同类项及合并同类项
- 格式:ppt
- 大小:719.50 KB
- 文档页数:19
同类项与合并同类项在数学的奇妙世界里,同类项与合并同类项是非常基础且重要的概念。
虽然它们看似简单,但对于我们理解和解决代数问题却起着至关重要的作用。
首先,咱们来聊聊啥是同类项。
简单说,同类项就是那些在代数表达式中,所含的字母相同,并且相同字母的指数也相同的项。
比如说,“3x”和“5x”就是同类项,因为它们都只有一个字母“x”,而且“x”的指数都是1。
再比如,“2y²”和“7y²”也是同类项,因为都有字母“y”,并且“y”的指数都是 2。
但“3x”和“5y”就不是同类项,字母都不一样,对吧?那为啥要搞清楚同类项呢?这是因为同类项能够帮助我们简化和解决代数式子,这就引出了合并同类项。
合并同类项,其实就是把同类项的系数相加,字母和字母的指数保持不变。
比如说,对于式子“3x +5x”,因为它们是同类项,所以可以合并,结果就是“(3 + 5)x =8x”。
再看“2y² +7y²”,合并后就是“(2 + 7)y²=9y²”。
想象一下,假如我们有一个复杂的代数式子,比如“3x + 2y 5x +4y”。
这时候,我们先找出同类项,“3x”和“-5x”是同类项,“2y”和“4y”是同类项。
然后进行合并,“3x 5x =-2x”,“2y + 4y =6y”,最终这个式子就简化成了“-2x +6y”。
是不是一下子清晰明了了很多?合并同类项在解决实际问题中也特别有用。
比如说,咱们去买水果,苹果一斤 5 元,买了 3 斤,香蕉一斤 8 元,买了 2 斤。
那么总共花的钱就可以用代数式表示为“5×3 +8×2”。
这里“5×3”和“8×2”虽然不是同类项,但如果我们想知道两种水果价格的总和,就得先分别算出各自的价格,即“15 元”和“16 元”,然后再相加,得到“15 + 16 = 31 元”。
这其实也相当于在进行类似合并同类项的操作。
同类项与合并同类项是指在代数式中,指数的底相同且指数也相同的项。
在进行运算时,我们可以将同类项进行合并,达到简化代数式的目的。
本文将介绍同类项的概念,并提供一些合并同类项的例子。
一、同类项的概念同类项是指在代数式中,指数的底相同且指数也相同的项。
具体来说,同类项必须满足以下条件:1. 指数的底相同,如3x和2x都是同类项,但是2x和3y不是同类项;2. 指数相同,如3x²和4x²都是同类项,但是3x²和3x³不是同类项。
同类项的概念对于简化代数式非常重要,因为合并同类项可以简化计算过程,使得我们更容易得到结果。
二、合并同类项的步骤合并同类项的步骤主要包括以下几个方面:1. 将代数式中的各项按照相同的指数进行分类,将同类项放在一起;2. 对于同类项,将它们的系数进行相加或相减,结果作为新的系数;3. 将新的系数与指数重新组合成新的同类项。
下面是一些具体的例子,将帮助我们更好地理解如何合并同类项。
例子一:将代数式2x + 3x进行同类项的合并。
解:这个代数式中有两个项,它们的底都是x,且指数都是1。
因此,这两个项是同类项。
将它们的系数相加,得到新的系数为2 + 3 = 5。
将新的系数与指数重新组合,得到新的同类项5x。
因此,2x + 3x可以简化为5x。
例子二:将代数式4x² - 2x² + 3x - x进行同类项的合并。
解:这个代数式中有四个项。
首先,我们将它们按照指数进行分类。
其中,4x²和-2x²是同类项,它们的系数相加得到2x²;3x和-x是同类项,它们的系数相加得到2x。
因此,4x² - 2x² + 3x - x可以合并为2x² + 2x。
通过以上例子,我们可以看出进行同类项的合并可以简化代数式,使其更加简洁明了。
三、同类项与多项式运算同类项的合并不仅适用于简化代数式,也在多项式的运算中发挥着重要作用。
合并同类项法则合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。
法则如下:1、合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变。
字母不变,系数相加减。
2、同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
像4y与5y,100ab与14ab这样,所含字母相同,并且相同字母的次项的指数也相同的项叫做同类项,所有常数项都是同类项。
(常数项也叫数字因数)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
注:(1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;(2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;(3)所有的常数项都是同类项。
