喷油器的波形
- 格式:docx
- 大小:37.12 KB
- 文档页数:1
汽车发动机喷油控制信号波形的检测与诊断作者:吴敏来源:《科学与财富》2019年第28期摘要:在电控燃油喷射系统中,由于燃油压力调节器能够保持喷油压力恒定,因此从喷油器喷出的燃油量取决于喷油器开启时间的长短,而开启时间的长短是由微机发出的喷油控制信号决定的。
为了正确判断喷射系统基本喷油控制是否正常,各种传感器喷油量的修正控制(加浓补偿)是否良好,以及诊断ECU和喷油器的故障,有必要对喷油控制信号波形进行检测与诊断。
关键词:发动机;喷油控制信号;波形1.喷油信号波形的检测喷油器工作时的喷油信号波形,通常用发动机综合检测仪或汽车专用示波器来检测,其检测方法如下:(1)按照波形检测仪器操作使用说明书的要求,连接好波形检测仪器。
通常仪器带有专用接头与喷油器插接器相连。
(2)起动发动机,使发动机稳定运转预热至正常温度。
(3)打开检测仪器,按规定工况运转发动机,示波器则显示喷油器工作时的喷油信号波形和喷油脉宽,如图1所示。
图1 电流驱动式喷油器喷油信号波形2.标准喷油信号波形标准喷油信号波形是指电控燃油喷射系统工作正常时,喷油控制信号电压随时间变化的波形,它是不解体动态检测电控燃油喷射系统的诊断标准。
喷油信号波形与喷油器的驱动方式有关,喷油器的驱动方式有电压驱动和电流驱动两种。
电压驱动式喷油器,其电控系统ECU对驱动喷油器的喷油电脉冲电压进行恒定控制。
在喷油器控制电路中,ECU控制功率晶体管导通或者截止,导通时蓄电池电压加到喷油器电磁线圈上,喷油器喷油,截止时停止喷油,其喷油器标准喷油信号波形如图2(a)所示。
电流驱动式喷油器,其电控系统ECU对驱动喷油器的电磁线圈电流进行调节控制。
在电流驱动式控制电路中,功率晶体管除基本的开、关功能外,还具有限流功能。
在基本喷油时间内,功率晶体管导通,驱动电流不受限制;在加浓补偿喷油时间内,控制其电流迅速下降到能维持喷油器处于全开状态的最小值,以免喷油器电磁线圈过热损坏。
其喷油器标准喷油信号波形如图2(b)所示。
电控汽油喷射系统的波形分析汽车用示波器一、汽车示波器的功用汽车上电子设备所占的比例越来越多,电子设备的修理工作也就越来越多,这就对今天的汽车维修技术提出了新挑战。
现代的汽车修理工作已经不再是一个单纯的机械修理,而是机械和电子一体化的维修,如果一个汽车维修企业不具备有效地排除汽车电子设备的故障能力,这个企业必将面临被淘汰的危险。
为了能有效地排除汽车电子设备的故障,保证汽车修理的质量,必须具备以下三个基本条件:(1)必备的测试设备;(2)必需的维修资料;(3)必要的技术培训;汽车示波器的诞生为汽车修理技术人员快速判断汽车电子设备故障提供了有力了的工具。
用普通的示波器去测试电子设备时,最大的困难是设定示波器(即调整示波器的各个按钮,使显示的波形更为清楚)和分析波形,而使用汽车示波器测试汽车电子设备非常简单,只要像点菜单一样,选择要测试的内容,无需任何设定和调整就可以直接观察波形。
汽车示波器是专门为汽车维修人员设计的“傻瓜”示波器,它的设定和调整是全自动的,使用汽车示波器,就你使用一台“傻瓜”照相机一样方便。
示波器与万用表相比有着更为精确及描述细致的优点,万用表通常只能用1—2个电参数来反映电信号的特征,而示波器则用电压随时间的变化的图形来反映—‘个电信号,它显示电信号比万用表更准确、更形象达式有些汽车电子设备的信号变化速率非常快,变化周期达到干分之一秒.通常测试仪器的扫描速度应该是被测试信号的5—10倍。
还有许多故障信号是间歇的,时有时无,这就需要仪器的测试速度大大高于故障信号曲速度。
汽车示波器不仅可以快速捕捉电信号,还对以用较慢的速度来显示这些波形,以便一面观察,一面分析。
汽车示波器还可以以储存的方式记录信号波形,反复观察已经发生过的快速信号,这就为分析故障提供了极大方便。
无论是高速信号(如喷油嘴、间歇性故障信号),还是慢速信号(如节气门位置变化及氧传感器信号),都可以用汽车示波器来观测被测设备的工作状况。
汽车电控燃油控制的波形分析引言在现代汽车中,电控燃油系统起着至关重要的作用。
燃油控制是维持引擎正常运行的关键,而波形分析那么是诊断问题的有力工具。
本文将对汽车电控燃油控制的波形进行分析,帮助了解燃油系统的工作原理、故障诊断方法以及解决问题的技巧。
1. 汽车电控燃油系统简介汽车电控燃油系统主要由燃油泵、进气系统、点火系统、喷油器、传感器等组成。
