第二章 热力学第一定律(1)
- 格式:pdf
- 大小:534.74 KB
- 文档页数:37
第二章 热力学第一定律第一节 第一定律的实质及热力学能和总能能量守恒与转换定律是自然界的基本规律之一,它指出:自然界中的一切物质都具有能量,能量不可能被创造,也不能被消灭;但能量可以从一种形态转变为另一种形态,且在能量的转化过程中能量总量不变。
热力学第一定律是能量守恒与转换定律在热现象中的应用。
它确定了热力过程中热力系统与外界进行能量交换时,各种形态能量数量上的守恒关系。
一、热力学能热力学能是与物质内部粒子的微观运动和粒子的空间位置有关的能量。
它包括分子移动、转动、粒子震动运动的内动能和分子间由于相互作用力的存在而具有的内位能,故又称内能。
内动能取决于分子热运动,是温度的函数,而内位能取决于分子间的距离,是比体积的函数,即u = f ( T, v )二、总能除热力学能外,工质的总能量还包括工质在参考坐标系中作为一个整体,因有宏观运动速度而具有动能、因有不同高度而具有位能。
前一种能量称之为内部储存能,后两种能量则称之为外部储存能。
我们把内部储存能和外部储存能的总和,即热力学能与宏观运动动能和位能的总和,叫做工质的总储存能,简称总能。
即p k E U E E =++ (2-1)E---总能; U---热力学能; E k ---宏观动能; E p ---宏观位能。
第二节 第一定律的基本能量方程及工质的焓一、焓在有关热力计算总时常有U+pV 出现,为了简化公式和计算,把它定义为焓,用符号H 表示,即H=U+pV (2-2)1kg工质的焓值称为比焓,用h表示,即h=u+pv (2-3)焓的单位是J,比焓的单位是J/kg。
焓是一个状态参数,在任一平衡状态下,u、p和v都有一定得值,因而焓h也有一定的值,而与达到这一状态的路径无关。
当1kg工质通过一定的界面流入热力系统时,储存于它内部的热力学能当然随着也进入到系统中,同时还把从外部功源获得的推动功pv带进了系统。
因此系统中因引进1kg工质而获得的总能量是热力学能与推动功之和(u+pv),即比焓。
第二章热力学第一定律2-1冬季,工厂某车间要使室内维持一适宜温度。
在这一温度下,透过墙壁和玻璃等处,室内向室外每一小时传出0.7×106kcal的热量。
车间各工作机器消耗的动力为是500PS(认为机器工作时将全部动力转变为热能)。
另外,室内经常点着50 盏100W 的电灯,要使该车间的温度保持不变,问每小时需供给多少kJ的热量?解:要使车间保持温度不变,必须使车间内每小时产生的热量等散失的热量Q = Q机+Q灯+Q散+Q补= 0Q机= 500PSh = 500×2.647796×103 kJ = 1.32×106 kJQ灯= 50×100W×3600s = 1.8×107J = 1.8×104kJQ散= -0.7×106kcal =- 0.7×106×4.1868kJ = -2.93×106 kJQ补= -Q机-Q灯+Q散= -1.32×106 kJ-1.8×104 kJ+2.93×106 kJ = 1.592×106 kJ2-2 某机器运转时,由于润滑不良产和摩擦热,使质量为150kg的钢制机体在30min内温度升高50℃。
试计算摩擦引起的功率损失(已知每千克钢每升高1℃需热量0.461kJ)。
解:由于功损转变为热产,所以W损=Q损=0.461kJ/(kg·℃)×50℃×150kg = 3457.5 kJP损= Q损/t = 3457.5kJ/(30×60)s = 1.92 kW2-3 气体在某一过程中吸入热量12kJ,同时热力学能增加20kJ。
问此过程是膨胀过程还是压缩过程?对外所作功是多少J(不考虑考虑摩擦)?解:取气体为系统,据闭口系能量方程式Q= ΔU+WW=Q−ΔU=12kJ−20kJ = −8kJ所以过程是压缩过程,外界对气体作功8kJ。
第二章热力学第一定律Ⅰ学习指导一、基本思路热力学主要包括热力学第一定律和热力学第二定律。