同类项性质:(1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;(2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;(3)所有的常数项都是同类项。
例如:1. 多项式3a-24ab-5a-7—a+152ab+29+a中3a与-5a是同类项-24ab与152ab是同类项【同类项与字母前的系数大小无关】2. -7和29也是同类项【所有常数项都是同类项。
】3. -a和a也是同类项【a的系数是1 a的系数是1 】4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】5.(3+k)与(3—k)是同类项。
◎同类项的知识点拨合并同类项:多项式中的同类项可以合并,叫做合并同类项。
合并同类项步骤:(1)准确的找出同类项。
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
(3)写出合并后的结果。
在掌握合并同类项时注意:1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.2.不要漏掉不能合并的项。
2.2(1)整式的加减--同类项、合并同类项一.【知识要点】1.同类项的概念:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项. 注意:①“两相同”同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②“两无关”是指同类项与(系数)和(字母)的顺序无关; ③所有的常数项都是同类项。
2.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 进行合并同类项的一般步骤: (1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起; (3)利用有理数的加减混合运算,进行系数相加; (4)字母与字母的系数不变. 二.【经典例题】 1.下列几组式子:(1)3y x 2与–3y x 2 (2)0.2b a 2与0.22ab (3)11abc 与9bc (4)224b a 和224n m(5)4332n m 与–3423m n (6)4z xy 2与4yz x 2 (7)6与6π (8)22和2a其中是同类项的是:_________________________________________.2.合并下列多项式中的同类项: (1)2a 2b -3a 2b+12a 2b ; (2)a 3-a 2b+ab 2+a 2b -ab 2+b 3.3.若25y x n -与m y x 2312是同类项,则=m ,=n 4.已知()2210a b -++=,求22222133542a b ab a b ab ab ab a b +-++-+的值5.已知0123=++y xb na b ma (m 、n 均不为0),求y x nm+-2的值。
6. 已知关于x,y 的单项式2322+-m n y x y ax与的和等于0,求a+m+n 的值为_______.7.(2020年绵阳期末第5题)若单项式﹣2m 2b n 3a﹣2与n a +1m b﹣1可以合并,则代数式2b ﹣a=( ) A .B .C .D .三.【题库】 【A 】1.化简:(1)3x -x =_____;(2)-2y 2x +3y 2x =______;(3)-22x -32x +y -2y =______.2.在代数式4x 2+4xy -8y 2-3x+1-5x 2+6-7x 2中,4x 2的同类项是 ,6的同类项是 .3.若2x k y k+2与3x 2y n 的和为5x 2y n ,则k= ,n= .4.若-3xm -1y4与13x2yn+2是同类项,求m,n.5.合并同类项:(1)3x 2-1-2x -5+3x -x 2;(2)-0.8a 2b -6ab -1.2a 2b+5ab+a 2b.6.下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项;③x 2-与2x-是同类项;④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个7.若b a M 22=,23ab N =,b a P 24-=,则下面计算正确的是( )A .235b a N M =+B .ab P N -=+C .b a P M 22-=+D .b a P N 22=- 8.若323y xm-与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19.