整个系统通过电子控制单元〔ECU〕协调工作,确保燃油供应的精确控制,并实时调整以满足引擎的需求。
2. 汽车电控燃油控制的波形分析原理燃油控制是通过ECU对燃油喷射时机和量进行精确控制来实现的。
波形分析是诊断燃油控制系统的有效方法之一,主要通过观察和分析传感器和执行器的输出信号波形来判断系统的工作状态和是否存在故障。
在波形分析中,一些常用的输入信号包括: - 氧传感器输出信号 - 空气流量传感器输出信号 - 曲轴位置传感器输出信号 - 进气歧管绝对压力传感器输出信号一些常用的输出信号包括: - 燃油喷射器驱动脉冲信号 - 点火系统的点火脉冲信号 - 燃油泵驱动信号 - 长时燃油修正信号通过对这些信号波形的观察和分析,可以给出诊断结果,判断系统是否正常工作。
3. 汽车电控燃油控制的常见问题和解决方法3.1. 燃油喷射器故障燃油喷射器是汽车燃油系统中的关键部件之一。
当喷油器出现故障时,会导致燃油供应缺乏或过量,引发引擎失火或工作不稳定的问题。
在波形分析中,观察燃油喷射器驱动脉冲信号的波形可以判断其工作状态。
正常情况下,喷油器应该有规律的脉冲信号,且脉冲的持续时间和频率应该符合规格要求。
如果喷油器的脉冲信号出现异常,如持续时间过短或过长,频率异常等,可能需要更换或维修燃油喷射器。
3.2. 传感器故障汽车燃油控制系统中的传感器起着收集和反应关键信息的作用。
常见的传感器包括氧传感器、进气歧管绝对压力传感器和曲轴位置传感器。
通过观察传感器的输出信号波形,可以判断传感器是否工作正常。
Q17C 、Q17D 分别代表的就是一缸、二缸、三缸以及四缸的喷油器,从电路图上可以看到,每一个喷油器上面都有两根线,喷油器上面的两根线是通过一个代号为X160的插头连接到了K20发动机控制模块上面。
歧管喷射的喷油器上面也有两根线,如图3所示,其中的一根线也是连接到了发动机控制模块上面,另一根线是直接由继电器通过保险丝提供的12伏蓄电池电压,连图1喷油器的结构123456789191817161514131211101.碳堵;2.密封垫;3.密封圈;4.弹簧;5.密封垫;6.放泄螺钉;7.滤网;8.油封;9.进油通道;10.高压油管接头;11.喷油器体;12.弹簧座;13.高压通道;14.弹簧垫片;15.针阀体;16.阀颈;17.针阀;18.喷油嘴;19.喷孔.图2缸内直喷喷油器控制电路图3歧管喷射喷油器控制电路缸内直喷的喷油器和歧管喷射的喷油器在控制方式上有很大的不同。
缸内直喷喷油器的1号线连接到了发动机控制模块内部的低电平参考电压上面,喷油器的2号线连接到了发动机控制模块内部的高电平参考电压上面。
当发动机运转时使用示波器去测量喷油器的1号线和2号线之间的波形的时候(示波器的红色探头接2号线、示波器的黑色探头接1号线,如图4所示),会得到如图5所示的波形。
图4示波器探头接线缸内直喷喷油器波形分析缸内直喷喷油器的波形一共分成了六个阶段,阶段是一条电压为0伏的直线,在这个阶段喷油器两端的,喷油器处于关闭的状态[2]。
第二个阶段表示的是喷油器内部的轴针快速的开启,由于缸内直喷的喷油器使用的是高压燃油喷射200bar之间),因此为了实现喷油器轴针的快速开启,需要使用65伏的电压作用在喷油器内部的电磁线圈上面,65伏的电压是由发动机控制模块内部的升压电容所提供的,在这一阶段喷油器内部电磁线圈上面的电流能够达到10安培左右,同时,我们还可以观察到65伏的电压并不能一直保持恒定,会逐渐的降低,这是因为发动机控制模块内部的升压电容在放电的过程中电压会逐渐的衰减所导致的。
喷油器波形与故障分析
Bernie Thompson;程曦;韩建保
【期刊名称】《汽车维修与保养》
【年(卷),期】2006(000)009
【摘要】我们剖开一只喷油器,就可以看清喷油器的内部结构,便可了解喷油器的工作原理。
实际上,所谓的喷油器波形并不是什么特别高深的东西,它只不过是一组快照,记录了发生于一段时间内的电压或电流信号。
【总页数】5页(P68-72)
【作者】Bernie Thompson;程曦;韩建保
【作者单位】无
【正文语种】中文
【中图分类】U4
【相关文献】
1.根据次级点火信号波形诊断喷油器故障
2.喷油器用超磁致伸缩致动器设计方法和驱动波形研究
3.柴油电控喷油器波形诊断
4.汽油缸内直喷喷油器控制原理及波形分析
5.汽油缸内直喷喷油器控制原理及波形分析
因版权原因,仅展示原文概要,查看原文内容请购买。