体的近似解。
在杆管柱力学分析中,有限元法可以有效地模拟杆管柱在复杂地质条件下的受力情况,为杆管柱的设计和优化提供有力支持。
三、水平井杆管柱的力学模型及有限元模型建立1. 力学模型:水平井杆管柱的力学模型主要考虑了杆管柱的几何尺寸、材料性能、边界条件等因素。
通过建立合理的力学模型,可以更好地描述杆管柱在复杂地质条件下的受力情况。
2. 有限元模型建立:在建立有限元模型时,需要首先对杆管柱进行离散化处理,划分为若干个有限元。
然后根据力学模型,对每个有限元进行分析和求解,从而得到整个杆管柱的受力情况。
在建模过程中,需要考虑杆管柱的材料性能、几何尺寸、边界条件等因素,以确保模型的准确性和可靠性。
四、实例分析以某油田的水平井杆管柱为例,通过有限元分析,探讨了其在不同地质条件下的受力情况。
《水平井杆管柱力学的有限元分析及应用》篇一摘要:本文详细阐述了水平井杆管柱力学的有限元分析方法,并通过具体案例展示其在实际工程中的应用。
通过对水平井杆管柱进行三维建模、材料属性定义、边界条件设置、网格划分和求解分析等步骤,利用有限元分析软件进行计算,探讨了其力学性能及优化方案。
一、引言随着石油、天然气等资源的开发不断深入,水平井技术因其高效采油、气藏开发的特性得到了广泛应用。
在水平井开发过程中,杆管柱作为钻井和采油的重要设备,其力学性能的稳定性和安全性直接关系到整个开采过程的安全性和效率。
因此,对水平井杆管柱的力学性能进行精确的有限元分析具有重要意义。
二、水平井杆管柱的有限元分析方法1. 三维建模根据实际工程需求,建立水平井杆管柱的三维模型。
模型应包括杆管柱的几何尺寸、材料属性等关键信息。
2. 材料属性定义根据杆管柱的实际材料,定义其弹性模量、泊松比、屈服极限等材料属性。
3. 边界条件设置根据实际工作条件,设置杆管柱的边界条件,如固定端、活动端等。
4. 网格划分将三维模型进行网格划分,形成有限元网格,以便进行后续的有限元分析。
5. 求解分析利用有限元分析软件对模型进行求解分析,得到杆管柱的应力、应变等力学性能参数。
三、有限元分析软件的应用以某油田水平井杆管柱为例,采用上述有限元分析方法,利用专业有限元分析软件进行计算。
通过计算得到杆管柱的应力分布、变形情况等力学性能参数,并对结果进行分析和评估。
四、案例分析以实际工程为例,对水平井杆管柱进行有限元分析。
首先,建立该工程的三维模型,并定义材料属性及边界条件。
然后,进行网格划分并利用有限元分析软件进行求解。
通过分析得到杆管柱的应力分布图、变形图等结果,并对其力学性能进行评价。
同时,根据分析结果提出优化方案,以提高杆管柱的力学性能和安全性。
五、结论本文通过对水平井杆管柱进行有限元分析,探讨了其力学性能及优化方案。
通过实际案例的分析,验证了有限元分析方法在水平井杆管柱力学性能评估及优化中的有效性。
简析油井调层开采过程中管柱技术研究与应用1、概述油井经过多轮蒸汽吞吐开采后,已动用油层含油饱和度大大降低,含水上升,汕汽比下降,当降至经济极限以下时,应对原井段封堵调层。
对原井段下部有新油层的油井,可采用封上采下技术来解决。
现有的封上采下工艺主要有以下两种:(1)通常对原开采汕层的封堵采用注水泥方法,但該方法施工时间长,施工工作量大(需要进行钻磨作业),尤其进行大跨度下返调层开采时,需要进行大修作业,施工费用较高,封堵后的油层由于被污染而不能恢复。
(2)另一种是利用通过液压座封与机械座封相结合的封堵管柱进行封堵,但因为其无法克服连接管在注汽时的热应力,封堵长度一般不能超过20m,不能进行大跨度封堵。
