6-3多服务台指数分布排队系统
- 格式:ppt
- 大小:452.50 KB
- 文档页数:41
排队问题知识点总结排队论起源于20世纪初学者与工程师们在电报、电话交换、交通运输等实际工作中遇到的问题。
20世纪20年代,这些问题引起了数学家的注意。
1925年丹麦学者A.K.厄劳札( Agner Krarup Erlang )首先提出要建立一个数学模型对通信系统中的电报在传递和处理中的排队问题进行研究。
他用数学上的标准方法解决了问题,从此排队论这一学科便有了起步发展的积淀。
今天,排队论已在交通运输、电信通讯、工程及服务管理、医学卫生、经济学、统计学、计算机科学等系统分析领域中得以广泛应用。
排队问题所涉及的知识点包括排队论基本概念、排队模型、排队系统性能评价、排队过程中的成本分析、排队优化模型等。
下面就对排队问题的相关知识点进行总结阐述。
排队论基本概念排队论是研究由于服务台能力有限以及到达率和要求的总体量之差异所引起的待服务队列问题。
在排队论中,通常会涉及到以下几个基本概念:- 顾客到达模型:描述顾客到达的规律,常用的到达模型包括泊松过程、指数分布、正态分布等。
- 服务台模型:描述服务台的服务能力,包括单一服务台、多重服务台、无限服务台等。
- 排队规则:描述顾客在队列中等待和被服务的规则,包括先来先服务(FIFO)、最短排队等待(SJF)、最高优先权优先服务(HPF)等。
- 排队系统性质:包括平均队长、平均等待时间、系统繁忙度等系统性能指标。
排队模型排队模型是对排队系统进行描述和分析的数学模型。
在排队模型中,通常会考虑到以下几种基本排队模型:- M/M/1模型:描述单一服务台、顾客到达符合泊松过程、服务时间符合指数分布的排队系统。
- M/M/c模型:描述多重服务台、顾客到达符合泊松过程、服务时间符合指数分布的排队系统。
- M/G/1模型:描述单一服务台、顾客到达符合泊松过程、服务时间符合一般分布的排队系统。
- M/D/1模型:描述单一服务台、顾客到达符合泊松过程、服务时间是固定的排队系统。
排队系统性能评价排队系统性能评价是对排队系统性能进行量化与分析的过程,主要包括以下几个方面:- 平均队长:描述系统队列中平均存在的顾客数量。
排队论模型排队论也称随机服务系统理论。
它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。
现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。
排队的内容虽然不同,但有如下共同特征:➢有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。
➢有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。
由顾客和服务员就组成服务系统。
➢顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。
排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。
一、排队论的一些基本概念为了叙述一个给定的排队系统,必须规定系统的下列组成部分:➢输入过程即顾客来到服务台的概率分布。
排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。
我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。
所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。
➢排队规则即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。
所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。
等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。
➢服务机构服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。