合并同类项22227435ab ab ab ab b a -+--=_______________ 10.求多项式3x 2+4x -2x 2-x+x 2-3x -1的值,其中x=-3. 11.下列计算正确的是( )A.2x +3y =5xyB.-3x -x =-x C.-xy +6x y =5x y D.5ab -b a =ab 2232252232227223212.已知单项式b a xy -y x +-431321与是同类项,那么b a ,的值分别是( ) A .⎩⎨⎧==.1,2b a B .⎩⎨⎧-==.1,2b a C .⎩⎨⎧-=-=.1,2b a D .⎩⎨⎧=-=.1,2b a13.若单项式﹣35a b 与2m a b 是同类项,则常数m 的值为( ) A.﹣3 B.4 C.3 D.2 14.合并下列各式中的同类项(1)b a ab b a ab b a 2228.44.162.0++--- (2)222614121x x x --(3)222234422xy y x xy xy xy y x -++-- (4)2238347669a ab a ab +-+-+-15.下列各组中的两式是同类项的是( ) A .()32-与()3n - B .b a 254-与c a 254- C .2-x 与2- D .n m 31.0与321nm - 16.若12x a -1y 3与-3x -b y 2a+b 是同类项,那么a,b 的值分别是( ) A.a=2, b=-1. B.a=2, b=1. C.a=-2, b=-1. D.a=-2, b=1. 17.指出下列多项式中的同类项:(1)3x -2y+1+3y -2x -5;(2)3x 2y -2xy 2+13xy 2-32yx 2.18. 下列合并同类项正确的是( )A. B. C. D. 19. 如果-13mx y 与221n x y +是同类项,则m=_______,n=________. 20.下列各组中的两项是同类项的为( )A .3m 3n 2和-3m 2n 3B .12xy 与22xy C .53与a 3D .7x 与7y21.下列运算正确的是( )A. 42232a a a =+B. b a b a +=+2)(2C. 2323a a a =-D. 22223a a a =- 22. 判断(1)4abc 与 4ab 不是同类项 ( )325a b ab +=770m m -=33622ab ab a b +=-+=a b a b ab 222(2) 325n m - 与 232m n 不是同类项 ( ) (3) y x 23.0- 与 2yx 是同类项 ( ) 23.若y x 25与 n m y x 1-是同类项,则m=( ) ,n=( )【B 】1.若单项式-5x m y 3与4x 3y n能合并成一项,则m n=( ) A.3 B.9 C.27 D.62. 若3231+a y x 与是同类项,求2222223612415b a ab b a ab b a ---+的值。
同类项与合并同类项在数学的世界里,同类项与合并同类项是非常基础且重要的概念。
它们就像是数学大厦中的一块块基石,虽然看似简单,却在解决各种数学问题时发挥着关键作用。
那什么是同类项呢?简单来说,同类项就是具有相同特征的项。
这里的“相同特征”主要指的是所含字母相同,并且相同字母的指数也相同。
比如说,“3x²”和“5x²”就是同类项,因为它们都含有字母“x”,并且“x”的指数都是 2;再比如“4ab”和“-2ab”也是同类项,因为它们都包含字母“a”和“b”,而且“a”和“b”的指数都是 1。
要注意的是,同类项与系数无关。
就像“3x²”和“5x²”,虽然系数 3和 5 不同,但它们仍然是同类项。
另外,常数项也是同类项。
例如,5 和-8 就是同类项,因为它们都是不含字母的常数。
理解了同类项,接下来我们看看为什么要合并同类项以及如何合并同类项。
合并同类项在数学运算中是一个非常有用的技巧。
它可以让我们简化复杂的式子,使计算更加简便和清晰。
想象一下,如果我们面对一个式子“3x + 5x +2y 4y”,如果不合并同类项,计算起来会相当麻烦。
但当我们把同类项合并后,就变成了“8x 2y”,是不是一下子简单明了了许多?那么,如何合并同类项呢?其实方法很简单,就是把同类项的系数相加,字母和字母的指数保持不变。
比如说,对于“3x +5x”,因为它们是同类项,所以合并后就是“(3 + 5)x =8x”;对于“2y 4y”,合并后就是“(2 4)y =-2y”。
为了更好地掌握合并同类项,我们可以通过一些具体的例子来练习。
假设我们有式子“7a²b 3a²b +2ab² 5ab²”。
首先,我们找出同类项,“7a²b”和“-3a²b”是同类项,“2ab²”和“-5ab²”是同类项。