且现用的堵水工具的中心管大多为62mm,这样在下泵时无法将泵挂在需要时下到封隔器以下,后续检泵时也必需将上次的堵水丁具捞出后才能进行冲砂作业,然后再重新下工具封堵,这样必将导致作业时间长、工序烦琐、材料成本浪费严重。
因此,我们研制开发并推广应用了大通径、大跨度、耐高温调层开采工艺技术,该技术实现了大通径(φ100mm)、大跨度(任意跨度)、耐高温封上采下工艺,解决了油井在下返调层开采中存在的诸多问题,现场应用效果显著。
2、结构原理2.1管柱结构该管柱主要由喇叭口、下封隔器、补偿器、中间连接管及上封隔器组成。
2.2工作原理工作机理是液压坐封与自封相结合,从而实现大跨度封堵。
上封隔器将释放机构与锚定密封装置结合为一体,其通过液压一次完成封隔器的座封、锚定和丢手操作:下封隔器依靠注汽温度自动工作,注汽时,装在封隔器密闭腔内的药剂受热气化(药剂的临界温度200℃),体积迅猛增加,于是产生强大的推力推动活塞挤压密封件使之膨胀,实现密封,其内部锁紧机构保证停注时密封件不能回弹,使其在生产过程中仍保持密封;补偿器用来补偿中间连接管注汽时产生的热伸长,其补偿长度根据实际井况有所不同,从而实现大跨度封堵。
2.3主要技术参数(1)最大外径;152mm(2)涵径:100mm(3)丢手压力:15MPa(4)工作压力:13MPa(5)工作温度:350℃(6)解封负荷:100-200KN(7)耐腐蚀性能:可耐所有油井产出液腐蚀。
4 测试管柱的力学分析测试管柱在井筒中要受到各种外力的作用,如内外压力、重力、井壁的反力等的作用。
这些作用力与温度共同作用在测试管柱上,造成管柱的变形,如拉伸变形和屈曲变形等,以及在测试管柱中产生内力,如轴向力、弯矩等。
如果这些变形或内力过大,就可能对测试管柱产生损坏。
在不同的操作中,这些外力是不同的。
因而,各种工况所产生的内力也不尽相同。
例如,下放测试管柱时,测试管柱受的外力为重力和完井液对管柱的浮力,上部则由钻机大钩吊着;在坐封时,大钩逐步加上钻压,即松弛力,使封隔器坐封;在开井时,测试管柱中有天然气流过,因而测试管柱内外压力会发生变化,此外,测试管柱的温度变化会使管柱伸长。
因此,在分析时必须根据不同工况进行具体分析。
管柱在受到外力作用时产生变形,根据不同的内力,变形有所不同。
众所周知,当管柱的轴向力是受拉时,管柱只是伸长,而当管柱的轴向力是受压时,除了轴向缩短外,对于这种长细比很大的管柱,管柱还会产生屈曲变形。
屈曲变形反过来又会影响内力。
因此,对测试管柱在井筒中的力学分析有助于合理地设计测试管柱及其测试操作。
在本章中,我们研究井眼中管柱的受力分析、受压部分的屈曲分析和测试管柱的强度分析。
4.1 测试管柱各工况的受力分析在地层测试过程中,需要进行测试管柱的下放(简称为下钻)、用低比重流体替代测试管柱中的流体(简称为低替)、封隔器坐封(简称为坐封)、打开井口关井阀诱喷(简称为开井)、井下关井阀关井(简称为1关)、井口关井阀关井(简称为2关)、高比重泥浆循环压井(由井口油管将高比重泥浆压入,从环形空间流出;简称为循环)或高比重泥浆反循环压井(由井口环形空间将高比重泥浆压入,从油管流出;简称为反循环)和压裂与酸化(简称为高挤酸)等操作。
在这些操作中,测试管柱受力是不一样的。
下面我们根据不同工况分析测试管柱的受力情况。
4.1.1 下钻完 测试管柱在下放的过程中,井眼中存在有完井液。
测试管柱此时受有重力、悬挂力和液体的作用力(浮力)。