和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。
若以ξn表示服务员为第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξn},n=1,2,…所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ1,ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{Tn}也是独立的。
1.//1/M M ∞排队系统//1/M M ∞排队系统是单服务台等待制排队模型,可描述为:假设顾客以Poisson 过程(具有速率λ)到达单服务员服务台,即相继到达时间间隔为独立的指数型随机变量,具有均值1λ,若服务员空闲,则直接接受服务,否则,顾客排队等待,服务完毕则该顾客离开系统,下一个排队中的顾客(若有)接受服务。
相继服务时间假定是独立的指数型随机变量,具有均值μ。
两个M 指的是相继到达的间隔时间和服务时间服从负指数分布,1指的是系统中只有一个服务台,∞指的是容量为无穷大,而且到达过程与服务过程是彼此独立的。
为分析之,我们首先确定极限概率0,1,2,n p n •••=,,为此,假定有无穷多房间,标号为 0,1,2,•••,并假设我们指导某人进入房间n (当有n 个顾客在系统中),则其状态转移框图如图所示。
图 //1/M M ∞排队系统状态转移速率框图由此,我们有状态 离开速率=进入速率0 01p p λμ=,1n n ≥ ()11n n n p p p λμλμ-++=+解方程组,容易得到00,1,2,ii p p i λμ•••⎛⎫== ⎪⎝⎭,再根据0011()1n n n n p p p λμλμ∞∞=====-∑∑得到:01p λμ=-, ()(1),1nn p n λλμμ=-≥ 令/ρλμ=,则ρ称为系统的交通强度(traffic intensity )。
值得注意的是这里要求1ρ<,因为若1ρ>,则0n p =,且系统中的人数随着时间的推移逐渐增多直至无穷,因此对大多数单服务排队系统,我们都假定1ρ<。
于是,在统计平衡的条件下(1ρ<),平均队长为,1,1j j L jp λρρμλρ∞====<--∑(5-52)由于a λλ=,根据式(5-2)、(5-3)以及上式,可得: 平均逗留时间为:1,1LW ρλμλ==<- (5-53) 平均等待时间为:1[],1()(1)Q W W E S W λρρμμμλμρ=-=-==<-- (5-54)平均等待队长为:22,1()1Q Q L W λρλρμμλρ===<-- (5-55)另外,根据队长分布易知,01ρρ=-也是系统空闲的概率,而ρ正是系统繁忙的概率。
排队论模型及其应用摘要:排队论是研究系统随机服务系统和随机聚散现象匸作过程中的的数学理论和方法,乂叫随机服务的系统理论,而且为运筹学的一个分支。
乂主要称为服务系统,是排队系统模型的基本组成部分。
而且在日常生活中,排队论主要解决存在大量无形和有形的排队或是一些的拥挤现象。
比如:学校超市的排队现象或岀行车辆等现象,。
排队论的这个基本的思想是在1910年丹麦电话工程师埃尔朗在解决自动电话设计问题时开始逐渐形成的。
后来,他在热力学统计的平衡理论的启发下,成功地建立了电话的统讣平衡模型,并山此得到了一组呈现递推状态方程,从而也导出著名的埃尔朗电话损失率公式。
关键词:出行车辆;停放;排队论;随机运筹学引言:排队论既被广泛的应用于服务排队中,乂被广泛的应用于交通物流领域。
在服务的排队中到达的时间和服务的时间都存在模糊性,例如青岛农业大学歌斐木的人平均付款的每小时100人,收款员一小时服务30人,因此,对于模糊排队论的研究更具有一些现实的意义。
然而有基于扩展原理乂对模糊排队进行了一定的分析。
然而在交通领域,可以非常好的模拟一些交通、货运、物流等现象。
对于一个货运站建立排队模型,要想研究货物的一个到达形成的是一个复合泊松过程,每辆货车的数量为陷而且不允许货物的超载,也不允许不满载就发车,必须刚刚好,这个还是一个具有一般分布装车时间的一个基本的物流模型。