然后进行合并,“7a²b 3a²b =(7 3)a²b =4a²b”,“2ab² 5ab² =(2 5)ab²=-3ab²”。
同类项与合并同类项同类项是指具有相同或相似的变量的项。
在代数中,我们经常需要对同类项进行操作和简化,以便更好地进行计算和求解。
一、同类项的定义和简化同类项是指具有相同字母和指数的项。
例如,2x和3x就是同类项,因为它们都是x的一次幂;而2xy和3x^2则不是同类项,因为它们的指数不同。
同类项的简化是指将具有相同字母和指数的项合并为一个项。
简化同类项可以让我们更加简洁地表示和计算代数表达式。
例如,将3x + 2x化简为5x,即将同类项3x和2x合并为5x。
同样地,将2xy + 3xy化简为5xy。
二、合并同类项的规则合并同类项可以根据以下规则进行操作:1. 合并同类项时,要保持它们的变量和指数相同。
例如,2x + 3x可以合并为5x,因为它们的变量和指数都相同。
2. 合并同类项时,可以根据需要进行加法或减法运算。
例如,2x - 3x可以合并为-x,因为它们的变量和指数都相同。
3. 合并同类项时,可以有多个同类项相加或相减。
例如,2x + 3x - 4x可以合并为x,因为它们的变量和指数都相同。
4. 合并同类项时,如果没有明确指定系数,则假定系数为1。
例如,x + x可以合并为2x,因为它们的变量和指数都相同。
5. 合并同类项时,如果没有同类项,则保持原样。
例如,2x + 3y不能合并,因为它们的变量不同。
三、例题和实例分析1. 合并同类项:5x + 3x - 2x解析:这个题目中有3个同类项:5x、3x和-2x。
根据规则3,可以将它们相加。
合并后得到:6x。
2. 合并同类项:2xy - 3xy + 4xy解析:这个题目中有3个同类项:2xy、-3xy和4xy。
根据规则3,可以将它们相加。
合并后得到:3xy。
3. 合并同类项:4a^2 - 2a^2 - a^2 + 3a^2解析:这个题目中有4个同类项:4a^2、-2a^2、-a^2和3a^2。
根据规则3,可以将它们相加。
合并后得到:4a^2。
四、应用举例1. 化简代数表达式:2x^2 + 3x + 4x^2 - 2x解析:这个代数表达式中包含了多个同类项,我们可以先合并同类项,然后进行化简。
第7讲小节同类项、合并同类项以及去括号法则1.掌握同类项概念;2.能够根据合并同类项法则进行整式的加减;3.掌握去括号法则。
知识点01 同类项定义:两个单项式中所含字母相同,且相同字母的次数相同;任何常数项都是同类项;1.下列各单项式中,与﹣2mn2是同类项的是()A.5mn B.2n2C.3m2n D.mn2【解答】解:A、5mn与﹣2mn2所含字母相同,相同字母的指数不相同,不是同类项,故此选项不符合题意;B、2n2与﹣2mn2所含字母不相同,不是同类项,故此选项不符合题意;C、3m2n与﹣2mn2所含字母相同,相同字母的指数不相同,不是同类项,故此选项不符合题意;D、mn2与﹣2mn2所含字母相同,相同字母的指数也相同,是同类项,故此选项符合题意.故选:D.2.若单项式﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=3,n=0D.m=1,n=3【解答】解:因为﹣2x6y与5x2m y n是同类项,所以2m=6,n=1,解得m=3,n=1,故选:B.3.若与是同类项,则a+b=()A.5B.1C.﹣5D.4【解答】解:∵x a y3与x2y b是同类项,∴a=2,b=3,∴a+b=2+3=5.故选:A.4.若2x4y n与﹣5x m y2是同类项,则m n=16.【解答】解:∵2x4y n与﹣5x m y2是同类项,∴m=4,n=2,∴m n=42=16,故答案为:16.5.若3x m y与﹣5x2y n是同类项,则m+n=3.【解答】解:∵3x m y与﹣5x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故答案为:3.6.已知多项式的次数是a,单项式﹣2x3y b与单项式是同类项.(1)将多项式按y的降幂排列.(2)求代数式c2﹣4ab的值.【解答】解:(1)将多项式按y的降幂排列为:;(2)∵多项式是六次四项式,∴a=6,∵单项式﹣2x3y b与单项式是同类项,∴b=1,c=3,∴c2﹣4ab=32﹣4×6×1=9﹣24=﹣15.知识点02 合并同类项法则:同类项的系数相加减,字母和字母的指数不变7.下列单项式中,可以与x2y3合并同类项的是()A.x3y2B.C.3x2y D.2x2y3z【解答】解:A、x3y2与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;B、与x2y3,所含字母相同,相同字母的指数相同,是同类项,能合并,故本选项符合题意;C、x2y与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;D、2x2y3z与x2y3,所含字母不尽相同,不是同类项,所以不能合并,故本选项不合题意;故选:B.8.