本章热力学第一定律介绍封闭的热力学系统在状态变化时热力学能、热和功之间相互转化所遵循的规律。
首先介绍了热力学的基本概念,如系统和环境、状态函数、过程和途径、热力学平衡态、热和功等,得出了热力学第一定律的文字表述和数学表达式。
热力学能是热力学第一定律所引出的重要的状态函数,它是系统内部所具有的能量。
热和功是封闭系统在状态变化时与环境传递能量的两种方∆=+,将封闭系统变化过程式,都与过程有关,称为过程量。
通过热力学第一定律U Q W中热、功和热力学能改变联系了起来。
焓是由系统的热力学能、体积和压力组合得到的一个状态函数,在一定条件下,系统的焓变与过程的热相联系,焓及其有关公式可以看成是热力学第一定律的扩展。
通过Gay-Lussac-Joule实验,说明理想气体的热力学能和焓只是温度的函数;通过Joule-Thomson实验讨论了热力学第一定律对实际气体的应用。
热力学第一定律的具体应用就是围绕不同过程(理想气体简单状态变化、相变和化学变化)中热、功、热力学能变和焓变的计算展开。
准静态过程和可逆过程是热力学的重要概念;卡诺循环是热力学的特殊循环。
热化学是热力学第一定律对于化学反应系统的应用,据此可以计算反应的热效应,通常利用热化学数据(生成焓和燃烧焓)及Hess定律可直接求得298 K下反应的热效应,应用Kirchhoff定律可计算不同温度下反应的热效应。
本章还介绍了热力学第零定律,以热平衡现象为基础给出了温度的概念。
本章的主要内容及其逻辑关系如框图所示。
二、基本概念1.热力学第零定律如果两个系统分别和处于确定状态的第三个系统达到热平衡,则这两个系统彼此也将处于热平衡。
这个热平衡规律称为热力学第零定律。
此定律给出了温度的概念和比较温度的方法。
2.状态函数状态是系统的一切宏观性质(质量、温度、压力、密度和热力学能等)的综合表现。
第二章 热力学第一定律(一)主要公式及其适用条件1、热力学第一定律的数学表示式∆U = Q + W 或 d U = đQ + đW规定系统吸热为正,放热为负;系统得功为正,对环境(或外界)作功为负。
式中U 称为热力学能(以前称为内能)。
上式适用于封闭系统一切过程能量的衡算。
2、体积功 (1)定义式đW = -p (环)V d 或W = ∑đW = -()V p d 21⎰环上式适用于一切过程体积功的计算。
(2)W r = -⎰21d V p式中:p 为系统的压力,W r 为可逆过程的体积功。
此式适用于封闭系统一切可逆过程体积功的计算。
(3)W = - p (V 2 - V 1) = nR(T 2 - T )此式适用于物质的量n 恒定的理想气体恒压变温过程。
(4)W = - p (环)(V 2 - V 1)此式适用于封闭系统恒外压过程。
(5)W = - nRT ln((V 2/ V 1) = - nRT ln((p 2/ p 1) 此式适用于一定量的理想气体恒温可逆过程。
(6)W = - p (V 2 - V 1) = -∆n g RT 式中∆n g 为过程前后气体物质量的增量。
此式适用于液态或固态物质所占体积与气态物质所占体积相比较可以忽略不计,气体为理想气体,恒压、恒温化学反应过程或相变过程。
(7)W = ∆U = nC V , m (T 2 - T )此式适用于n 、C V , m 恒定,理想气体绝热过程,不论过程是否可逆皆适用。
3、热力学能变(1)∆U =⎰21d m V,T T T nC = nC V , m (T 2 - T )此式适用于n 、C V , m 恒定的理想气体,单纯p 、V 、T 变化的一切过程;或者n 、C V , m 、V 恒定的任意单相纯物质的变温过程。
(2)∆U = Q V此式适用于非体积功W ' = 0、d V = 0的封闭系统所进行的一切过程。
4、焓的定义H = U + pV 5、焓变(1)∆H = ∆U + ∆(pV )式中∆(pV ) = p 2V 2 - p 1V 1,即系统p 与V 乘积的增量,只有恒压过程的∆(pV )在数值上才等于过程的体积功。