一.排队模型排队论是运筹学的一个分支,乂称随机服务系统理论或等待线理论,是研究要求获得某种服务的对象所产生的随机性聚散现象的理论。
它起源于A.K.Er-lang的著名论文《概率与电话通话理论》。
一般排队系统有三个基本部分组成⑴:(1)输入过程:输入过程是对顾客到达系统的一种描述。
顾客是有限的还是无限的、顾客相继到达的间隔时间是确定型的也可能是随机型的、顾客到达是相互独立的还是有关联的、输入过程可能是平稳的还是不平稳的。
(2)排队规则:排队规则是服务窗对顾客允许排队及对排队测序和方式的一种约定。
运筹优化(⼗六)--排队论基础及其最优化求解排队过程的⼀般表⽰下图1就是排队过程的⼀般模型。
各个顾客由顾客源(总体)出发,到达服务机构 (服务台、服务员)前排队等候接受服务, 服务完成后就离开。
排队结构指队列的数⽬和排列⽅式 , 排队规则和服务规则是说明顾客在排队系统中按怎样的规 则、次序接受服务的。
我们所说的排队系统就指图中虚线所包括的部分。
排队系统的组成和特征⼀般的排队系统都有三个基本组成部分 : 1输⼊过程 ; 2排队规则 ; 3服务机构。
1. 输⼊过程输⼊即指顾客到达排队系统 , 可能有下列各种不同情况 , 当然这些情况并不是彼此排斥的。
(1) 顾客的总体(称为顾客源)的组成可能是有限的,也可能是⽆限的。
上游河⽔流⼊⽔库可以认为总体是⽆限的 , ⼯⼚内停机待修的机器显然是有限的总体。
(2) 顾客到来的⽅式可能是⼀个⼀个的, 也可能是成批的。
例如到餐厅就餐就有单个到来的顾客和受邀请来参加宴会的成批顾客,我们将只研究单个到来的情形。
(3) 顾客相继到达的间隔时间可以是确定型的, 也可以是随机型的。
(4) 顾客的到达可以是相互独⽴的,就是说,以前的到达情况对以后顾客的到来没有影响 , 否则就是有关联的 。
(5) 输⼊过程可以是平稳的,或称对时间是齐次的,是指描述相继到达的间隔时间分布和所含参数(如期望值、⽅差等)都是与时间⽆关的, 否则称为⾮平稳的。
2. 排队规则(1) 顾客到达时, 如所有服务台都正被占⽤,在这种情形下顾客可以随即离去, 也可以排队等候。
随即离去的称为即时制或称损失制 , 因为这将失掉许多顾客 ; 排队等候的称为等待制。
普通市内电话的呼唤属于前者 , ⽽登记市外长途电话的呼唤属于后者。
对于等待制,为顾客进⾏服务的次序可以采⽤下列各种规则: 先到先服务, 后到先服 务 , 随机服务 , 有优先权的服务等。
先到先服务 , 即按到达次序接受服务 , 这是最通常的情形。
后到先服务,如乘⽤电梯的顾客常是后⼊先出的。
核酸检测排队问题数学建模核酸检测排队问题是一个典型的排队论问题。
排队论是数学的一个分支,主要研究排队等待和系统服务的问题。
以下是一个简单的数学模型来描述这个问题:1. 模型假设:假设核酸检测点只有一个,即只有一个服务台。
到达过程服从泊松分布,即每单位时间到达的人数是一个随机变量,且这个随机变量服从泊松分布。
服务时间服从指数分布,即每个人接受核酸检测所需的时间是一个随机变量,且这个随机变量服从指数分布。
2. 排队系统的表示:M/M/1表示:到达过程是泊松分布(M表示"Markovian",即到达是相互独立的),服务时间也是指数分布(第二个M表示"Markovian"),并且只有一个服务台(1)。
3. 系统状态:系统状态可以用一个非负整数n 来表示,表示当前排队等待的人数。
4. 系统平衡方程:系统的平衡方程组为:P(0) = ρP(1) + (1 - ρ)P(0)其中 P(n) 表示系统中有 n 个人在等待的概率,ρ 是平均到达率与平均服务率之比。
5. 求解平衡方程:求解平衡方程可以得到 P(0), P(1), P(2), ... 等。
6. 性能指标:系统通常关注的性能指标包括:平均排队长度、平均等待时间、平均忙期等。
这些都可以通过求解平衡方程得到。
7. 扩展模型:如果考虑多个核酸检测点(服务台),则模型变为 M/M/c,其中 c 是服务台的数量。
如果考虑到达率和服务率随时间变化的情况,则模型会更复杂。
8. 实际应用:根据这个模型,可以预测在某个时间段内需要多少个核酸检测点来满足需求,或者预测某个时间段内的平均排队长度等。
这个模型提供了一个基本的框架来描述核酸检测排队问题,但实际情况可能更复杂,需要考虑更多的因素。