计算a+2a结果正确的是()A.﹣a B.3a C.2a2D.3a2【解答】解:a+2a=3a,故选:B.9.下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x6【解答】解:A.5xy2﹣3y2x=2xy2,此选项正确;B.4a2b2与﹣5ab不是同类项,无法计算,此选项错误;C.7m2n与﹣7mn2不是同类项,无法计算,此选项错误;D.2x2与3x4不是同类项,无法计算,此选项错误;故选:A.10.计算:﹣2x+3x=x.【解答】解:﹣2x+3x=(﹣2+3)x=x.故答案为:x.11.若单项式与3x5y n+1的和仍是单项式,则mn=12.【解答】解:∵单项式与3x5y n+1的和仍是单项式,∴单项式与3x5y n+1是同类项,∴2m﹣3=5,n+1=4,解得:m=4,n=3,∴mn=3×4=12,故答案为:12.12.已知多项式6x2﹣2mxy﹣2y2+4xy﹣5x+2化简后的结果中不含xy项.(1)求m的值;(2)求代数式﹣m3﹣2m2﹣m+1﹣m3﹣m+2m2+5的值.【解答】解:(1)由题意得﹣2m+4=0,解得m=2.(2)﹣m3﹣2m2﹣m+1﹣m3﹣m+2m2+5=﹣2m3﹣2m+6,将m=2代入,则原式=﹣2×8﹣2×2+6=﹣14.知识点03 去括号及整式的加减1.去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。
高一数学寒假课程合并同类项 (教师版) 1 / 18 初一数学暑假课程高一数学寒假课程合并同类项 (教师版) 2 / 18 初一数学暑假课程 初一数学暑假班(教师版)知识点1 同类项及合并同类项同类项的意义:所含的字母相同,并且相同字母的指数也相同的单项式叫做同类项.几个常数项也叫同类项.注意:(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同; ②相同字母的次数也相同. (2)同类项与系数无关,与字母排列的顺序也无关. 2.合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项.一个多项式合并后含有几项,这个多项式就叫做几项式. 3.合并同类项的法则:同类项的系数相加,所得结果作为合并后的系数,字母和字母的指数不变. 4.合并同类项步骤:(1)准确的找出同类项,把同类项放在一起,中间用“+”联结;合并同类项知识梳理高一数学寒假课程合并同类项 (教师版) 3 / 18 初一数学暑假课程 (2)利用合并同类项的法则,把同类项的系数相加,字母和字母的指数不变; (3)写出合并后的结果. 注意:在掌握合并同类项时注意:(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0; (2)不要漏掉不能合并的项;(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式). 合并同类项的关键:正确判断同类项.【例1】下列各题的两个式子是不是同类项?并说明理由. (1)26x 与254x (2)324x y 与237x y ; (3)5xy 与5yz . (1)是,所含的X 相同,并且x 的指数也相同的单项式。
(2)不是,单项式中所含的字母相同,但是相同字母的指数不同。
(3)不是,单项式中所含的字母不同。
例题解析【例2】已知﹣4xy n+1与是同类项,求2m+n的值.5【例3】如果单项式2mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.a=3初一数学暑假课程高一数学寒假课程合并同类项(教师版)4/ 18高一数学寒假课程合并同类项 (教师版) 5 / 18 初一数学暑假课程 【例4】若单项式a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.8【例5】合并同类项:(1)22226345xy x x y yx x ---+; (2)22375x x x x ----;6xy -3x^2+x^2 -4x^y-5yx^26xy-2x^2-9x^2y(3)534852a x a x ax x -++--; (4)3()5()()a b a b a b +-+++; 9a+3X-5ax -a-b高一数学寒假课程合并同类项 (教师版) 6 / 18 初一数学暑假课程 (5)222(2)4(2)(2)3(2)x y x y y x y x ---+-+-. 3x 二次+12y 二次-16xy-10x+11y【例6】已知:A=3x 2-4xy+2y 2,B=x 2+2xy-5y 2 。
同类项与合并同类项在数学中,同类项指的是具有相同的字母部分的代数式中的各项。
同类项之间可以进行加减运算,从而简化和化简代数式。
合并同类项是指将具有相同字母部分的同类项进行合并,得到更简单的代数式。
本文将介绍同类项的概念以及如何合并同类项。
一、同类项的定义同类项是指具有相同字母部分的代数式中的各项。
例如,在代数式2x + 3x + 4x中,2x、3x和4x都是同类项,因为它们都具有相同的字母部分x。
而2x、3y和4z就不是同类项,因为它们的字母部分不同。
同类项之间可以进行加减运算。
例如,将2x + 3x合并为5x,即把相同字母部分的系数相加。
同样地,将4x - 2x合并为2x。
二、合并同类项的方法合并同类项的方法是将相同字母部分的系数相加,并保留字母部分不变。
下面是一些例子来说明合并同类项的具体步骤:例子1:合并同类项3x + 4x首先,我们将相同字母部分的系数相加。
3x + 4x的系数为3 + 4 = 7。
最终的合并结果为7x。
例子2:合并同类项5y - 2y + y首先,将相同字母部分的系数相加。
5y - 2y + y的系数为5 - 2 + 1 = 4。
最终的合并结果为4y。
例子3:合并同类项2a^2b - ab^2 + 3a^2b首先,将相同字母部分的系数相加。
2a^2b - ab^2 + 3a^2b的系数为2 +3 = 5。
最终的合并结果为5a^2b - ab^2。
通过上述例子,我们可以看出合并同类项只需将相同字母部分的系数相加,并保留字母部分不变。
这样可以将复杂的代数式简化为更简单的形式。
三、合并同类项的应用合并同类项在代数中的应用非常广泛,特别是在化简和解方程过程中。
通过合并同类项,我们可以简化代数式,使得计算更加简便和高效。
在解方程时,合并同类项可以帮助我们整合方程的各项,从而更好地观察和理解方程的性质。
通过整理方程并合并同类项,我们可以更快地找到方程的解。
此外,合并同类项还有助于我们理解和运用多项式的运算规则。
同类项与合并同类项-重难点题型【知识点1 同类项的概念】(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 同类项中所含字母可以看成是数字、单项式、多项式等. (2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项. 【题型1 判断两单项式是否同类项】【例1】(2020秋•广安期末)下列各选项中的两个单项式,是同类项的是( ) A .3和2 B .﹣a 2和﹣52 C .−15a 2b 和12ab 2D .2ab 和2xy【变式1-1】(2020秋•鄂州期末)下列各组单项式中,不是同类项的是( ) A .32与23 B .﹣5x 2 与36x 2C .25a 3bc 与23a 3bcD .17x 2y 与﹣0.9yx 3【变式1-2】(2020秋•内江期末)下列各组代数式中,属于同类项的是( ) A .x 2与xy 2 B .3ab 2与﹣3ab 2C .﹣4xyz 与2x 2y 2z 2D .3a 与2b【变式1-3】(2021春•安丘市月考)下列各组中,不是同类项的是( )A .12a 3y 与2ya 33B .22abx 3与5bax 33C .6a 2mb 与﹣a 2bmD .13x 3y 与13xy 3【题型2 由同类项定义求值】【例2】(2021春•道县期末)若23x a y 3与32x 2y b 是同类项,则a +b =( )A .5B .1C .﹣5D .4【变式2-1】(2020秋•织金县期末)若单项式a m ﹣1b 2与12a 2b n 是同类项,则n m 的值是( )A .3B .6C .8D .9【变式2-2】(2021春•万州区校级月考)已知单项式﹣3x m ﹣1y 3与52x n y m +n 是同类项,那么m 、n 的值分别是( ) A .m =2,n =1B .m =1,n =2C .m =0,n =﹣1D .m =﹣1,n =2【变式2-3】(2020秋•石阡县期末)如果13x a +1y 2a +3与﹣3x 2y 2b﹣1是同类项,那么a ,b 的值分别是( ) A .a =1,b =2B .a =1,b =3C .a =2,b =3D .a =3,b =2【知识点2 合并同类项】(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.【题型3 判断合并同类项的正误】【例3】(2020秋•莲湖区期末)下列计算正确的是( ) A .5a +2b =7abB .5a 3﹣3a 2=2aC .4a 2b ﹣3ba 2=a 2bD .−12y 2−14y 2=−34y 4【变式3-1】(2021•株洲模拟)下面计算正确的是( ) A .4x 2﹣x 2=3 B .3a 2+2a 3=5a 5 C .3a 2+2b =5abD .﹣0.25ab +14ba =0【变式3-2】(2021春•香坊区期末)下列各式正确的是( ) A .5xy 2﹣3y 2x =2xy 2 B .4a 2b 2﹣5ab =﹣a C .7m 2n ﹣7mn 2=0D .2x 2+3x 4=5x 6【变式3-3】(2020秋•新邵县期末)下列运算正确的是( ) A .3x ﹣2x =1 B .2x 2+3x 3=5x 5C .7x 3﹣3x 3=4x 3D .22021﹣22020=2【题型4 由合并同类项法则求值】【例4】(2020秋•苏州期末)若3x m +5y 2与23x 8y n 的差是一个单项式,则代数式﹣m n 的值为( ) A .﹣8B .9C .﹣9D .﹣6【变式4-1】(2021春•勃利县期末)若3x 2y m 与2x m +n ﹣1y 的和仍为一个单项式,则m 2﹣n 的值为( ) A .1B .﹣1C .﹣3D .3【变式4-2】(2020秋•怀安县期末)已知m 、n 为常数,代数式2x 4y +mx |5﹣n |y +xy 化简之后为单项式,则m n 的值共有( ) A .1个B .2个C .3个D .4个【变式4-3】(2021•湘潭模拟)已知m ,n 为常数,三个单项式4x 2y ,mx 3−n 2y ,8x 3y 的和仍为单项式,则m +n 的值的个数共有( ) A .1个B .2个C .3个D .4个【题型5 不含某项问题】【例5】(2020秋•渝中区期末)若多项式x 2﹣2kx ﹣x +7化简后不含x 的一次项,则k 的值为( ) A .0 B .﹣2C .12D .−12【变式5-1】(2020秋•台前县期中)多项式﹣x 3﹣4x 2+x +1与多项式3x 3+2mx 2﹣5x +3相加后不含二次项,则m 的值为( ) A .2B .﹣2C .4D .﹣4【变式5-2】(2020秋•薛城区期末)若多项式x 2+2kxy ﹣5y 2﹣2x ﹣6xy +4中不含xy 项,则k= .【变式5-3】(2020秋•雁江区期末)已知关于x ,y 的多项式mx 2+4xy ﹣7x ﹣3x 2+2nxy ﹣5y 合并后不含有二次项,则n m = . 【题型6 与字母取值无关问题】【例6】(2020秋•防城区期中)多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( )A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关【变式6-1】(2020秋•朝阳区校级月考)如果关于字母x 的多项式3x 2﹣mx ﹣nx 2﹣x ﹣3的值与x 的值无关,则mn = .【变式6-2】(2020秋•宣化区期中)已知代数式﹣3x 2+2y ﹣mx +5﹣3nx 2+6x ﹣20y 的值与字母x 的取值无关,求23m ﹣2mn +n 3的值.【变式6-3】(2020秋•射洪市期中)如果关于字母x 的二次多项式﹣3x 2+mx ﹣5+nx 2﹣x +3的值与x 的取值无关,求m 2+2mn +n 2的值.【题型7 合并同类项的计算】【例7】(2020秋•恩施市期中)合并下列多项式中的同类项. (1)5a 2+2ab ﹣3b 2﹣ab +3b 2﹣5a 2; (2)6y 2﹣9y +5﹣y 2+4y ﹣5y 2.【变式7-1】(2020秋•东莞市校级期中)化简: (1)﹣3x 2y +3xy 2﹣2xy 2+2x 2y ; (2)2a 2﹣5a +a 2+6+4a ﹣3a 2.【变式7-2】(2020秋•天心区校级月考)化简: (1)12m 2﹣3mn 2+4n 2+12m 2+5mn 2﹣4n 2.(2)7a 2﹣2ab +b 2﹣5a 2﹣b 2﹣2a 2﹣ab .【变式7-3】(2020秋•武侯区校级期中)化简: (1)4a 2+3b 2﹣2ab ﹣3a 2+b 2.(2)(−13xy )+(−25x 2)−12x 2﹣(−16xy ).【题型8 先合并同类项再求值】【例8】先合并同类项,再求值:3a 2﹣5a +2﹣6a 2+6a ﹣3,其中a =﹣1.【变式8-1】先合并同类项,再求值﹣xyz ﹣4yz ﹣6xz +3xyz +5xz +4yz ,其中x =﹣2,y =﹣10,z =﹣5.【变式8-2】当a =13时,求多项式5a 2﹣5a +4﹣3a 2+6a ﹣5的值. (1)将a 的值直接代入多项式中计算; (2)先化简多项式,再将a 的值代入计算.【变式8-3】(2020秋•抚顺县期末)先化简,再求值:13ab −12a 2+14a 2﹣(−23ab ),其中a 、b 满足条件:x 2a y b +1与2xy 3是同类项.。